Metamath Proof Explorer


Theorem dffi3

Description: The set of finite intersections can be "constructed" inductively by iterating binary intersection _om -many times. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis dffi3.1 R=uVranyu,zuyz
Assertion dffi3 AVfiA=recRAω

Proof

Step Hyp Ref Expression
1 dffi3.1 R=uVranyu,zuyz
2 dffi2 AVfiA=x|Axcxdxcdx
3 fr0g AVrecRAω=A
4 frfnom recRAωFnω
5 peano1 ω
6 fnfvelrn recRAωFnωωrecRAωranrecRAω
7 4 5 6 mp2an recRAωranrecRAω
8 3 7 eqeltrrdi AVAranrecRAω
9 elssuni AranrecRAωAranrecRAω
10 8 9 syl AVAranrecRAω
11 reeanv mωnωcrecRAωmdrecRAωnmωcrecRAωmnωdrecRAωn
12 eliun cmωrecRAωmmωcrecRAωm
13 eliun dnωrecRAωnnωdrecRAωn
14 12 13 anbi12i cmωrecRAωmdnωrecRAωnmωcrecRAωmnωdrecRAωn
15 fniunfv recRAωFnωmωrecRAωm=ranrecRAω
16 15 eleq2d recRAωFnωcmωrecRAωmcranrecRAω
17 fniunfv recRAωFnωnωrecRAωn=ranrecRAω
18 17 eleq2d recRAωFnωdnωrecRAωndranrecRAω
19 16 18 anbi12d recRAωFnωcmωrecRAωmdnωrecRAωncranrecRAωdranrecRAω
20 4 19 ax-mp cmωrecRAωmdnωrecRAωncranrecRAωdranrecRAω
21 11 14 20 3bitr2i mωnωcrecRAωmdrecRAωncranrecRAωdranrecRAω
22 ordom Ordω
23 ordunel Ordωmωnωmnω
24 22 23 mp3an1 mωnωmnω
25 24 adantl AVmωnωmnω
26 simprl AVmωnωmω
27 25 26 jca AVmωnωmnωmω
28 nnon yωyOn
29 nnon xωxOn
30 29 ad2antlr AVxωyωxOn
31 onsseleq yOnxOnyxyxy=x
32 28 30 31 syl2an2 AVxωyωyxyxy=x
33 rzal x=yxrecRAωyrecRAωx
34 33 biantrud x=recRAωxfiArecRAωxfiAyxrecRAωyrecRAωx
35 fveq2 x=recRAωx=recRAω
36 35 sseq1d x=recRAωxfiArecRAωfiA
37 34 36 bitr3d x=recRAωxfiAyxrecRAωyrecRAωxrecRAωfiA
38 fveq2 x=nrecRAωx=recRAωn
39 38 sseq1d x=nrecRAωxfiArecRAωnfiA
40 38 sseq2d x=nrecRAωyrecRAωxrecRAωyrecRAωn
41 40 raleqbi1dv x=nyxrecRAωyrecRAωxynrecRAωyrecRAωn
42 39 41 anbi12d x=nrecRAωxfiAyxrecRAωyrecRAωxrecRAωnfiAynrecRAωyrecRAωn
43 fveq2 x=sucnrecRAωx=recRAωsucn
44 43 sseq1d x=sucnrecRAωxfiArecRAωsucnfiA
45 43 sseq2d x=sucnrecRAωyrecRAωxrecRAωyrecRAωsucn
46 45 raleqbi1dv x=sucnyxrecRAωyrecRAωxysucnrecRAωyrecRAωsucn
47 44 46 anbi12d x=sucnrecRAωxfiAyxrecRAωyrecRAωxrecRAωsucnfiAysucnrecRAωyrecRAωsucn
48 ssfii AVAfiA
49 3 48 eqsstrd AVrecRAωfiA
50 id xrecRAωnxrecRAωn
51 eqidd xrecRAωnx=x
52 ineq1 a=xab=xb
53 52 eqeq2d a=xx=abx=xb
54 ineq2 b=xxb=xx
55 inidm xx=x
56 54 55 eqtrdi b=xxb=x
57 56 eqeq2d b=xx=xbx=x
58 53 57 rspc2ev xrecRAωnxrecRAωnx=xarecRAωnbrecRAωnx=ab
59 50 50 51 58 syl3anc xrecRAωnarecRAωnbrecRAωnx=ab
60 eqid arecRAωn,brecRAωnab=arecRAωn,brecRAωnab
61 60 rnmpo ranarecRAωn,brecRAωnab=x|arecRAωnbrecRAωnx=ab
62 61 eqabri xranarecRAωn,brecRAωnabarecRAωnbrecRAωnx=ab
63 59 62 sylibr xrecRAωnxranarecRAωn,brecRAωnab
64 63 ssriv recRAωnranarecRAωn,brecRAωnab
65 simpl nωrecRAωnfiAnω
66 fvex recRAωnV
67 66 uniex recRAωnV
68 67 pwex 𝒫recRAωnV
69 inss1 aba
70 elssuni arecRAωnarecRAωn
71 70 adantr arecRAωnbrecRAωnarecRAωn
72 69 71 sstrid arecRAωnbrecRAωnabrecRAωn
73 vex aV
74 73 inex1 abV
75 74 elpw ab𝒫recRAωnabrecRAωn
76 72 75 sylibr arecRAωnbrecRAωnab𝒫recRAωn
77 76 rgen2 arecRAωnbrecRAωnab𝒫recRAωn
78 60 fmpo arecRAωnbrecRAωnab𝒫recRAωnarecRAωn,brecRAωnab:recRAωn×recRAωn𝒫recRAωn
79 77 78 mpbi arecRAωn,brecRAωnab:recRAωn×recRAωn𝒫recRAωn
80 frn arecRAωn,brecRAωnab:recRAωn×recRAωn𝒫recRAωnranarecRAωn,brecRAωnab𝒫recRAωn
81 79 80 ax-mp ranarecRAωn,brecRAωnab𝒫recRAωn
82 68 81 ssexi ranarecRAωn,brecRAωnabV
83 nfcv _vA
84 nfcv _vn
85 nfcv _vranarecRAωn,brecRAωnab
86 mpoeq12 u=vu=vyu,zuyz=yv,zvyz
87 86 anidms u=vyu,zuyz=yv,zvyz
88 ineq1 y=ayz=az
89 ineq2 z=baz=ab
90 88 89 cbvmpov yv,zvyz=av,bvab
91 87 90 eqtrdi u=vyu,zuyz=av,bvab
92 91 rneqd u=vranyu,zuyz=ranav,bvab
93 92 cbvmptv uVranyu,zuyz=vVranav,bvab
94 1 93 eqtri R=vVranav,bvab
95 rdgeq1 R=vVranav,bvabrecRA=recvVranav,bvabA
96 94 95 ax-mp recRA=recvVranav,bvabA
97 96 reseq1i recRAω=recvVranav,bvabAω
98 mpoeq12 v=recRAωnv=recRAωnav,bvab=arecRAωn,brecRAωnab
99 98 anidms v=recRAωnav,bvab=arecRAωn,brecRAωnab
100 99 rneqd v=recRAωnranav,bvab=ranarecRAωn,brecRAωnab
101 83 84 85 97 100 frsucmpt nωranarecRAωn,brecRAωnabVrecRAωsucn=ranarecRAωn,brecRAωnab
102 65 82 101 sylancl nωrecRAωnfiArecRAωsucn=ranarecRAωn,brecRAωnab
103 64 102 sseqtrrid nωrecRAωnfiArecRAωnrecRAωsucn
104 sstr2 recRAωyrecRAωnrecRAωnrecRAωsucnrecRAωyrecRAωsucn
105 103 104 syl5com nωrecRAωnfiArecRAωyrecRAωnrecRAωyrecRAωsucn
106 105 ralimdv nωrecRAωnfiAynrecRAωyrecRAωnynrecRAωyrecRAωsucn
107 vex nV
108 fveq2 y=nrecRAωy=recRAωn
109 108 sseq1d y=nrecRAωyrecRAωsucnrecRAωnrecRAωsucn
110 107 109 ralsn ynrecRAωyrecRAωsucnrecRAωnrecRAωsucn
111 103 110 sylibr nωrecRAωnfiAynrecRAωyrecRAωsucn
112 106 111 jctird nωrecRAωnfiAynrecRAωyrecRAωnynrecRAωyrecRAωsucnynrecRAωyrecRAωsucn
113 df-suc sucn=nn
114 113 raleqi ysucnrecRAωyrecRAωsucnynnrecRAωyrecRAωsucn
115 ralunb ynnrecRAωyrecRAωsucnynrecRAωyrecRAωsucnynrecRAωyrecRAωsucn
116 114 115 bitri ysucnrecRAωyrecRAωsucnynrecRAωyrecRAωsucnynrecRAωyrecRAωsucn
117 112 116 syl6ibr nωrecRAωnfiAynrecRAωyrecRAωnysucnrecRAωyrecRAωsucn
118 fiin afiAbfiAabfiA
119 118 rgen2 afiAbfiAabfiA
120 ss2ralv recRAωnfiAafiAbfiAabfiAarecRAωnbrecRAωnabfiA
121 119 120 mpi recRAωnfiAarecRAωnbrecRAωnabfiA
122 60 fmpo arecRAωnbrecRAωnabfiAarecRAωn,brecRAωnab:recRAωn×recRAωnfiA
123 121 122 sylib recRAωnfiAarecRAωn,brecRAωnab:recRAωn×recRAωnfiA
124 123 frnd recRAωnfiAranarecRAωn,brecRAωnabfiA
125 124 adantl nωrecRAωnfiAranarecRAωn,brecRAωnabfiA
126 102 125 eqsstrd nωrecRAωnfiArecRAωsucnfiA
127 117 126 jctild nωrecRAωnfiAynrecRAωyrecRAωnrecRAωsucnfiAysucnrecRAωyrecRAωsucn
128 127 expimpd nωrecRAωnfiAynrecRAωyrecRAωnrecRAωsucnfiAysucnrecRAωyrecRAωsucn
129 128 a1d nωAVrecRAωnfiAynrecRAωyrecRAωnrecRAωsucnfiAysucnrecRAωyrecRAωsucn
130 37 42 47 49 129 finds2 xωAVrecRAωxfiAyxrecRAωyrecRAωx
131 130 impcom AVxωrecRAωxfiAyxrecRAωyrecRAωx
132 131 simprd AVxωyxrecRAωyrecRAωx
133 132 r19.21bi AVxωyxrecRAωyrecRAωx
134 133 ex AVxωyxrecRAωyrecRAωx
135 134 adantr AVxωyωyxrecRAωyrecRAωx
136 fveq2 y=xrecRAωy=recRAωx
137 eqimss recRAωy=recRAωxrecRAωyrecRAωx
138 136 137 syl y=xrecRAωyrecRAωx
139 138 a1i AVxωyωy=xrecRAωyrecRAωx
140 135 139 jaod AVxωyωyxy=xrecRAωyrecRAωx
141 32 140 sylbid AVxωyωyxrecRAωyrecRAωx
142 141 ralrimiva AVxωyωyxrecRAωyrecRAωx
143 142 ralrimiva AVxωyωyxrecRAωyrecRAωx
144 143 adantr AVmωnωxωyωyxrecRAωyrecRAωx
145 ssun1 mmn
146 145 a1i AVmωnωmmn
147 sseq2 x=mnyxymn
148 fveq2 x=mnrecRAωx=recRAωmn
149 148 sseq2d x=mnrecRAωyrecRAωxrecRAωyrecRAωmn
150 147 149 imbi12d x=mnyxrecRAωyrecRAωxymnrecRAωyrecRAωmn
151 sseq1 y=mymnmmn
152 fveq2 y=mrecRAωy=recRAωm
153 152 sseq1d y=mrecRAωyrecRAωmnrecRAωmrecRAωmn
154 151 153 imbi12d y=mymnrecRAωyrecRAωmnmmnrecRAωmrecRAωmn
155 150 154 rspc2v mnωmωxωyωyxrecRAωyrecRAωxmmnrecRAωmrecRAωmn
156 27 144 146 155 syl3c AVmωnωrecRAωmrecRAωmn
157 156 sseld AVmωnωcrecRAωmcrecRAωmn
158 simprr AVmωnωnω
159 25 158 jca AVmωnωmnωnω
160 ssun2 nmn
161 160 a1i AVmωnωnmn
162 sseq1 y=nymnnmn
163 108 sseq1d y=nrecRAωyrecRAωmnrecRAωnrecRAωmn
164 162 163 imbi12d y=nymnrecRAωyrecRAωmnnmnrecRAωnrecRAωmn
165 150 164 rspc2v mnωnωxωyωyxrecRAωyrecRAωxnmnrecRAωnrecRAωmn
166 159 144 161 165 syl3c AVmωnωrecRAωnrecRAωmn
167 166 sseld AVmωnωdrecRAωndrecRAωmn
168 24 ad2antlr AVmωnωcrecRAωmndrecRAωmnmnω
169 peano2 mnωsucmnω
170 fveq2 x=sucmnrecRAωx=recRAωsucmn
171 170 ssiun2s sucmnωrecRAωsucmnxωrecRAωx
172 168 169 171 3syl AVmωnωcrecRAωmndrecRAωmnrecRAωsucmnxωrecRAωx
173 simprl AVmωnωcrecRAωmndrecRAωmncrecRAωmn
174 simprr AVmωnωcrecRAωmndrecRAωmndrecRAωmn
175 eqidd AVmωnωcrecRAωmndrecRAωmncd=cd
176 ineq1 a=cab=cb
177 176 eqeq2d a=ccd=abcd=cb
178 ineq2 b=dcb=cd
179 178 eqeq2d b=dcd=cbcd=cd
180 177 179 rspc2ev crecRAωmndrecRAωmncd=cdarecRAωmnbrecRAωmncd=ab
181 173 174 175 180 syl3anc AVmωnωcrecRAωmndrecRAωmnarecRAωmnbrecRAωmncd=ab
182 vex cV
183 182 inex1 cdV
184 eqeq1 x=cdx=abcd=ab
185 184 2rexbidv x=cdarecRAωmnbrecRAωmnx=abarecRAωmnbrecRAωmncd=ab
186 183 185 elab cdx|arecRAωmnbrecRAωmnx=abarecRAωmnbrecRAωmncd=ab
187 181 186 sylibr AVmωnωcrecRAωmndrecRAωmncdx|arecRAωmnbrecRAωmnx=ab
188 eqid arecRAωmn,brecRAωmnab=arecRAωmn,brecRAωmnab
189 188 rnmpo ranarecRAωmn,brecRAωmnab=x|arecRAωmnbrecRAωmnx=ab
190 187 189 eleqtrrdi AVmωnωcrecRAωmndrecRAωmncdranarecRAωmn,brecRAωmnab
191 fvex recRAωmnV
192 191 uniex recRAωmnV
193 192 pwex 𝒫recRAωmnV
194 elssuni arecRAωmnarecRAωmn
195 69 194 sstrid arecRAωmnabrecRAωmn
196 74 elpw ab𝒫recRAωmnabrecRAωmn
197 195 196 sylibr arecRAωmnab𝒫recRAωmn
198 197 adantr arecRAωmnbrecRAωmnab𝒫recRAωmn
199 198 rgen2 arecRAωmnbrecRAωmnab𝒫recRAωmn
200 188 fmpo arecRAωmnbrecRAωmnab𝒫recRAωmnarecRAωmn,brecRAωmnab:recRAωmn×recRAωmn𝒫recRAωmn
201 199 200 mpbi arecRAωmn,brecRAωmnab:recRAωmn×recRAωmn𝒫recRAωmn
202 frn arecRAωmn,brecRAωmnab:recRAωmn×recRAωmn𝒫recRAωmnranarecRAωmn,brecRAωmnab𝒫recRAωmn
203 201 202 ax-mp ranarecRAωmn,brecRAωmnab𝒫recRAωmn
204 193 203 ssexi ranarecRAωmn,brecRAωmnabV
205 nfcv _vmn
206 nfcv _vranarecRAωmn,brecRAωmnab
207 mpoeq12 v=recRAωmnv=recRAωmnav,bvab=arecRAωmn,brecRAωmnab
208 207 anidms v=recRAωmnav,bvab=arecRAωmn,brecRAωmnab
209 208 rneqd v=recRAωmnranav,bvab=ranarecRAωmn,brecRAωmnab
210 83 205 206 97 209 frsucmpt mnωranarecRAωmn,brecRAωmnabVrecRAωsucmn=ranarecRAωmn,brecRAωmnab
211 168 204 210 sylancl AVmωnωcrecRAωmndrecRAωmnrecRAωsucmn=ranarecRAωmn,brecRAωmnab
212 190 211 eleqtrrd AVmωnωcrecRAωmndrecRAωmncdrecRAωsucmn
213 172 212 sseldd AVmωnωcrecRAωmndrecRAωmncdxωrecRAωx
214 fniunfv recRAωFnωxωrecRAωx=ranrecRAω
215 4 214 ax-mp xωrecRAωx=ranrecRAω
216 213 215 eleqtrdi AVmωnωcrecRAωmndrecRAωmncdranrecRAω
217 216 ex AVmωnωcrecRAωmndrecRAωmncdranrecRAω
218 157 167 217 syl2and AVmωnωcrecRAωmdrecRAωncdranrecRAω
219 218 rexlimdvva AVmωnωcrecRAωmdrecRAωncdranrecRAω
220 219 imp AVmωnωcrecRAωmdrecRAωncdranrecRAω
221 21 220 sylan2br AVcranrecRAωdranrecRAωcdranrecRAω
222 221 ralrimivva AVcranrecRAωdranrecRAωcdranrecRAω
223 131 simpld AVxωrecRAωxfiA
224 fvex fiAV
225 224 elpw2 recRAωx𝒫fiArecRAωxfiA
226 223 225 sylibr AVxωrecRAωx𝒫fiA
227 226 ralrimiva AVxωrecRAωx𝒫fiA
228 fnfvrnss recRAωFnωxωrecRAωx𝒫fiAranrecRAω𝒫fiA
229 4 227 228 sylancr AVranrecRAω𝒫fiA
230 sspwuni ranrecRAω𝒫fiAranrecRAωfiA
231 229 230 sylib AVranrecRAωfiA
232 ssexg ranrecRAωfiAfiAVranrecRAωV
233 231 224 232 sylancl AVranrecRAωV
234 sseq2 x=ranrecRAωAxAranrecRAω
235 eleq2 x=ranrecRAωcdxcdranrecRAω
236 235 raleqbi1dv x=ranrecRAωdxcdxdranrecRAωcdranrecRAω
237 236 raleqbi1dv x=ranrecRAωcxdxcdxcranrecRAωdranrecRAωcdranrecRAω
238 234 237 anbi12d x=ranrecRAωAxcxdxcdxAranrecRAωcranrecRAωdranrecRAωcdranrecRAω
239 238 elabg ranrecRAωVranrecRAωx|AxcxdxcdxAranrecRAωcranrecRAωdranrecRAωcdranrecRAω
240 233 239 syl AVranrecRAωx|AxcxdxcdxAranrecRAωcranrecRAωdranrecRAωcdranrecRAω
241 10 222 240 mpbir2and AVranrecRAωx|Axcxdxcdx
242 intss1 ranrecRAωx|Axcxdxcdxx|AxcxdxcdxranrecRAω
243 241 242 syl AVx|AxcxdxcdxranrecRAω
244 2 243 eqsstrd AVfiAranrecRAω
245 244 231 eqssd AVfiA=ranrecRAω
246 df-ima recRAω=ranrecRAω
247 246 unieqi recRAω=ranrecRAω
248 245 247 eqtr4di AVfiA=recRAω