Metamath Proof Explorer


Theorem cvmliftphtlem

Description: Lemma for cvmliftpht . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmliftpht.b B = C
cvmliftpht.m M = ι f II Cn C | F f = G f 0 = P
cvmliftpht.n N = ι f II Cn C | F f = H f 0 = P
cvmliftpht.f φ F C CovMap J
cvmliftpht.p φ P B
cvmliftpht.e φ F P = G 0
cvmliftphtlem.g φ G II Cn J
cvmliftphtlem.h φ H II Cn J
cvmliftphtlem.k φ K G PHtpy J H
cvmliftphtlem.a φ A II × t II Cn C
cvmliftphtlem.c φ F A = K
cvmliftphtlem.0 φ 0 A 0 = P
Assertion cvmliftphtlem φ A M PHtpy C N

Proof

Step Hyp Ref Expression
1 cvmliftpht.b B = C
2 cvmliftpht.m M = ι f II Cn C | F f = G f 0 = P
3 cvmliftpht.n N = ι f II Cn C | F f = H f 0 = P
4 cvmliftpht.f φ F C CovMap J
5 cvmliftpht.p φ P B
6 cvmliftpht.e φ F P = G 0
7 cvmliftphtlem.g φ G II Cn J
8 cvmliftphtlem.h φ H II Cn J
9 cvmliftphtlem.k φ K G PHtpy J H
10 cvmliftphtlem.a φ A II × t II Cn C
11 cvmliftphtlem.c φ F A = K
12 cvmliftphtlem.0 φ 0 A 0 = P
13 1 2 4 7 5 6 cvmliftiota φ M II Cn C F M = G M 0 = P
14 13 simp1d φ M II Cn C
15 7 8 9 phtpy01 φ G 0 = H 0 G 1 = H 1
16 15 simpld φ G 0 = H 0
17 6 16 eqtrd φ F P = H 0
18 1 3 4 8 5 17 cvmliftiota φ N II Cn C F N = H N 0 = P
19 18 simp1d φ N II Cn C
20 iitop II Top
21 iiuni 0 1 = II
22 20 20 21 21 txunii 0 1 × 0 1 = II × t II
23 22 1 cnf A II × t II Cn C A : 0 1 × 0 1 B
24 10 23 syl φ A : 0 1 × 0 1 B
25 0elunit 0 0 1
26 opelxpi s 0 1 0 0 1 s 0 0 1 × 0 1
27 25 26 mpan2 s 0 1 s 0 0 1 × 0 1
28 fvco3 A : 0 1 × 0 1 B s 0 0 1 × 0 1 F A s 0 = F A s 0
29 24 27 28 syl2an φ s 0 1 F A s 0 = F A s 0
30 11 adantr φ s 0 1 F A = K
31 30 fveq1d φ s 0 1 F A s 0 = K s 0
32 29 31 eqtr3d φ s 0 1 F A s 0 = K s 0
33 df-ov s A 0 = A s 0
34 33 fveq2i F s A 0 = F A s 0
35 df-ov s K 0 = K s 0
36 32 34 35 3eqtr4g φ s 0 1 F s A 0 = s K 0
37 iitopon II TopOn 0 1
38 37 a1i φ II TopOn 0 1
39 7 8 phtpyhtpy φ G PHtpy J H G II Htpy J H
40 39 9 sseldd φ K G II Htpy J H
41 38 7 8 40 htpyi φ s 0 1 s K 0 = G s s K 1 = H s
42 41 simpld φ s 0 1 s K 0 = G s
43 36 42 eqtrd φ s 0 1 F s A 0 = G s
44 43 mpteq2dva φ s 0 1 F s A 0 = s 0 1 G s
45 fovrn A : 0 1 × 0 1 B s 0 1 0 0 1 s A 0 B
46 25 45 mp3an3 A : 0 1 × 0 1 B s 0 1 s A 0 B
47 24 46 sylan φ s 0 1 s A 0 B
48 eqidd φ s 0 1 s A 0 = s 0 1 s A 0
49 cvmcn F C CovMap J F C Cn J
50 4 49 syl φ F C Cn J
51 eqid J = J
52 1 51 cnf F C Cn J F : B J
53 50 52 syl φ F : B J
54 53 feqmptd φ F = x B F x
55 fveq2 x = s A 0 F x = F s A 0
56 47 48 54 55 fmptco φ F s 0 1 s A 0 = s 0 1 F s A 0
57 21 51 cnf G II Cn J G : 0 1 J
58 7 57 syl φ G : 0 1 J
59 58 feqmptd φ G = s 0 1 G s
60 44 56 59 3eqtr4d φ F s 0 1 s A 0 = G
61 38 cnmptid φ s 0 1 s II Cn II
62 25 a1i φ 0 0 1
63 38 38 62 cnmptc φ s 0 1 0 II Cn II
64 38 61 63 10 cnmpt12f φ s 0 1 s A 0 II Cn C
65 1 cvmlift F C CovMap J G II Cn J P B F P = G 0 ∃! f II Cn C F f = G f 0 = P
66 4 7 5 6 65 syl22anc φ ∃! f II Cn C F f = G f 0 = P
67 coeq2 f = s 0 1 s A 0 F f = F s 0 1 s A 0
68 67 eqeq1d f = s 0 1 s A 0 F f = G F s 0 1 s A 0 = G
69 fveq1 f = s 0 1 s A 0 f 0 = s 0 1 s A 0 0
70 oveq1 s = 0 s A 0 = 0 A 0
71 eqid s 0 1 s A 0 = s 0 1 s A 0
72 ovex 0 A 0 V
73 70 71 72 fvmpt 0 0 1 s 0 1 s A 0 0 = 0 A 0
74 25 73 ax-mp s 0 1 s A 0 0 = 0 A 0
75 69 74 eqtrdi f = s 0 1 s A 0 f 0 = 0 A 0
76 75 eqeq1d f = s 0 1 s A 0 f 0 = P 0 A 0 = P
77 68 76 anbi12d f = s 0 1 s A 0 F f = G f 0 = P F s 0 1 s A 0 = G 0 A 0 = P
78 77 riota2 s 0 1 s A 0 II Cn C ∃! f II Cn C F f = G f 0 = P F s 0 1 s A 0 = G 0 A 0 = P ι f II Cn C | F f = G f 0 = P = s 0 1 s A 0
79 64 66 78 syl2anc φ F s 0 1 s A 0 = G 0 A 0 = P ι f II Cn C | F f = G f 0 = P = s 0 1 s A 0
80 60 12 79 mpbi2and φ ι f II Cn C | F f = G f 0 = P = s 0 1 s A 0
81 2 80 syl5eq φ M = s 0 1 s A 0
82 21 1 cnf M II Cn C M : 0 1 B
83 14 82 syl φ M : 0 1 B
84 83 feqmptd φ M = s 0 1 M s
85 81 84 eqtr3d φ s 0 1 s A 0 = s 0 1 M s
86 mpteqb s 0 1 s A 0 V s 0 1 s A 0 = s 0 1 M s s 0 1 s A 0 = M s
87 ovexd s 0 1 s A 0 V
88 86 87 mprg s 0 1 s A 0 = s 0 1 M s s 0 1 s A 0 = M s
89 85 88 sylib φ s 0 1 s A 0 = M s
90 89 r19.21bi φ s 0 1 s A 0 = M s
91 1elunit 1 0 1
92 opelxpi s 0 1 1 0 1 s 1 0 1 × 0 1
93 91 92 mpan2 s 0 1 s 1 0 1 × 0 1
94 fvco3 A : 0 1 × 0 1 B s 1 0 1 × 0 1 F A s 1 = F A s 1
95 24 93 94 syl2an φ s 0 1 F A s 1 = F A s 1
96 30 fveq1d φ s 0 1 F A s 1 = K s 1
97 95 96 eqtr3d φ s 0 1 F A s 1 = K s 1
98 df-ov s A 1 = A s 1
99 98 fveq2i F s A 1 = F A s 1
100 df-ov s K 1 = K s 1
101 97 99 100 3eqtr4g φ s 0 1 F s A 1 = s K 1
102 41 simprd φ s 0 1 s K 1 = H s
103 101 102 eqtrd φ s 0 1 F s A 1 = H s
104 103 mpteq2dva φ s 0 1 F s A 1 = s 0 1 H s
105 fovrn A : 0 1 × 0 1 B s 0 1 1 0 1 s A 1 B
106 91 105 mp3an3 A : 0 1 × 0 1 B s 0 1 s A 1 B
107 24 106 sylan φ s 0 1 s A 1 B
108 eqidd φ s 0 1 s A 1 = s 0 1 s A 1
109 fveq2 x = s A 1 F x = F s A 1
110 107 108 54 109 fmptco φ F s 0 1 s A 1 = s 0 1 F s A 1
111 21 51 cnf H II Cn J H : 0 1 J
112 8 111 syl φ H : 0 1 J
113 112 feqmptd φ H = s 0 1 H s
114 104 110 113 3eqtr4d φ F s 0 1 s A 1 = H
115 iiconn II Conn
116 115 a1i φ II Conn
117 iinllyconn II N-Locally Conn
118 117 a1i φ II N-Locally Conn
119 38 63 61 10 cnmpt12f φ s 0 1 0 A s II Cn C
120 cvmtop1 F C CovMap J C Top
121 4 120 syl φ C Top
122 1 toptopon C Top C TopOn B
123 121 122 sylib φ C TopOn B
124 ffvelrn M : 0 1 B 0 0 1 M 0 B
125 83 25 124 sylancl φ M 0 B
126 cnconst2 II TopOn 0 1 C TopOn B M 0 B 0 1 × M 0 II Cn C
127 38 123 125 126 syl3anc φ 0 1 × M 0 II Cn C
128 7 8 9 phtpyi φ s 0 1 0 K s = G 0 1 K s = G 1
129 128 simpld φ s 0 1 0 K s = G 0
130 opelxpi 0 0 1 s 0 1 0 s 0 1 × 0 1
131 25 130 mpan s 0 1 0 s 0 1 × 0 1
132 fvco3 A : 0 1 × 0 1 B 0 s 0 1 × 0 1 F A 0 s = F A 0 s
133 24 131 132 syl2an φ s 0 1 F A 0 s = F A 0 s
134 30 fveq1d φ s 0 1 F A 0 s = K 0 s
135 133 134 eqtr3d φ s 0 1 F A 0 s = K 0 s
136 df-ov 0 A s = A 0 s
137 136 fveq2i F 0 A s = F A 0 s
138 df-ov 0 K s = K 0 s
139 135 137 138 3eqtr4g φ s 0 1 F 0 A s = 0 K s
140 13 simp3d φ M 0 = P
141 140 adantr φ s 0 1 M 0 = P
142 141 fveq2d φ s 0 1 F M 0 = F P
143 6 adantr φ s 0 1 F P = G 0
144 142 143 eqtrd φ s 0 1 F M 0 = G 0
145 129 139 144 3eqtr4d φ s 0 1 F 0 A s = F M 0
146 145 mpteq2dva φ s 0 1 F 0 A s = s 0 1 F M 0
147 fconstmpt 0 1 × F M 0 = s 0 1 F M 0
148 146 147 eqtr4di φ s 0 1 F 0 A s = 0 1 × F M 0
149 fovrn A : 0 1 × 0 1 B 0 0 1 s 0 1 0 A s B
150 25 149 mp3an2 A : 0 1 × 0 1 B s 0 1 0 A s B
151 24 150 sylan φ s 0 1 0 A s B
152 eqidd φ s 0 1 0 A s = s 0 1 0 A s
153 fveq2 x = 0 A s F x = F 0 A s
154 151 152 54 153 fmptco φ F s 0 1 0 A s = s 0 1 F 0 A s
155 53 ffnd φ F Fn B
156 fcoconst F Fn B M 0 B F 0 1 × M 0 = 0 1 × F M 0
157 155 125 156 syl2anc φ F 0 1 × M 0 = 0 1 × F M 0
158 148 154 157 3eqtr4d φ F s 0 1 0 A s = F 0 1 × M 0
159 12 140 eqtr4d φ 0 A 0 = M 0
160 oveq2 s = 0 0 A s = 0 A 0
161 eqid s 0 1 0 A s = s 0 1 0 A s
162 160 161 72 fvmpt 0 0 1 s 0 1 0 A s 0 = 0 A 0
163 25 162 ax-mp s 0 1 0 A s 0 = 0 A 0
164 fvex M 0 V
165 164 fvconst2 0 0 1 0 1 × M 0 0 = M 0
166 25 165 ax-mp 0 1 × M 0 0 = M 0
167 159 163 166 3eqtr4g φ s 0 1 0 A s 0 = 0 1 × M 0 0
168 1 21 4 116 118 62 119 127 158 167 cvmliftmoi φ s 0 1 0 A s = 0 1 × M 0
169 fconstmpt 0 1 × M 0 = s 0 1 M 0
170 168 169 eqtrdi φ s 0 1 0 A s = s 0 1 M 0
171 mpteqb s 0 1 0 A s V s 0 1 0 A s = s 0 1 M 0 s 0 1 0 A s = M 0
172 ovexd s 0 1 0 A s V
173 171 172 mprg s 0 1 0 A s = s 0 1 M 0 s 0 1 0 A s = M 0
174 170 173 sylib φ s 0 1 0 A s = M 0
175 oveq2 s = 1 0 A s = 0 A 1
176 175 eqeq1d s = 1 0 A s = M 0 0 A 1 = M 0
177 176 rspcv 1 0 1 s 0 1 0 A s = M 0 0 A 1 = M 0
178 91 174 177 mpsyl φ 0 A 1 = M 0
179 178 140 eqtrd φ 0 A 1 = P
180 91 a1i φ 1 0 1
181 38 38 180 cnmptc φ s 0 1 1 II Cn II
182 38 61 181 10 cnmpt12f φ s 0 1 s A 1 II Cn C
183 1 cvmlift F C CovMap J H II Cn J P B F P = H 0 ∃! f II Cn C F f = H f 0 = P
184 4 8 5 17 183 syl22anc φ ∃! f II Cn C F f = H f 0 = P
185 coeq2 f = s 0 1 s A 1 F f = F s 0 1 s A 1
186 185 eqeq1d f = s 0 1 s A 1 F f = H F s 0 1 s A 1 = H
187 fveq1 f = s 0 1 s A 1 f 0 = s 0 1 s A 1 0
188 oveq1 s = 0 s A 1 = 0 A 1
189 eqid s 0 1 s A 1 = s 0 1 s A 1
190 ovex 0 A 1 V
191 188 189 190 fvmpt 0 0 1 s 0 1 s A 1 0 = 0 A 1
192 25 191 ax-mp s 0 1 s A 1 0 = 0 A 1
193 187 192 eqtrdi f = s 0 1 s A 1 f 0 = 0 A 1
194 193 eqeq1d f = s 0 1 s A 1 f 0 = P 0 A 1 = P
195 186 194 anbi12d f = s 0 1 s A 1 F f = H f 0 = P F s 0 1 s A 1 = H 0 A 1 = P
196 195 riota2 s 0 1 s A 1 II Cn C ∃! f II Cn C F f = H f 0 = P F s 0 1 s A 1 = H 0 A 1 = P ι f II Cn C | F f = H f 0 = P = s 0 1 s A 1
197 182 184 196 syl2anc φ F s 0 1 s A 1 = H 0 A 1 = P ι f II Cn C | F f = H f 0 = P = s 0 1 s A 1
198 114 179 197 mpbi2and φ ι f II Cn C | F f = H f 0 = P = s 0 1 s A 1
199 3 198 syl5eq φ N = s 0 1 s A 1
200 21 1 cnf N II Cn C N : 0 1 B
201 19 200 syl φ N : 0 1 B
202 201 feqmptd φ N = s 0 1 N s
203 199 202 eqtr3d φ s 0 1 s A 1 = s 0 1 N s
204 mpteqb s 0 1 s A 1 V s 0 1 s A 1 = s 0 1 N s s 0 1 s A 1 = N s
205 ovexd s 0 1 s A 1 V
206 204 205 mprg s 0 1 s A 1 = s 0 1 N s s 0 1 s A 1 = N s
207 203 206 sylib φ s 0 1 s A 1 = N s
208 207 r19.21bi φ s 0 1 s A 1 = N s
209 174 r19.21bi φ s 0 1 0 A s = M 0
210 38 181 61 10 cnmpt12f φ s 0 1 1 A s II Cn C
211 ffvelrn M : 0 1 B 1 0 1 M 1 B
212 83 91 211 sylancl φ M 1 B
213 cnconst2 II TopOn 0 1 C TopOn B M 1 B 0 1 × M 1 II Cn C
214 38 123 212 213 syl3anc φ 0 1 × M 1 II Cn C
215 opelxpi 1 0 1 s 0 1 1 s 0 1 × 0 1
216 91 215 mpan s 0 1 1 s 0 1 × 0 1
217 fvco3 A : 0 1 × 0 1 B 1 s 0 1 × 0 1 F A 1 s = F A 1 s
218 24 216 217 syl2an φ s 0 1 F A 1 s = F A 1 s
219 30 fveq1d φ s 0 1 F A 1 s = K 1 s
220 218 219 eqtr3d φ s 0 1 F A 1 s = K 1 s
221 df-ov 1 A s = A 1 s
222 221 fveq2i F 1 A s = F A 1 s
223 df-ov 1 K s = K 1 s
224 220 222 223 3eqtr4g φ s 0 1 F 1 A s = 1 K s
225 128 simprd φ s 0 1 1 K s = G 1
226 13 simp2d φ F M = G
227 226 adantr φ s 0 1 F M = G
228 227 fveq1d φ s 0 1 F M 1 = G 1
229 83 adantr φ s 0 1 M : 0 1 B
230 fvco3 M : 0 1 B 1 0 1 F M 1 = F M 1
231 229 91 230 sylancl φ s 0 1 F M 1 = F M 1
232 228 231 eqtr3d φ s 0 1 G 1 = F M 1
233 224 225 232 3eqtrd φ s 0 1 F 1 A s = F M 1
234 233 mpteq2dva φ s 0 1 F 1 A s = s 0 1 F M 1
235 fconstmpt 0 1 × F M 1 = s 0 1 F M 1
236 234 235 eqtr4di φ s 0 1 F 1 A s = 0 1 × F M 1
237 fovrn A : 0 1 × 0 1 B 1 0 1 s 0 1 1 A s B
238 91 237 mp3an2 A : 0 1 × 0 1 B s 0 1 1 A s B
239 24 238 sylan φ s 0 1 1 A s B
240 eqidd φ s 0 1 1 A s = s 0 1 1 A s
241 fveq2 x = 1 A s F x = F 1 A s
242 239 240 54 241 fmptco φ F s 0 1 1 A s = s 0 1 F 1 A s
243 fcoconst F Fn B M 1 B F 0 1 × M 1 = 0 1 × F M 1
244 155 212 243 syl2anc φ F 0 1 × M 1 = 0 1 × F M 1
245 236 242 244 3eqtr4d φ F s 0 1 1 A s = F 0 1 × M 1
246 oveq1 s = 1 s A 0 = 1 A 0
247 fveq2 s = 1 M s = M 1
248 246 247 eqeq12d s = 1 s A 0 = M s 1 A 0 = M 1
249 248 rspcv 1 0 1 s 0 1 s A 0 = M s 1 A 0 = M 1
250 91 89 249 mpsyl φ 1 A 0 = M 1
251 oveq2 s = 0 1 A s = 1 A 0
252 eqid s 0 1 1 A s = s 0 1 1 A s
253 ovex 1 A 0 V
254 251 252 253 fvmpt 0 0 1 s 0 1 1 A s 0 = 1 A 0
255 25 254 ax-mp s 0 1 1 A s 0 = 1 A 0
256 fvex M 1 V
257 256 fvconst2 0 0 1 0 1 × M 1 0 = M 1
258 25 257 ax-mp 0 1 × M 1 0 = M 1
259 250 255 258 3eqtr4g φ s 0 1 1 A s 0 = 0 1 × M 1 0
260 1 21 4 116 118 62 210 214 245 259 cvmliftmoi φ s 0 1 1 A s = 0 1 × M 1
261 fconstmpt 0 1 × M 1 = s 0 1 M 1
262 260 261 eqtrdi φ s 0 1 1 A s = s 0 1 M 1
263 mpteqb s 0 1 1 A s V s 0 1 1 A s = s 0 1 M 1 s 0 1 1 A s = M 1
264 ovexd s 0 1 1 A s V
265 263 264 mprg s 0 1 1 A s = s 0 1 M 1 s 0 1 1 A s = M 1
266 262 265 sylib φ s 0 1 1 A s = M 1
267 266 r19.21bi φ s 0 1 1 A s = M 1
268 14 19 10 90 208 209 267 isphtpy2d φ A M PHtpy C N