Metamath Proof Explorer


Theorem dvmulbr

Description: The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmul . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses dvadd.f φF:X
dvadd.x φXS
dvadd.g φG:Y
dvadd.y φYS
dvaddbr.s φS
dvadd.k φKV
dvadd.l φLV
dvadd.bf φCFSK
dvadd.bg φCGSL
dvadd.j J=TopOpenfld
Assertion dvmulbr φCF×fGSKGC+LFC

Proof

Step Hyp Ref Expression
1 dvadd.f φF:X
2 dvadd.x φXS
3 dvadd.g φG:Y
4 dvadd.y φYS
5 dvaddbr.s φS
6 dvadd.k φKV
7 dvadd.l φLV
8 dvadd.bf φCFSK
9 dvadd.bg φCGSL
10 dvadd.j J=TopOpenfld
11 eqid J𝑡S=J𝑡S
12 eqid zXCFzFCzC=zXCFzFCzC
13 11 10 12 5 1 2 eldv φCFSKCintJ𝑡SXKzXCFzFCzClimC
14 8 13 mpbid φCintJ𝑡SXKzXCFzFCzClimC
15 14 simpld φCintJ𝑡SX
16 eqid zYCGzGCzC=zYCGzGCzC
17 11 10 16 5 3 4 eldv φCGSLCintJ𝑡SYLzYCGzGCzClimC
18 9 17 mpbid φCintJ𝑡SYLzYCGzGCzClimC
19 18 simpld φCintJ𝑡SY
20 15 19 elind φCintJ𝑡SXintJ𝑡SY
21 10 cnfldtopon JTopOn
22 resttopon JTopOnSJ𝑡STopOnS
23 21 5 22 sylancr φJ𝑡STopOnS
24 topontop J𝑡STopOnSJ𝑡STop
25 23 24 syl φJ𝑡STop
26 toponuni J𝑡STopOnSS=J𝑡S
27 23 26 syl φS=J𝑡S
28 2 27 sseqtrd φXJ𝑡S
29 4 27 sseqtrd φYJ𝑡S
30 eqid J𝑡S=J𝑡S
31 30 ntrin J𝑡STopXJ𝑡SYJ𝑡SintJ𝑡SXY=intJ𝑡SXintJ𝑡SY
32 25 28 29 31 syl3anc φintJ𝑡SXY=intJ𝑡SXintJ𝑡SY
33 20 32 eleqtrrd φCintJ𝑡SXY
34 1 adantr φzXYCF:X
35 inss1 XYX
36 eldifi zXYCzXY
37 36 adantl φzXYCzXY
38 35 37 sselid φzXYCzX
39 34 38 ffvelcdmd φzXYCFz
40 5 1 2 dvbss φdomFSX
41 reldv RelFS
42 releldm RelFSCFSKCdomFS
43 41 8 42 sylancr φCdomFS
44 40 43 sseldd φCX
45 1 44 ffvelcdmd φFC
46 45 adantr φzXYCFC
47 39 46 subcld φzXYCFzFC
48 2 5 sstrd φX
49 48 adantr φzXYCX
50 49 38 sseldd φzXYCz
51 48 44 sseldd φC
52 51 adantr φzXYCC
53 50 52 subcld φzXYCzC
54 eldifsni zXYCzC
55 54 adantl φzXYCzC
56 50 52 55 subne0d φzXYCzC0
57 47 53 56 divcld φzXYCFzFCzC
58 3 adantr φzXYCG:Y
59 inss2 XYY
60 59 37 sselid φzXYCzY
61 58 60 ffvelcdmd φzXYCGz
62 57 61 mulcld φzXYCFzFCzCGz
63 ssdif XYYXYCYC
64 59 63 mp1i φXYCYC
65 64 sselda φzXYCzYC
66 4 5 sstrd φY
67 5 3 4 dvbss φdomGSY
68 reldv RelGS
69 releldm RelGSCGSLCdomGS
70 68 9 69 sylancr φCdomGS
71 67 70 sseldd φCY
72 3 66 71 dvlem φzYCGzGCzC
73 65 72 syldan φzXYCGzGCzC
74 73 46 mulcld φzXYCGzGCzCFC
75 ssidd φ
76 txtopon JTopOnJTopOnJ×tJTopOn×
77 21 21 76 mp2an J×tJTopOn×
78 77 toponrestid J×tJ=J×tJ𝑡×
79 14 simprd φKzXCFzFCzClimC
80 1 48 44 dvlem φzXCFzFCzC
81 80 fmpttd φzXCFzFCzC:XC
82 ssdif XYXXYCXC
83 35 82 mp1i φXYCXC
84 48 ssdifssd φXC
85 eqid J𝑡XCC=J𝑡XCC
86 35 2 sstrid φXYS
87 86 27 sseqtrd φXYJ𝑡S
88 difssd φJ𝑡SXJ𝑡S
89 87 88 unssd φXYJ𝑡SXJ𝑡S
90 ssun1 XYXYJ𝑡SX
91 90 a1i φXYXYJ𝑡SX
92 30 ntrss J𝑡STopXYJ𝑡SXJ𝑡SXYXYJ𝑡SXintJ𝑡SXYintJ𝑡SXYJ𝑡SX
93 25 89 91 92 syl3anc φintJ𝑡SXYintJ𝑡SXYJ𝑡SX
94 93 33 sseldd φCintJ𝑡SXYJ𝑡SX
95 94 44 elind φCintJ𝑡SXYJ𝑡SXX
96 35 a1i φXYX
97 eqid J𝑡S𝑡X=J𝑡S𝑡X
98 30 97 restntr J𝑡STopXJ𝑡SXYXintJ𝑡S𝑡XXY=intJ𝑡SXYJ𝑡SXX
99 25 28 96 98 syl3anc φintJ𝑡S𝑡XXY=intJ𝑡SXYJ𝑡SXX
100 10 cnfldtop JTop
101 100 a1i φJTop
102 cnex V
103 ssexg SVSV
104 5 102 103 sylancl φSV
105 restabs JTopXSSVJ𝑡S𝑡X=J𝑡X
106 101 2 104 105 syl3anc φJ𝑡S𝑡X=J𝑡X
107 106 fveq2d φintJ𝑡S𝑡X=intJ𝑡X
108 107 fveq1d φintJ𝑡S𝑡XXY=intJ𝑡XXY
109 99 108 eqtr3d φintJ𝑡SXYJ𝑡SXX=intJ𝑡XXY
110 95 109 eleqtrd φCintJ𝑡XXY
111 undif1 XCC=XC
112 44 snssd φCX
113 ssequn2 CXXC=X
114 112 113 sylib φXC=X
115 111 114 eqtrid φXCC=X
116 115 oveq2d φJ𝑡XCC=J𝑡X
117 116 fveq2d φintJ𝑡XCC=intJ𝑡X
118 undif1 XYCC=XYC
119 44 71 elind φCXY
120 119 snssd φCXY
121 ssequn2 CXYXYC=XY
122 120 121 sylib φXYC=XY
123 118 122 eqtrid φXYCC=XY
124 117 123 fveq12d φintJ𝑡XCCXYCC=intJ𝑡XXY
125 110 124 eleqtrrd φCintJ𝑡XCCXYCC
126 81 83 84 10 85 125 limcres φzXCFzFCzCXYClimC=zXCFzFCzClimC
127 83 resmptd φzXCFzFCzCXYC=zXYCFzFCzC
128 127 oveq1d φzXCFzFCzCXYClimC=zXYCFzFCzClimC
129 126 128 eqtr3d φzXCFzFCzClimC=zXYCFzFCzClimC
130 79 129 eleqtrd φKzXYCFzFCzClimC
131 eqid J𝑡Y=J𝑡Y
132 131 10 dvcnp2 SG:YYSCdomGSGJ𝑡YCnPJC
133 5 3 4 70 132 syl31anc φGJ𝑡YCnPJC
134 10 131 cnplimc YCYGJ𝑡YCnPJCG:YGCGlimC
135 66 71 134 syl2anc φGJ𝑡YCnPJCG:YGCGlimC
136 133 135 mpbid φG:YGCGlimC
137 136 simprd φGCGlimC
138 difss XYCXY
139 138 59 sstri XYCY
140 139 a1i φXYCY
141 eqid J𝑡YC=J𝑡YC
142 difssd φJ𝑡SYJ𝑡S
143 87 142 unssd φXYJ𝑡SYJ𝑡S
144 ssun1 XYXYJ𝑡SY
145 144 a1i φXYXYJ𝑡SY
146 30 ntrss J𝑡STopXYJ𝑡SYJ𝑡SXYXYJ𝑡SYintJ𝑡SXYintJ𝑡SXYJ𝑡SY
147 25 143 145 146 syl3anc φintJ𝑡SXYintJ𝑡SXYJ𝑡SY
148 147 33 sseldd φCintJ𝑡SXYJ𝑡SY
149 148 71 elind φCintJ𝑡SXYJ𝑡SYY
150 59 a1i φXYY
151 eqid J𝑡S𝑡Y=J𝑡S𝑡Y
152 30 151 restntr J𝑡STopYJ𝑡SXYYintJ𝑡S𝑡YXY=intJ𝑡SXYJ𝑡SYY
153 25 29 150 152 syl3anc φintJ𝑡S𝑡YXY=intJ𝑡SXYJ𝑡SYY
154 restabs JTopYSSVJ𝑡S𝑡Y=J𝑡Y
155 101 4 104 154 syl3anc φJ𝑡S𝑡Y=J𝑡Y
156 155 fveq2d φintJ𝑡S𝑡Y=intJ𝑡Y
157 156 fveq1d φintJ𝑡S𝑡YXY=intJ𝑡YXY
158 153 157 eqtr3d φintJ𝑡SXYJ𝑡SYY=intJ𝑡YXY
159 149 158 eleqtrd φCintJ𝑡YXY
160 71 snssd φCY
161 ssequn2 CYYC=Y
162 160 161 sylib φYC=Y
163 162 oveq2d φJ𝑡YC=J𝑡Y
164 163 fveq2d φintJ𝑡YC=intJ𝑡Y
165 164 123 fveq12d φintJ𝑡YCXYCC=intJ𝑡YXY
166 159 165 eleqtrrd φCintJ𝑡YCXYCC
167 3 140 66 10 141 166 limcres φGXYClimC=GlimC
168 3 140 feqresmpt φGXYC=zXYCGz
169 168 oveq1d φGXYClimC=zXYCGzlimC
170 167 169 eqtr3d φGlimC=zXYCGzlimC
171 137 170 eleqtrd φGCzXYCGzlimC
172 10 mulcn ×J×tJCnJ
173 5 1 2 dvcl φCFSKK
174 8 173 mpdan φK
175 3 71 ffvelcdmd φGC
176 174 175 opelxpd φKGC×
177 77 toponunii ×=J×tJ
178 177 cncnpi ×J×tJCnJKGC××J×tJCnPJKGC
179 172 176 178 sylancr φ×J×tJCnPJKGC
180 57 61 75 75 10 78 130 171 179 limccnp2 φKGCzXYCFzFCzCGzlimC
181 18 simprd φLzYCGzGCzClimC
182 72 fmpttd φzYCGzGCzC:YC
183 66 ssdifssd φYC
184 eqid J𝑡YCC=J𝑡YCC
185 undif1 YCC=YC
186 185 162 eqtrid φYCC=Y
187 186 oveq2d φJ𝑡YCC=J𝑡Y
188 187 fveq2d φintJ𝑡YCC=intJ𝑡Y
189 188 123 fveq12d φintJ𝑡YCCXYCC=intJ𝑡YXY
190 159 189 eleqtrrd φCintJ𝑡YCCXYCC
191 182 64 183 10 184 190 limcres φzYCGzGCzCXYClimC=zYCGzGCzClimC
192 64 resmptd φzYCGzGCzCXYC=zXYCGzGCzC
193 192 oveq1d φzYCGzGCzCXYClimC=zXYCGzGCzClimC
194 191 193 eqtr3d φzYCGzGCzClimC=zXYCGzGCzClimC
195 181 194 eleqtrd φLzXYCGzGCzClimC
196 86 5 sstrd φXY
197 cncfmptc FCXYzXYFC:XYcn
198 45 196 75 197 syl3anc φzXYFC:XYcn
199 eqidd z=CFC=FC
200 198 119 199 cnmptlimc φFCzXYFClimC
201 45 adantr φzXYFC
202 201 fmpttd φzXYFC:XY
203 202 limcdif φzXYFClimC=zXYFCXYClimC
204 resmpt XYCXYzXYFCXYC=zXYCFC
205 138 204 mp1i φzXYFCXYC=zXYCFC
206 205 oveq1d φzXYFCXYClimC=zXYCFClimC
207 203 206 eqtrd φzXYFClimC=zXYCFClimC
208 200 207 eleqtrd φFCzXYCFClimC
209 5 3 4 dvcl φCGSLL
210 9 209 mpdan φL
211 210 45 opelxpd φLFC×
212 177 cncnpi ×J×tJCnJLFC××J×tJCnPJLFC
213 172 211 212 sylancr φ×J×tJCnPJLFC
214 73 46 75 75 10 78 195 208 213 limccnp2 φLFCzXYCGzGCzCFClimC
215 10 addcn +J×tJCnJ
216 174 175 mulcld φKGC
217 210 45 mulcld φLFC
218 216 217 opelxpd φKGCLFC×
219 177 cncnpi +J×tJCnJKGCLFC×+J×tJCnPJKGCLFC
220 215 218 219 sylancr φ+J×tJCnPJKGCLFC
221 62 74 75 75 10 78 180 214 220 limccnp2 φKGC+LFCzXYCFzFCzCGz+GzGCzCFClimC
222 44 adantr φzXYCCX
223 34 222 ffvelcdmd φzXYCFC
224 39 223 subcld φzXYCFzFC
225 224 61 mulcld φzXYCFzFCGz
226 71 adantr φzXYCCY
227 58 226 ffvelcdmd φzXYCGC
228 61 227 subcld φzXYCGzGC
229 228 223 mulcld φzXYCGzGCFC
230 49 222 sseldd φzXYCC
231 50 230 subcld φzXYCzC
232 225 229 231 56 divdird φzXYCFzFCGz+GzGCFCzC=FzFCGzzC+GzGCFCzC
233 39 61 mulcld φzXYCFzGz
234 223 61 mulcld φzXYCFCGz
235 223 227 mulcld φzXYCFCGC
236 233 234 235 npncand φzXYCFzGzFCGz+FCGz-FCGC=FzGzFCGC
237 39 223 61 subdird φzXYCFzFCGz=FzGzFCGz
238 228 223 mulcomd φzXYCGzGCFC=FCGzGC
239 223 61 227 subdid φzXYCFCGzGC=FCGzFCGC
240 238 239 eqtrd φzXYCGzGCFC=FCGzFCGC
241 237 240 oveq12d φzXYCFzFCGz+GzGCFC=FzGzFCGz+FCGz-FCGC
242 1 ffnd φFFnX
243 242 adantr φzXYCFFnX
244 3 ffnd φGFnY
245 244 adantr φzXYCGFnY
246 ssexg XVXV
247 48 102 246 sylancl φXV
248 247 adantr φzXYCXV
249 ssexg YVYV
250 66 102 249 sylancl φYV
251 250 adantr φzXYCYV
252 eqid XY=XY
253 eqidd φzXYCzXFz=Fz
254 eqidd φzXYCzYGz=Gz
255 243 245 248 251 252 253 254 ofval φzXYCzXYF×fGz=FzGz
256 37 255 mpdan φzXYCF×fGz=FzGz
257 eqidd φzXYCCXFC=FC
258 eqidd φzXYCCYGC=GC
259 243 245 248 251 252 257 258 ofval φzXYCCXYF×fGC=FCGC
260 119 259 mpidan φzXYCF×fGC=FCGC
261 256 260 oveq12d φzXYCF×fGzF×fGC=FzGzFCGC
262 236 241 261 3eqtr4d φzXYCFzFCGz+GzGCFC=F×fGzF×fGC
263 262 oveq1d φzXYCFzFCGz+GzGCFCzC=F×fGzF×fGCzC
264 224 61 231 56 div23d φzXYCFzFCGzzC=FzFCzCGz
265 228 223 231 56 div23d φzXYCGzGCFCzC=GzGCzCFC
266 264 265 oveq12d φzXYCFzFCGzzC+GzGCFCzC=FzFCzCGz+GzGCzCFC
267 232 263 266 3eqtr3d φzXYCF×fGzF×fGCzC=FzFCzCGz+GzGCzCFC
268 267 mpteq2dva φzXYCF×fGzF×fGCzC=zXYCFzFCzCGz+GzGCzCFC
269 268 oveq1d φzXYCF×fGzF×fGCzClimC=zXYCFzFCzCGz+GzGCzCFClimC
270 221 269 eleqtrrd φKGC+LFCzXYCF×fGzF×fGCzClimC
271 eqid zXYCF×fGzF×fGCzC=zXYCF×fGzF×fGCzC
272 mulcl xyxy
273 272 adantl φxyxy
274 273 1 3 247 250 252 off φF×fG:XY
275 11 10 271 5 274 86 eldv φCF×fGSKGC+LFCCintJ𝑡SXYKGC+LFCzXYCF×fGzF×fGCzClimC
276 33 270 275 mpbir2and φCF×fGSKGC+LFC