Metamath Proof Explorer


Theorem dvtaylp

Description: The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses dvtaylp.s φS
dvtaylp.f φF:A
dvtaylp.a φAS
dvtaylp.n φN0
dvtaylp.b φBdomSDnFN+1
Assertion dvtaylp φDN+1STaylFB=NSTaylFSB

Proof

Step Hyp Ref Expression
1 dvtaylp.s φS
2 dvtaylp.f φF:A
3 dvtaylp.a φAS
4 dvtaylp.n φN0
5 dvtaylp.b φBdomSDnFN+1
6 eqid TopOpenfld=TopOpenfld
7 6 cnfldtopon TopOpenfldTopOn
8 7 toponrestid TopOpenfld=TopOpenfld𝑡
9 cnelprrecn
10 9 a1i φ
11 toponmax TopOpenfldTopOnTopOpenfld
12 7 11 mp1i φTopOpenfld
13 fzfid φ0N+1Fin
14 cnex V
15 14 a1i φV
16 elpm2r VSF:AASF𝑝𝑚S
17 15 1 2 3 16 syl22anc φF𝑝𝑚S
18 elfznn0 k0N+1k0
19 dvnf SF𝑝𝑚Sk0SDnFk:domSDnFk
20 1 17 18 19 syl2an3an φk0N+1SDnFk:domSDnFk
21 0z 0
22 peano2nn0 N0N+10
23 4 22 syl φN+10
24 23 nn0zd φN+1
25 fzval2 0N+10N+1=0N+1
26 21 24 25 sylancr φ0N+1=0N+1
27 26 eleq2d φk0N+1k0N+1
28 27 biimpa φk0N+1k0N+1
29 1 2 3 23 5 taylplem1 φk0N+1BdomSDnFk
30 28 29 syldan φk0N+1BdomSDnFk
31 20 30 ffvelcdmd φk0N+1SDnFkB
32 18 adantl φk0N+1k0
33 32 faccld φk0N+1k!
34 33 nncnd φk0N+1k!
35 33 nnne0d φk0N+1k!0
36 31 34 35 divcld φk0N+1SDnFkBk!
37 36 3adant3 φk0N+1xSDnFkBk!
38 simp3 φk0N+1xx
39 recnprss SS
40 1 39 syl φS
41 3 40 sstrd φA
42 dvnbss SF𝑝𝑚SN+10domSDnFN+1domF
43 1 17 23 42 syl3anc φdomSDnFN+1domF
44 2 43 fssdmd φdomSDnFN+1A
45 44 5 sseldd φBA
46 41 45 sseldd φB
47 46 3ad2ant1 φk0N+1xB
48 38 47 subcld φk0N+1xxB
49 18 3ad2ant2 φk0N+1xk0
50 48 49 expcld φk0N+1xxBk
51 37 50 mulcld φk0N+1xSDnFkBk!xBk
52 0cnd φk0N+1xk=00
53 49 nn0cnd φk0N+1xk
54 53 adantr φk0N+1x¬k=0k
55 48 adantr φk0N+1x¬k=0xB
56 49 adantr φk0N+1x¬k=0k0
57 simpr φk0N+1x¬k=0¬k=0
58 57 neqned φk0N+1x¬k=0k0
59 elnnne0 kk0k0
60 56 58 59 sylanbrc φk0N+1x¬k=0k
61 nnm1nn0 kk10
62 60 61 syl φk0N+1x¬k=0k10
63 55 62 expcld φk0N+1x¬k=0xBk1
64 54 63 mulcld φk0N+1x¬k=0kxBk1
65 52 64 ifclda φk0N+1xifk=00kxBk1
66 37 65 mulcld φk0N+1xSDnFkBk!ifk=00kxBk1
67 9 a1i φk0N+1
68 50 3expa φk0N+1xxBk
69 65 3expa φk0N+1xifk=00kxBk1
70 48 3expa φk0N+1xxB
71 1cnd φk0N+1x1
72 simpr φk0N+1yy
73 32 adantr φk0N+1yk0
74 72 73 expcld φk0N+1yyk
75 c0ex 0V
76 ovex kyk1V
77 75 76 ifex ifk=00kyk1V
78 77 a1i φk0N+1yifk=00kyk1V
79 simpr φk0N+1xx
80 67 dvmptid φk0N+1dxxdx=x1
81 46 ad2antrr φk0N+1xB
82 0cnd φk0N+1x0
83 46 adantr φk0N+1B
84 67 83 dvmptc φk0N+1dxBdx=x0
85 67 79 71 80 81 82 84 dvmptsub φk0N+1dxxBdx=x10
86 1m0e1 10=1
87 86 mpteq2i x10=x1
88 85 87 eqtrdi φk0N+1dxxBdx=x1
89 dvexp2 k0dyykdy=yifk=00kyk1
90 32 89 syl φk0N+1dyykdy=yifk=00kyk1
91 oveq1 y=xByk=xBk
92 oveq1 y=xByk1=xBk1
93 92 oveq2d y=xBkyk1=kxBk1
94 93 ifeq2d y=xBifk=00kyk1=ifk=00kxBk1
95 67 67 70 71 74 78 88 90 91 94 dvmptco φk0N+1dxxBkdx=xifk=00kxBk11
96 69 mulridd φk0N+1xifk=00kxBk11=ifk=00kxBk1
97 96 mpteq2dva φk0N+1xifk=00kxBk11=xifk=00kxBk1
98 95 97 eqtrd φk0N+1dxxBkdx=xifk=00kxBk1
99 67 68 69 98 36 dvmptcmul φk0N+1dxSDnFkBk!xBkdx=xSDnFkBk!ifk=00kxBk1
100 8 6 10 12 13 51 66 99 dvmptfsum φdxk=0N+1SDnFkBk!xBkdx=xk=0N+1SDnFkBk!ifk=00kxBk1
101 1zzd φx1
102 0zd φx0
103 4 nn0zd φN
104 103 adantr φxN
105 dvfg SFS:domFS
106 1 105 syl φFS:domFS
107 40 2 3 dvbss φdomFSA
108 107 3 sstrd φdomFSS
109 1nn0 10
110 109 a1i φ10
111 dvnadd SF𝑝𝑚S10N0SDnSDnF1N=SDnF1+N
112 1 17 110 4 111 syl22anc φSDnSDnF1N=SDnF1+N
113 dvn1 SF𝑝𝑚SSDnF1=SDF
114 40 17 113 syl2anc φSDnF1=SDF
115 114 oveq2d φSDnSDnF1=SDnFS
116 115 fveq1d φSDnSDnF1N=SDnFSN
117 1cnd φ1
118 4 nn0cnd φN
119 117 118 addcomd φ1+N=N+1
120 119 fveq2d φSDnF1+N=SDnFN+1
121 112 116 120 3eqtr3d φSDnFSN=SDnFN+1
122 121 dmeqd φdomSDnFSN=domSDnFN+1
123 5 122 eleqtrrd φBdomSDnFSN
124 1 106 108 4 123 taylplem2 φxj0NSDnFSjBj!xBj
125 fveq2 j=k1SDnFSj=SDnFSk1
126 125 fveq1d j=k1SDnFSjB=SDnFSk1B
127 fveq2 j=k1j!=k1!
128 126 127 oveq12d j=k1SDnFSjBj!=SDnFSk1Bk1!
129 oveq2 j=k1xBj=xBk1
130 128 129 oveq12d j=k1SDnFSjBj!xBj=SDnFSk1Bk1!xBk1
131 101 102 104 124 130 fsumshft φxj=0NSDnFSjBj!xBj=k=0+1N+1SDnFSk1Bk1!xBk1
132 elfznn k1N+1k
133 132 adantl φxk1N+1k
134 133 nnne0d φxk1N+1k0
135 ifnefalse k0ifk=00kxBk1=kxBk1
136 134 135 syl φxk1N+1ifk=00kxBk1=kxBk1
137 136 oveq2d φxk1N+1SDnFkBk!ifk=00kxBk1=SDnFkBk!kxBk1
138 simpll φxk1N+1φ
139 fz1ssfz0 1N+10N+1
140 139 sseli k1N+1k0N+1
141 140 adantl φxk1N+1k0N+1
142 138 141 36 syl2anc φxk1N+1SDnFkBk!
143 133 nncnd φxk1N+1k
144 simplr φxk1N+1x
145 46 ad2antrr φxk1N+1B
146 144 145 subcld φxk1N+1xB
147 133 61 syl φxk1N+1k10
148 146 147 expcld φxk1N+1xBk1
149 142 143 148 mulassd φxk1N+1SDnFkBk!kxBk1=SDnFkBk!kxBk1
150 facp1 k10k-1+1!=k1!k-1+1
151 147 150 syl φxk1N+1k-1+1!=k1!k-1+1
152 1cnd φxk1N+11
153 143 152 npcand φxk1N+1k-1+1=k
154 153 fveq2d φxk1N+1k-1+1!=k!
155 153 oveq2d φxk1N+1k1!k-1+1=k1!k
156 151 154 155 3eqtr3d φxk1N+1k!=k1!k
157 156 oveq2d φxk1N+1SDnFkBkk!=SDnFkBkk1!k
158 32 nn0cnd φk0N+1k
159 31 158 34 35 div23d φk0N+1SDnFkBkk!=SDnFkBk!k
160 138 141 159 syl2anc φxk1N+1SDnFkBkk!=SDnFkBk!k
161 138 141 31 syl2anc φxk1N+1SDnFkB
162 147 faccld φxk1N+1k1!
163 162 nncnd φxk1N+1k1!
164 162 nnne0d φxk1N+1k1!0
165 161 163 143 164 134 divcan5rd φxk1N+1SDnFkBkk1!k=SDnFkBk1!
166 1 ad2antrr φxk1N+1S
167 17 ad2antrr φxk1N+1F𝑝𝑚S
168 109 a1i φxk1N+110
169 dvnadd SF𝑝𝑚S10k10SDnSDnF1k1=SDnF1+k-1
170 166 167 168 147 169 syl22anc φxk1N+1SDnSDnF1k1=SDnF1+k-1
171 114 ad2antrr φxk1N+1SDnF1=SDF
172 171 oveq2d φxk1N+1SDnSDnF1=SDnFS
173 172 fveq1d φxk1N+1SDnSDnF1k1=SDnFSk1
174 152 143 pncan3d φxk1N+11+k-1=k
175 174 fveq2d φxk1N+1SDnF1+k-1=SDnFk
176 170 173 175 3eqtr3rd φxk1N+1SDnFk=SDnFSk1
177 176 fveq1d φxk1N+1SDnFkB=SDnFSk1B
178 177 oveq1d φxk1N+1SDnFkBk1!=SDnFSk1Bk1!
179 165 178 eqtrd φxk1N+1SDnFkBkk1!k=SDnFSk1Bk1!
180 157 160 179 3eqtr3d φxk1N+1SDnFkBk!k=SDnFSk1Bk1!
181 180 oveq1d φxk1N+1SDnFkBk!kxBk1=SDnFSk1Bk1!xBk1
182 137 149 181 3eqtr2d φxk1N+1SDnFkBk!ifk=00kxBk1=SDnFSk1Bk1!xBk1
183 182 sumeq2dv φxk=1N+1SDnFkBk!ifk=00kxBk1=k=1N+1SDnFSk1Bk1!xBk1
184 0p1e1 0+1=1
185 184 oveq1i 0+1N+1=1N+1
186 185 sumeq1i k=0+1N+1SDnFSk1Bk1!xBk1=k=1N+1SDnFSk1Bk1!xBk1
187 183 186 eqtr4di φxk=1N+1SDnFkBk!ifk=00kxBk1=k=0+1N+1SDnFSk1Bk1!xBk1
188 139 a1i φx1N+10N+1
189 69 an32s φxk0N+1ifk=00kxBk1
190 140 189 sylan2 φxk1N+1ifk=00kxBk1
191 142 190 mulcld φxk1N+1SDnFkBk!ifk=00kxBk1
192 eldif k0N+11N+1k0N+1¬k1N+1
193 59 biimpri k0k0k
194 18 193 sylan k0N+1k0k
195 nnuz =1
196 194 195 eleqtrdi k0N+1k0k1
197 elfzuz3 k0N+1N+1k
198 197 adantr k0N+1k0N+1k
199 elfzuzb k1N+1k1N+1k
200 196 198 199 sylanbrc k0N+1k0k1N+1
201 200 ex k0N+1k0k1N+1
202 201 adantl φxk0N+1k0k1N+1
203 202 necon1bd φxk0N+1¬k1N+1k=0
204 203 impr φxk0N+1¬k1N+1k=0
205 192 204 sylan2b φxk0N+11N+1k=0
206 205 iftrued φxk0N+11N+1ifk=00kxBk1=0
207 206 oveq2d φxk0N+11N+1SDnFkBk!ifk=00kxBk1=SDnFkBk!0
208 eldifi k0N+11N+1k0N+1
209 36 adantlr φxk0N+1SDnFkBk!
210 208 209 sylan2 φxk0N+11N+1SDnFkBk!
211 210 mul01d φxk0N+11N+1SDnFkBk!0=0
212 207 211 eqtrd φxk0N+11N+1SDnFkBk!ifk=00kxBk1=0
213 fzfid φx0N+1Fin
214 188 191 212 213 fsumss φxk=1N+1SDnFkBk!ifk=00kxBk1=k=0N+1SDnFkBk!ifk=00kxBk1
215 131 187 214 3eqtr2rd φxk=0N+1SDnFkBk!ifk=00kxBk1=j=0NSDnFSjBj!xBj
216 215 mpteq2dva φxk=0N+1SDnFkBk!ifk=00kxBk1=xj=0NSDnFSjBj!xBj
217 100 216 eqtrd φdxk=0N+1SDnFkBk!xBkdx=xj=0NSDnFSjBj!xBj
218 eqid N+1STaylFB=N+1STaylFB
219 1 2 3 23 5 218 taylpfval φN+1STaylFB=xk=0N+1SDnFkBk!xBk
220 219 oveq2d φDN+1STaylFB=dxk=0N+1SDnFkBk!xBkdx
221 eqid NSTaylFSB=NSTaylFSB
222 1 106 108 4 123 221 taylpfval φNSTaylFSB=xj=0NSDnFSjBj!xBj
223 217 220 222 3eqtr4d φDN+1STaylFB=NSTaylFSB