Metamath Proof Explorer


Theorem eenglngeehlnmlem2

Description: Lemma 2 for eenglngeehlnm . (Contributed by AV, 15-Feb-2023)

Ref Expression
Assertion eenglngeehlnmlem2 Nx1Ny1Nxp1Nti1Npi=1txi+tyik01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi

Proof

Step Hyp Ref Expression
1 0red Nx1Ny1Nxp1Nt0
2 1red Nx1Ny1Nxp1Nt1
3 simpr Nx1Ny1Nxp1Ntt
4 reorelicc 01tt<0t011<t
5 1 2 3 4 syl3anc Nx1Ny1Nxp1Ntt<0t011<t
6 0xr 0*
7 6 a1i Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyi0*
8 1xr 1*
9 8 a1i Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyi1*
10 simpl tt<0t
11 10 recnd tt<0t
12 0red tt<00
13 1red tt<01
14 simpr tt<0t<0
15 0lt1 0<1
16 15 a1i tt<00<1
17 10 12 13 14 16 lttrd tt<0t<1
18 10 17 ltned tt<0t1
19 1subrec1sub tt1111t=tt1
20 11 18 19 syl2anc tt<0111t=tt1
21 10 13 resubcld tt<0t1
22 1cnd tt<01
23 11 22 18 subne0d tt<0t10
24 10 21 23 redivcld tt<0tt1
25 24 rexrd tt<0tt1*
26 20 25 eqeltrd tt<0111t*
27 26 ad4ant23 Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyi111t*
28 10 renegcld tt<0t
29 10 13 sublt0d tt<0t1<0t<1
30 17 29 mpbird tt<0t1<0
31 21 30 negelrpd tt<0t1+
32 10 12 14 ltled tt<0t0
33 10 le0neg1d tt<0t00t
34 32 33 mpbid tt<00t
35 28 31 34 divge0d tt<00tt1
36 21 recnd tt<0t1
37 11 36 23 div2negd tt<0tt1=tt1
38 20 37 eqtr4d tt<0111t=tt1
39 35 38 breqtrrd tt<00111t
40 39 ad4ant23 Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyi0111t
41 1red Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyi1
42 13 10 resubcld tt<01t
43 10 13 posdifd tt<0t<10<1t
44 17 43 mpbid tt<00<1t
45 42 44 elrpd tt<01t+
46 45 ad4ant23 Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyi1t+
47 46 rpreccld Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyi11t+
48 41 47 ltsubrpd Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyi111t<1
49 7 9 27 40 48 elicod Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyi111t01
50 oveq2 l=111t1l=1111t
51 50 oveq1d l=111t1lpi=1111tpi
52 oveq1 l=111tlyi=111tyi
53 51 52 oveq12d l=111t1lpi+lyi=1111tpi+111tyi
54 53 eqeq2d l=111txi=1lpi+lyixi=1111tpi+111tyi
55 54 ralbidv l=111ti1Nxi=1lpi+lyii1Nxi=1111tpi+111tyi
56 55 adantl Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyil=111ti1Nxi=1lpi+lyii1Nxi=1111tpi+111tyi
57 22 11 subcld tt<01t
58 10 17 gtned tt<01t
59 22 11 58 subne0d tt<01t0
60 57 59 reccld tt<011t
61 22 60 nncand tt<01111t=11t
62 61 60 eqeltrd tt<01111t
63 22 60 subcld tt<0111t
64 16 gt0ne0d tt<010
65 36 11 subeq0ad tt<0t-1-t=0t1=t
66 11 22 11 sub32d tt<0t-1-t=t-t-1
67 66 eqeq1d tt<0t-1-t=0t-t-1=0
68 11 subidd tt<0tt=0
69 68 oveq1d tt<0t-t-1=01
70 69 eqeq1d tt<0t-t-1=001=0
71 0cnd tt<00
72 71 22 71 subaddd tt<001=01+0=0
73 22 addridd tt<01+0=1
74 73 eqeq1d tt<01+0=01=0
75 72 74 bitrd tt<001=01=0
76 67 70 75 3bitrd tt<0t-1-t=01=0
77 65 76 bitr3d tt<0t1=t1=0
78 77 necon3bid tt<0t1t10
79 64 78 mpbird tt<0t1t
80 20 eqeq2d tt<01=111t1=tt1
81 eqcom 1=tt1tt1=1
82 11 36 22 23 divmuld tt<0tt1=1t11=t
83 81 82 bitrid tt<01=tt1t11=t
84 36 mulridd tt<0t11=t1
85 84 eqeq1d tt<0t11=tt1=t
86 80 83 85 3bitrd tt<01=111tt1=t
87 86 necon3bid tt<01111tt1t
88 79 87 mpbird tt<01111t
89 22 63 88 subne0d tt<01111t0
90 61 oveq1d tt<01111t1t=11t1t
91 57 59 recid2d tt<011t1t=1
92 90 91 eqtrd tt<01111t1t=1
93 62 57 89 92 mvllmuld tt<01t=11111t
94 93 ad4ant23 Nx1Ny1Nxp1Ntt<0i1N1t=11111t
95 94 oveq1d Nx1Ny1Nxp1Ntt<0i1N1txi=11111txi
96 20 oveq1d tt<01-11t-1=tt11
97 20 96 oveq12d tt<0111t1-11t-1=tt1tt11
98 subdivcomb2 t1t1t10tt11t1=tt11
99 11 22 36 23 98 syl112anc tt<0tt11t1=tt11
100 84 oveq2d tt<0tt11=tt1
101 11 22 nncand tt<0tt1=1
102 100 101 eqtrd tt<0tt11=1
103 102 oveq1d tt<0tt11t1=1t1
104 99 103 eqtr3d tt<0tt11=1t1
105 104 oveq1d tt<0tt11t=1t1t
106 11 36 23 divrec2d tt<0tt1=1t1t
107 105 106 eqtr4d tt<0tt11t=tt1
108 20 63 eqeltrrd tt<0tt1
109 108 22 subcld tt<0tt11
110 79 necomd tt<0tt1
111 11 36 23 110 divne1d tt<0tt11
112 108 22 111 subne0d tt<0tt110
113 108 109 11 112 divmuld tt<0tt1tt11=ttt11t=tt1
114 107 113 mpbird tt<0tt1tt11=t
115 97 114 eqtr2d tt<0t=111t1-11t-1
116 115 ad4ant23 Nx1Ny1Nxp1Ntt<0i1Nt=111t1-11t-1
117 116 oveq1d Nx1Ny1Nxp1Ntt<0i1Ntyi=111t1-11t-1yi
118 95 117 oveq12d Nx1Ny1Nxp1Ntt<0i1N1txi+tyi=11111txi+111t1-11t-1yi
119 118 eqeq2d Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyipi=11111txi+111t1-11t-1yi
120 119 biimpd Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyipi=11111txi+111t1-11t-1yi
121 eqcom xi=1111tpi+111tyi1111tpi+111tyi=xi
122 elmapi x1Nx:1N
123 122 3ad2ant2 Nx1Ny1Nxx:1N
124 123 adantr Nx1Ny1Nxp1Nx:1N
125 124 ad2antrr Nx1Ny1Nxp1Ntt<0x:1N
126 125 ffvelcdmda Nx1Ny1Nxp1Ntt<0i1Nxi
127 126 recnd Nx1Ny1Nxp1Ntt<0i1Nxi
128 1cnd Nx1Ny1Nxp1Ntt<0i1N1
129 11 ad4ant23 Nx1Ny1Nxp1Ntt<0i1Nt
130 128 129 subcld Nx1Ny1Nxp1Ntt<0i1N1t
131 58 ad4ant23 Nx1Ny1Nxp1Ntt<0i1N1t
132 128 129 131 subne0d Nx1Ny1Nxp1Ntt<0i1N1t0
133 130 132 reccld Nx1Ny1Nxp1Ntt<0i1N11t
134 128 133 subcld Nx1Ny1Nxp1Ntt<0i1N111t
135 eldifi y1Nxy1N
136 elmapi y1Ny:1N
137 135 136 syl y1Nxy:1N
138 137 3ad2ant3 Nx1Ny1Nxy:1N
139 138 adantr Nx1Ny1Nxp1Ny:1N
140 139 ad2antrr Nx1Ny1Nxp1Ntt<0y:1N
141 140 ffvelcdmda Nx1Ny1Nxp1Ntt<0i1Nyi
142 141 recnd Nx1Ny1Nxp1Ntt<0i1Nyi
143 134 142 mulcld Nx1Ny1Nxp1Ntt<0i1N111tyi
144 62 ad4ant23 Nx1Ny1Nxp1Ntt<0i1N1111t
145 elmapi p1Np:1N
146 145 adantl Nx1Ny1Nxp1Np:1N
147 146 ad2antrr Nx1Ny1Nxp1Ntt<0p:1N
148 147 ffvelcdmda Nx1Ny1Nxp1Ntt<0i1Npi
149 148 recnd Nx1Ny1Nxp1Ntt<0i1Npi
150 144 149 mulcld Nx1Ny1Nxp1Ntt<0i1N1111tpi
151 127 143 150 subadd2d Nx1Ny1Nxp1Ntt<0i1Nxi111tyi=1111tpi1111tpi+111tyi=xi
152 121 151 bitr4id Nx1Ny1Nxp1Ntt<0i1Nxi=1111tpi+111tyixi111tyi=1111tpi
153 eqcom xi111tyi=1111tpi1111tpi=xi111tyi
154 127 143 subcld Nx1Ny1Nxp1Ntt<0i1Nxi111tyi
155 89 ad4ant23 Nx1Ny1Nxp1Ntt<0i1N1111t0
156 154 144 149 155 divmuld Nx1Ny1Nxp1Ntt<0i1Nxi111tyi1111t=pi1111tpi=xi111tyi
157 eqcom xi111tyi1111t=pipi=xi111tyi1111t
158 127 143 144 155 divsubdird Nx1Ny1Nxp1Ntt<0i1Nxi111tyi1111t=xi1111t111tyi1111t
159 127 144 155 divcld Nx1Ny1Nxp1Ntt<0i1Nxi1111t
160 143 144 155 divcld Nx1Ny1Nxp1Ntt<0i1N111tyi1111t
161 159 160 negsubd Nx1Ny1Nxp1Ntt<0i1Nxi1111t+111tyi1111t=xi1111t111tyi1111t
162 127 144 155 divrec2d Nx1Ny1Nxp1Ntt<0i1Nxi1111t=11111txi
163 143 144 155 divneg2d Nx1Ny1Nxp1Ntt<0i1N111tyi1111t=111tyi1111t
164 128 134 negsubdi2d Nx1Ny1Nxp1Ntt<0i1N1111t=1-11t-1
165 164 oveq2d Nx1Ny1Nxp1Ntt<0i1N111tyi1111t=111tyi1-11t-1
166 134 128 subcld Nx1Ny1Nxp1Ntt<0i1N1-11t-1
167 88 necomd tt<0111t1
168 63 22 167 subne0d tt<01-11t-10
169 168 ad4ant23 Nx1Ny1Nxp1Ntt<0i1N1-11t-10
170 134 142 166 169 div23d Nx1Ny1Nxp1Ntt<0i1N111tyi1-11t-1=111t1-11t-1yi
171 163 165 170 3eqtrd Nx1Ny1Nxp1Ntt<0i1N111tyi1111t=111t1-11t-1yi
172 162 171 oveq12d Nx1Ny1Nxp1Ntt<0i1Nxi1111t+111tyi1111t=11111txi+111t1-11t-1yi
173 158 161 172 3eqtr2d Nx1Ny1Nxp1Ntt<0i1Nxi111tyi1111t=11111txi+111t1-11t-1yi
174 173 eqeq2d Nx1Ny1Nxp1Ntt<0i1Npi=xi111tyi1111tpi=11111txi+111t1-11t-1yi
175 157 174 bitrid Nx1Ny1Nxp1Ntt<0i1Nxi111tyi1111t=pipi=11111txi+111t1-11t-1yi
176 156 175 bitr3d Nx1Ny1Nxp1Ntt<0i1N1111tpi=xi111tyipi=11111txi+111t1-11t-1yi
177 153 176 bitrid Nx1Ny1Nxp1Ntt<0i1Nxi111tyi=1111tpipi=11111txi+111t1-11t-1yi
178 152 177 bitrd Nx1Ny1Nxp1Ntt<0i1Nxi=1111tpi+111tyipi=11111txi+111t1-11t-1yi
179 120 178 sylibrd Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyixi=1111tpi+111tyi
180 179 ralimdva Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyii1Nxi=1111tpi+111tyi
181 180 imp Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyii1Nxi=1111tpi+111tyi
182 49 56 181 rspcedvd Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyil01i1Nxi=1lpi+lyi
183 182 3mix2d Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyik01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
184 183 exp31 Nx1Ny1Nxp1Ntt<0i1Npi=1txi+tyik01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
185 184 com23 Nx1Ny1Nxp1Nti1Npi=1txi+tyit<0k01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
186 185 imp Nx1Ny1Nxp1Nti1Npi=1txi+tyit<0k01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
187 simpr Nx1Ny1Nxp1Nti1Npi=1txi+tyit01t01
188 oveq2 k=t1k=1t
189 188 oveq1d k=t1kxi=1txi
190 oveq1 k=tkyi=tyi
191 189 190 oveq12d k=t1kxi+kyi=1txi+tyi
192 191 eqeq2d k=tpi=1kxi+kyipi=1txi+tyi
193 192 ralbidv k=ti1Npi=1kxi+kyii1Npi=1txi+tyi
194 193 adantl Nx1Ny1Nxp1Nti1Npi=1txi+tyit01k=ti1Npi=1kxi+kyii1Npi=1txi+tyi
195 simplr Nx1Ny1Nxp1Nti1Npi=1txi+tyit01i1Npi=1txi+tyi
196 187 194 195 rspcedvd Nx1Ny1Nxp1Nti1Npi=1txi+tyit01k01i1Npi=1kxi+kyi
197 196 3mix1d Nx1Ny1Nxp1Nti1Npi=1txi+tyit01k01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
198 197 ex Nx1Ny1Nxp1Nti1Npi=1txi+tyit01k01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
199 1red t1<t1
200 simpl t1<tt
201 0red t1<t0
202 15 a1i t1<t0<1
203 simpr t1<t1<t
204 201 199 200 202 203 lttrd t1<t0<t
205 204 gt0ne0d t1<tt0
206 199 200 205 redivcld t1<t1t
207 200 204 recgt0d t1<t0<1t
208 recgt1i t1<t0<1t1t<1
209 206 adantr t1<t0<1t1t<11t
210 1red t1<t0<1t1t<11
211 simprr t1<t0<1t1t<11t<1
212 209 210 211 ltled t1<t0<1t1t<11t1
213 208 212 mpdan t1<t1t1
214 206 207 213 3jca t1<t1t0<1t1t1
215 1re 1
216 6 215 pm3.2i 0*1
217 elioc2 0*11t011t0<1t1t1
218 216 217 mp1i t1<t1t011t0<1t1t1
219 214 218 mpbird t1<t1t01
220 219 ad4ant23 Nx1Ny1Nxp1Nt1<ti1Npi=1txi+tyi1t01
221 oveq2 m=1t1m=11t
222 221 oveq1d m=1t1mxi=11txi
223 oveq1 m=1tmpi=1tpi
224 222 223 oveq12d m=1t1mxi+mpi=11txi+1tpi
225 224 eqeq2d m=1tyi=1mxi+mpiyi=11txi+1tpi
226 225 ralbidv m=1ti1Nyi=1mxi+mpii1Nyi=11txi+1tpi
227 226 adantl Nx1Ny1Nxp1Nt1<ti1Npi=1txi+tyim=1ti1Nyi=1mxi+mpii1Nyi=11txi+1tpi
228 simplr Nx1Ny1Nxp1Nt1<tt
229 228 recnd Nx1Ny1Nxp1Nt1<tt
230 229 adantr Nx1Ny1Nxp1Nt1<ti1Nt
231 204 ex t1<t0<t
232 gt0ne0 t0<tt0
233 232 ex t0<tt0
234 231 233 syld t1<tt0
235 234 adantl Nx1Ny1Nxp1Nt1<tt0
236 235 imp Nx1Ny1Nxp1Nt1<tt0
237 236 adantr Nx1Ny1Nxp1Nt1<ti1Nt0
238 230 237 reccld Nx1Ny1Nxp1Nt1<ti1N1t
239 1cnd Nx1Ny1Nxp1Nt1<ti1N1
240 230 237 recne0d Nx1Ny1Nxp1Nt1<ti1N1t0
241 238 239 238 240 divsubdird Nx1Ny1Nxp1Nt1<ti1N1t11t=1t1t11t
242 238 240 dividd Nx1Ny1Nxp1Nt1<ti1N1t1t=1
243 230 237 recrecd Nx1Ny1Nxp1Nt1<ti1N11t=t
244 242 243 oveq12d Nx1Ny1Nxp1Nt1<ti1N1t1t11t=1t
245 241 244 eqtr2d Nx1Ny1Nxp1Nt1<ti1N1t=1t11t
246 245 oveq1d Nx1Ny1Nxp1Nt1<ti1N1txi=1t11txi
247 229 236 recrecd Nx1Ny1Nxp1Nt1<t11t=t
248 247 eqcomd Nx1Ny1Nxp1Nt1<tt=11t
249 248 adantr Nx1Ny1Nxp1Nt1<ti1Nt=11t
250 249 oveq1d Nx1Ny1Nxp1Nt1<ti1Ntyi=11tyi
251 246 250 oveq12d Nx1Ny1Nxp1Nt1<ti1N1txi+tyi=1t11txi+11tyi
252 251 eqeq2d Nx1Ny1Nxp1Nt1<ti1Npi=1txi+tyipi=1t11txi+11tyi
253 252 biimpd Nx1Ny1Nxp1Nt1<ti1Npi=1txi+tyipi=1t11txi+11tyi
254 eqcom yi=11txi+1tpi11txi+1tpi=yi
255 139 ad2antrr Nx1Ny1Nxp1Nt1<ty:1N
256 255 ffvelcdmda Nx1Ny1Nxp1Nt1<ti1Nyi
257 256 recnd Nx1Ny1Nxp1Nt1<ti1Nyi
258 239 238 subcld Nx1Ny1Nxp1Nt1<ti1N11t
259 124 ad2antrr Nx1Ny1Nxp1Nt1<tx:1N
260 259 ffvelcdmda Nx1Ny1Nxp1Nt1<ti1Nxi
261 260 recnd Nx1Ny1Nxp1Nt1<ti1Nxi
262 258 261 mulcld Nx1Ny1Nxp1Nt1<ti1N11txi
263 146 ad2antrr Nx1Ny1Nxp1Nt1<tp:1N
264 263 ffvelcdmda Nx1Ny1Nxp1Nt1<ti1Npi
265 264 recnd Nx1Ny1Nxp1Nt1<ti1Npi
266 238 265 mulcld Nx1Ny1Nxp1Nt1<ti1N1tpi
267 257 262 266 subaddd Nx1Ny1Nxp1Nt1<ti1Nyi11txi=1tpi11txi+1tpi=yi
268 254 267 bitr4id Nx1Ny1Nxp1Nt1<ti1Nyi=11txi+1tpiyi11txi=1tpi
269 eqcom yi11txi=1tpi1tpi=yi11txi
270 257 262 subcld Nx1Ny1Nxp1Nt1<ti1Nyi11txi
271 270 238 265 240 divmuld Nx1Ny1Nxp1Nt1<ti1Nyi11txi1t=pi1tpi=yi11txi
272 269 271 bitr4id Nx1Ny1Nxp1Nt1<ti1Nyi11txi=1tpiyi11txi1t=pi
273 eqcom yi11txi1t=pipi=yi11txi1t
274 257 262 238 240 divsubdird Nx1Ny1Nxp1Nt1<ti1Nyi11txi1t=yi1t11txi1t
275 257 238 240 divcld Nx1Ny1Nxp1Nt1<ti1Nyi1t
276 262 238 240 divcld Nx1Ny1Nxp1Nt1<ti1N11txi1t
277 275 276 negsubd Nx1Ny1Nxp1Nt1<ti1Nyi1t+11txi1t=yi1t11txi1t
278 262 238 240 divnegd Nx1Ny1Nxp1Nt1<ti1N11txi1t=11txi1t
279 258 261 mulneg1d Nx1Ny1Nxp1Nt1<ti1N11txi=11txi
280 279 eqcomd Nx1Ny1Nxp1Nt1<ti1N11txi=11txi
281 280 oveq1d Nx1Ny1Nxp1Nt1<ti1N11txi1t=11txi1t
282 239 238 negsubdi2d Nx1Ny1Nxp1Nt1<ti1N11t=1t1
283 282 oveq1d Nx1Ny1Nxp1Nt1<ti1N11txi=1t1xi
284 283 oveq1d Nx1Ny1Nxp1Nt1<ti1N11txi1t=1t1xi1t
285 238 239 subcld Nx1Ny1Nxp1Nt1<ti1N1t1
286 285 261 238 240 div23d Nx1Ny1Nxp1Nt1<ti1N1t1xi1t=1t11txi
287 284 286 eqtrd Nx1Ny1Nxp1Nt1<ti1N11txi1t=1t11txi
288 278 281 287 3eqtrd Nx1Ny1Nxp1Nt1<ti1N11txi1t=1t11txi
289 288 oveq2d Nx1Ny1Nxp1Nt1<ti1Nyi1t+11txi1t=yi1t+1t11txi
290 257 238 240 divrec2d Nx1Ny1Nxp1Nt1<ti1Nyi1t=11tyi
291 290 oveq1d Nx1Ny1Nxp1Nt1<ti1Nyi1t+1t11txi=11tyi+1t11txi
292 238 240 reccld Nx1Ny1Nxp1Nt1<ti1N11t
293 292 257 mulcld Nx1Ny1Nxp1Nt1<ti1N11tyi
294 285 238 240 divcld Nx1Ny1Nxp1Nt1<ti1N1t11t
295 294 261 mulcld Nx1Ny1Nxp1Nt1<ti1N1t11txi
296 293 295 addcomd Nx1Ny1Nxp1Nt1<ti1N11tyi+1t11txi=1t11txi+11tyi
297 289 291 296 3eqtrd Nx1Ny1Nxp1Nt1<ti1Nyi1t+11txi1t=1t11txi+11tyi
298 274 277 297 3eqtr2d Nx1Ny1Nxp1Nt1<ti1Nyi11txi1t=1t11txi+11tyi
299 298 eqeq2d Nx1Ny1Nxp1Nt1<ti1Npi=yi11txi1tpi=1t11txi+11tyi
300 273 299 bitrid Nx1Ny1Nxp1Nt1<ti1Nyi11txi1t=pipi=1t11txi+11tyi
301 268 272 300 3bitrd Nx1Ny1Nxp1Nt1<ti1Nyi=11txi+1tpipi=1t11txi+11tyi
302 253 301 sylibrd Nx1Ny1Nxp1Nt1<ti1Npi=1txi+tyiyi=11txi+1tpi
303 302 ralimdva Nx1Ny1Nxp1Nt1<ti1Npi=1txi+tyii1Nyi=11txi+1tpi
304 303 imp Nx1Ny1Nxp1Nt1<ti1Npi=1txi+tyii1Nyi=11txi+1tpi
305 220 227 304 rspcedvd Nx1Ny1Nxp1Nt1<ti1Npi=1txi+tyim01i1Nyi=1mxi+mpi
306 305 3mix3d Nx1Ny1Nxp1Nt1<ti1Npi=1txi+tyik01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
307 306 exp31 Nx1Ny1Nxp1Nt1<ti1Npi=1txi+tyik01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
308 307 com23 Nx1Ny1Nxp1Nti1Npi=1txi+tyi1<tk01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
309 308 imp Nx1Ny1Nxp1Nti1Npi=1txi+tyi1<tk01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
310 186 198 309 3jaod Nx1Ny1Nxp1Nti1Npi=1txi+tyit<0t011<tk01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
311 310 ex Nx1Ny1Nxp1Nti1Npi=1txi+tyit<0t011<tk01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
312 5 311 mpid Nx1Ny1Nxp1Nti1Npi=1txi+tyik01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi
313 312 rexlimdva Nx1Ny1Nxp1Nti1Npi=1txi+tyik01i1Npi=1kxi+kyil01i1Nxi=1lpi+lyim01i1Nyi=1mxi+mpi