Metamath Proof Explorer


Theorem cvmliftphtlem

Description: Lemma for cvmliftpht . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmliftpht.b B=C
cvmliftpht.m M=ιfIICnC|Ff=Gf0=P
cvmliftpht.n N=ιfIICnC|Ff=Hf0=P
cvmliftpht.f φFCCovMapJ
cvmliftpht.p φPB
cvmliftpht.e φFP=G0
cvmliftphtlem.g φGIICnJ
cvmliftphtlem.h φHIICnJ
cvmliftphtlem.k φKGPHtpyJH
cvmliftphtlem.a φAII×tIICnC
cvmliftphtlem.c φFA=K
cvmliftphtlem.0 φ0A0=P
Assertion cvmliftphtlem φAMPHtpyCN

Proof

Step Hyp Ref Expression
1 cvmliftpht.b B=C
2 cvmliftpht.m M=ιfIICnC|Ff=Gf0=P
3 cvmliftpht.n N=ιfIICnC|Ff=Hf0=P
4 cvmliftpht.f φFCCovMapJ
5 cvmliftpht.p φPB
6 cvmliftpht.e φFP=G0
7 cvmliftphtlem.g φGIICnJ
8 cvmliftphtlem.h φHIICnJ
9 cvmliftphtlem.k φKGPHtpyJH
10 cvmliftphtlem.a φAII×tIICnC
11 cvmliftphtlem.c φFA=K
12 cvmliftphtlem.0 φ0A0=P
13 1 2 4 7 5 6 cvmliftiota φMIICnCFM=GM0=P
14 13 simp1d φMIICnC
15 7 8 9 phtpy01 φG0=H0G1=H1
16 15 simpld φG0=H0
17 6 16 eqtrd φFP=H0
18 1 3 4 8 5 17 cvmliftiota φNIICnCFN=HN0=P
19 18 simp1d φNIICnC
20 iitop IITop
21 iiuni 01=II
22 20 20 21 21 txunii 01×01=II×tII
23 22 1 cnf AII×tIICnCA:01×01B
24 10 23 syl φA:01×01B
25 0elunit 001
26 opelxpi s01001s001×01
27 25 26 mpan2 s01s001×01
28 fvco3 A:01×01Bs001×01FAs0=FAs0
29 24 27 28 syl2an φs01FAs0=FAs0
30 11 adantr φs01FA=K
31 30 fveq1d φs01FAs0=Ks0
32 29 31 eqtr3d φs01FAs0=Ks0
33 df-ov sA0=As0
34 33 fveq2i FsA0=FAs0
35 df-ov sK0=Ks0
36 32 34 35 3eqtr4g φs01FsA0=sK0
37 iitopon IITopOn01
38 37 a1i φIITopOn01
39 7 8 phtpyhtpy φGPHtpyJHGIIHtpyJH
40 39 9 sseldd φKGIIHtpyJH
41 38 7 8 40 htpyi φs01sK0=GssK1=Hs
42 41 simpld φs01sK0=Gs
43 36 42 eqtrd φs01FsA0=Gs
44 43 mpteq2dva φs01FsA0=s01Gs
45 fovcdm A:01×01Bs01001sA0B
46 25 45 mp3an3 A:01×01Bs01sA0B
47 24 46 sylan φs01sA0B
48 eqidd φs01sA0=s01sA0
49 cvmcn FCCovMapJFCCnJ
50 4 49 syl φFCCnJ
51 eqid J=J
52 1 51 cnf FCCnJF:BJ
53 50 52 syl φF:BJ
54 53 feqmptd φF=xBFx
55 fveq2 x=sA0Fx=FsA0
56 47 48 54 55 fmptco φFs01sA0=s01FsA0
57 21 51 cnf GIICnJG:01J
58 7 57 syl φG:01J
59 58 feqmptd φG=s01Gs
60 44 56 59 3eqtr4d φFs01sA0=G
61 38 cnmptid φs01sIICnII
62 25 a1i φ001
63 38 38 62 cnmptc φs010IICnII
64 38 61 63 10 cnmpt12f φs01sA0IICnC
65 1 cvmlift FCCovMapJGIICnJPBFP=G0∃!fIICnCFf=Gf0=P
66 4 7 5 6 65 syl22anc φ∃!fIICnCFf=Gf0=P
67 coeq2 f=s01sA0Ff=Fs01sA0
68 67 eqeq1d f=s01sA0Ff=GFs01sA0=G
69 fveq1 f=s01sA0f0=s01sA00
70 oveq1 s=0sA0=0A0
71 eqid s01sA0=s01sA0
72 ovex 0A0V
73 70 71 72 fvmpt 001s01sA00=0A0
74 25 73 ax-mp s01sA00=0A0
75 69 74 eqtrdi f=s01sA0f0=0A0
76 75 eqeq1d f=s01sA0f0=P0A0=P
77 68 76 anbi12d f=s01sA0Ff=Gf0=PFs01sA0=G0A0=P
78 77 riota2 s01sA0IICnC∃!fIICnCFf=Gf0=PFs01sA0=G0A0=PιfIICnC|Ff=Gf0=P=s01sA0
79 64 66 78 syl2anc φFs01sA0=G0A0=PιfIICnC|Ff=Gf0=P=s01sA0
80 60 12 79 mpbi2and φιfIICnC|Ff=Gf0=P=s01sA0
81 2 80 eqtrid φM=s01sA0
82 21 1 cnf MIICnCM:01B
83 14 82 syl φM:01B
84 83 feqmptd φM=s01Ms
85 81 84 eqtr3d φs01sA0=s01Ms
86 mpteqb s01sA0Vs01sA0=s01Mss01sA0=Ms
87 ovexd s01sA0V
88 86 87 mprg s01sA0=s01Mss01sA0=Ms
89 85 88 sylib φs01sA0=Ms
90 89 r19.21bi φs01sA0=Ms
91 1elunit 101
92 opelxpi s01101s101×01
93 91 92 mpan2 s01s101×01
94 fvco3 A:01×01Bs101×01FAs1=FAs1
95 24 93 94 syl2an φs01FAs1=FAs1
96 30 fveq1d φs01FAs1=Ks1
97 95 96 eqtr3d φs01FAs1=Ks1
98 df-ov sA1=As1
99 98 fveq2i FsA1=FAs1
100 df-ov sK1=Ks1
101 97 99 100 3eqtr4g φs01FsA1=sK1
102 41 simprd φs01sK1=Hs
103 101 102 eqtrd φs01FsA1=Hs
104 103 mpteq2dva φs01FsA1=s01Hs
105 fovcdm A:01×01Bs01101sA1B
106 91 105 mp3an3 A:01×01Bs01sA1B
107 24 106 sylan φs01sA1B
108 eqidd φs01sA1=s01sA1
109 fveq2 x=sA1Fx=FsA1
110 107 108 54 109 fmptco φFs01sA1=s01FsA1
111 21 51 cnf HIICnJH:01J
112 8 111 syl φH:01J
113 112 feqmptd φH=s01Hs
114 104 110 113 3eqtr4d φFs01sA1=H
115 iiconn IIConn
116 115 a1i φIIConn
117 iinllyconn IIN-Locally Conn
118 117 a1i φIIN-Locally Conn
119 38 63 61 10 cnmpt12f φs010AsIICnC
120 cvmtop1 FCCovMapJCTop
121 4 120 syl φCTop
122 1 toptopon CTopCTopOnB
123 121 122 sylib φCTopOnB
124 ffvelcdm M:01B001M0B
125 83 25 124 sylancl φM0B
126 cnconst2 IITopOn01CTopOnBM0B01×M0IICnC
127 38 123 125 126 syl3anc φ01×M0IICnC
128 7 8 9 phtpyi φs010Ks=G01Ks=G1
129 128 simpld φs010Ks=G0
130 opelxpi 001s010s01×01
131 25 130 mpan s010s01×01
132 fvco3 A:01×01B0s01×01FA0s=FA0s
133 24 131 132 syl2an φs01FA0s=FA0s
134 30 fveq1d φs01FA0s=K0s
135 133 134 eqtr3d φs01FA0s=K0s
136 df-ov 0As=A0s
137 136 fveq2i F0As=FA0s
138 df-ov 0Ks=K0s
139 135 137 138 3eqtr4g φs01F0As=0Ks
140 13 simp3d φM0=P
141 140 adantr φs01M0=P
142 141 fveq2d φs01FM0=FP
143 6 adantr φs01FP=G0
144 142 143 eqtrd φs01FM0=G0
145 129 139 144 3eqtr4d φs01F0As=FM0
146 145 mpteq2dva φs01F0As=s01FM0
147 fconstmpt 01×FM0=s01FM0
148 146 147 eqtr4di φs01F0As=01×FM0
149 fovcdm A:01×01B001s010AsB
150 25 149 mp3an2 A:01×01Bs010AsB
151 24 150 sylan φs010AsB
152 eqidd φs010As=s010As
153 fveq2 x=0AsFx=F0As
154 151 152 54 153 fmptco φFs010As=s01F0As
155 53 ffnd φFFnB
156 fcoconst FFnBM0BF01×M0=01×FM0
157 155 125 156 syl2anc φF01×M0=01×FM0
158 148 154 157 3eqtr4d φFs010As=F01×M0
159 12 140 eqtr4d φ0A0=M0
160 oveq2 s=00As=0A0
161 eqid s010As=s010As
162 160 161 72 fvmpt 001s010As0=0A0
163 25 162 ax-mp s010As0=0A0
164 fvex M0V
165 164 fvconst2 00101×M00=M0
166 25 165 ax-mp 01×M00=M0
167 159 163 166 3eqtr4g φs010As0=01×M00
168 1 21 4 116 118 62 119 127 158 167 cvmliftmoi φs010As=01×M0
169 fconstmpt 01×M0=s01M0
170 168 169 eqtrdi φs010As=s01M0
171 mpteqb s010AsVs010As=s01M0s010As=M0
172 ovexd s010AsV
173 171 172 mprg s010As=s01M0s010As=M0
174 170 173 sylib φs010As=M0
175 oveq2 s=10As=0A1
176 175 eqeq1d s=10As=M00A1=M0
177 176 rspcv 101s010As=M00A1=M0
178 91 174 177 mpsyl φ0A1=M0
179 178 140 eqtrd φ0A1=P
180 91 a1i φ101
181 38 38 180 cnmptc φs011IICnII
182 38 61 181 10 cnmpt12f φs01sA1IICnC
183 1 cvmlift FCCovMapJHIICnJPBFP=H0∃!fIICnCFf=Hf0=P
184 4 8 5 17 183 syl22anc φ∃!fIICnCFf=Hf0=P
185 coeq2 f=s01sA1Ff=Fs01sA1
186 185 eqeq1d f=s01sA1Ff=HFs01sA1=H
187 fveq1 f=s01sA1f0=s01sA10
188 oveq1 s=0sA1=0A1
189 eqid s01sA1=s01sA1
190 ovex 0A1V
191 188 189 190 fvmpt 001s01sA10=0A1
192 25 191 ax-mp s01sA10=0A1
193 187 192 eqtrdi f=s01sA1f0=0A1
194 193 eqeq1d f=s01sA1f0=P0A1=P
195 186 194 anbi12d f=s01sA1Ff=Hf0=PFs01sA1=H0A1=P
196 195 riota2 s01sA1IICnC∃!fIICnCFf=Hf0=PFs01sA1=H0A1=PιfIICnC|Ff=Hf0=P=s01sA1
197 182 184 196 syl2anc φFs01sA1=H0A1=PιfIICnC|Ff=Hf0=P=s01sA1
198 114 179 197 mpbi2and φιfIICnC|Ff=Hf0=P=s01sA1
199 3 198 eqtrid φN=s01sA1
200 21 1 cnf NIICnCN:01B
201 19 200 syl φN:01B
202 201 feqmptd φN=s01Ns
203 199 202 eqtr3d φs01sA1=s01Ns
204 mpteqb s01sA1Vs01sA1=s01Nss01sA1=Ns
205 ovexd s01sA1V
206 204 205 mprg s01sA1=s01Nss01sA1=Ns
207 203 206 sylib φs01sA1=Ns
208 207 r19.21bi φs01sA1=Ns
209 174 r19.21bi φs010As=M0
210 38 181 61 10 cnmpt12f φs011AsIICnC
211 ffvelcdm M:01B101M1B
212 83 91 211 sylancl φM1B
213 cnconst2 IITopOn01CTopOnBM1B01×M1IICnC
214 38 123 212 213 syl3anc φ01×M1IICnC
215 opelxpi 101s011s01×01
216 91 215 mpan s011s01×01
217 fvco3 A:01×01B1s01×01FA1s=FA1s
218 24 216 217 syl2an φs01FA1s=FA1s
219 30 fveq1d φs01FA1s=K1s
220 218 219 eqtr3d φs01FA1s=K1s
221 df-ov 1As=A1s
222 221 fveq2i F1As=FA1s
223 df-ov 1Ks=K1s
224 220 222 223 3eqtr4g φs01F1As=1Ks
225 128 simprd φs011Ks=G1
226 13 simp2d φFM=G
227 226 adantr φs01FM=G
228 227 fveq1d φs01FM1=G1
229 83 adantr φs01M:01B
230 fvco3 M:01B101FM1=FM1
231 229 91 230 sylancl φs01FM1=FM1
232 228 231 eqtr3d φs01G1=FM1
233 224 225 232 3eqtrd φs01F1As=FM1
234 233 mpteq2dva φs01F1As=s01FM1
235 fconstmpt 01×FM1=s01FM1
236 234 235 eqtr4di φs01F1As=01×FM1
237 fovcdm A:01×01B101s011AsB
238 91 237 mp3an2 A:01×01Bs011AsB
239 24 238 sylan φs011AsB
240 eqidd φs011As=s011As
241 fveq2 x=1AsFx=F1As
242 239 240 54 241 fmptco φFs011As=s01F1As
243 fcoconst FFnBM1BF01×M1=01×FM1
244 155 212 243 syl2anc φF01×M1=01×FM1
245 236 242 244 3eqtr4d φFs011As=F01×M1
246 oveq1 s=1sA0=1A0
247 fveq2 s=1Ms=M1
248 246 247 eqeq12d s=1sA0=Ms1A0=M1
249 248 rspcv 101s01sA0=Ms1A0=M1
250 91 89 249 mpsyl φ1A0=M1
251 oveq2 s=01As=1A0
252 eqid s011As=s011As
253 ovex 1A0V
254 251 252 253 fvmpt 001s011As0=1A0
255 25 254 ax-mp s011As0=1A0
256 fvex M1V
257 256 fvconst2 00101×M10=M1
258 25 257 ax-mp 01×M10=M1
259 250 255 258 3eqtr4g φs011As0=01×M10
260 1 21 4 116 118 62 210 214 245 259 cvmliftmoi φs011As=01×M1
261 fconstmpt 01×M1=s01M1
262 260 261 eqtrdi φs011As=s01M1
263 mpteqb s011AsVs011As=s01M1s011As=M1
264 ovexd s011AsV
265 263 264 mprg s011As=s01M1s011As=M1
266 262 265 sylib φs011As=M1
267 266 r19.21bi φs011As=M1
268 14 19 10 90 208 209 267 isphtpy2d φAMPHtpyCN