Metamath Proof Explorer


Theorem evlfcl

Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors C --> D , and the second parameter in D . (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfcl.e E=CevalFD
evlfcl.q Q=CFuncCatD
evlfcl.c φCCat
evlfcl.d φDCat
Assertion evlfcl φEQ×cCFuncD

Proof

Step Hyp Ref Expression
1 evlfcl.e E=CevalFD
2 evlfcl.q Q=CFuncCatD
3 evlfcl.c φCCat
4 evlfcl.d φDCat
5 eqid BaseC=BaseC
6 eqid HomC=HomC
7 eqid compD=compD
8 eqid CNatD=CNatD
9 1 3 4 5 6 7 8 evlfval φE=fCFuncD,xBaseC1stfxxCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndyg
10 ovex CFuncDV
11 fvex BaseCV
12 10 11 mpoex fCFuncD,xBaseC1stfxV
13 10 11 xpex CFuncD×BaseCV
14 13 13 mpoex xCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndygV
15 12 14 opelvv fCFuncD,xBaseC1stfxxCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndygV×V
16 9 15 eqeltrdi φEV×V
17 1st2nd2 EV×VE=1stE2ndE
18 16 17 syl φE=1stE2ndE
19 eqid Q×cC=Q×cC
20 2 fucbas CFuncD=BaseQ
21 19 20 5 xpcbas CFuncD×BaseC=BaseQ×cC
22 eqid BaseD=BaseD
23 eqid HomQ×cC=HomQ×cC
24 eqid HomD=HomD
25 eqid IdQ×cC=IdQ×cC
26 eqid IdD=IdD
27 eqid compQ×cC=compQ×cC
28 2 3 4 fuccat φQCat
29 19 28 3 xpccat φQ×cCCat
30 relfunc RelCFuncD
31 simpr φfCFuncDfCFuncD
32 1st2ndbr RelCFuncDfCFuncD1stfCFuncD2ndf
33 30 31 32 sylancr φfCFuncD1stfCFuncD2ndf
34 5 22 33 funcf1 φfCFuncD1stf:BaseCBaseD
35 34 ffvelcdmda φfCFuncDxBaseC1stfxBaseD
36 35 ralrimiva φfCFuncDxBaseC1stfxBaseD
37 36 ralrimiva φfCFuncDxBaseC1stfxBaseD
38 eqid fCFuncD,xBaseC1stfx=fCFuncD,xBaseC1stfx
39 38 fmpo fCFuncDxBaseC1stfxBaseDfCFuncD,xBaseC1stfx:CFuncD×BaseCBaseD
40 37 39 sylib φfCFuncD,xBaseC1stfx:CFuncD×BaseCBaseD
41 12 14 op1std E=fCFuncD,xBaseC1stfxxCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndyg1stE=fCFuncD,xBaseC1stfx
42 9 41 syl φ1stE=fCFuncD,xBaseC1stfx
43 42 feq1d φ1stE:CFuncD×BaseCBaseDfCFuncD,xBaseC1stfx:CFuncD×BaseCBaseD
44 40 43 mpbird φ1stE:CFuncD×BaseCBaseD
45 eqid xCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndyg=xCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndyg
46 ovex mCNatDnV
47 ovex 2ndxHomC2ndyV
48 46 47 mpoex amCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndygV
49 48 csbex 1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndygV
50 49 csbex 1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndygV
51 45 50 fnmpoi xCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndygFnCFuncD×BaseC×CFuncD×BaseC
52 12 14 op2ndd E=fCFuncD,xBaseC1stfxxCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndyg2ndE=xCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndyg
53 9 52 syl φ2ndE=xCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndyg
54 53 fneq1d φ2ndEFnCFuncD×BaseC×CFuncD×BaseCxCFuncD×BaseC,yCFuncD×BaseC1stx/m1sty/namCNatDn,g2ndxHomC2ndya2ndy1stm2ndx1stm2ndycompD1stn2ndy2ndx2ndm2ndygFnCFuncD×BaseC×CFuncD×BaseC
55 51 54 mpbiri φ2ndEFnCFuncD×BaseC×CFuncD×BaseC
56 4 ad2antrr φfCFuncDuBaseCgCFuncDvBaseCDCat
57 56 adantr φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCvDCat
58 simplrl φfCFuncDuBaseCgCFuncDvBaseCfCFuncD
59 30 58 32 sylancr φfCFuncDuBaseCgCFuncDvBaseC1stfCFuncD2ndf
60 5 22 59 funcf1 φfCFuncDuBaseCgCFuncDvBaseC1stf:BaseCBaseD
61 60 adantr φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCv1stf:BaseCBaseD
62 simplrr φfCFuncDuBaseCgCFuncDvBaseCuBaseC
63 62 adantr φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCvuBaseC
64 61 63 ffvelcdmd φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCv1stfuBaseD
65 simplrr φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCvvBaseC
66 61 65 ffvelcdmd φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCv1stfvBaseD
67 simprl φfCFuncDuBaseCgCFuncDvBaseCgCFuncD
68 1st2ndbr RelCFuncDgCFuncD1stgCFuncD2ndg
69 30 67 68 sylancr φfCFuncDuBaseCgCFuncDvBaseC1stgCFuncD2ndg
70 5 22 69 funcf1 φfCFuncDuBaseCgCFuncDvBaseC1stg:BaseCBaseD
71 70 adantr φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCv1stg:BaseCBaseD
72 71 65 ffvelcdmd φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCv1stgvBaseD
73 simprr φfCFuncDuBaseCgCFuncDvBaseCvBaseC
74 5 6 24 59 62 73 funcf2 φfCFuncDuBaseCgCFuncDvBaseCu2ndfv:uHomCv1stfuHomD1stfv
75 74 adantr φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCvu2ndfv:uHomCv1stfuHomD1stfv
76 simprr φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCvhuHomCv
77 75 76 ffvelcdmd φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCvu2ndfvh1stfuHomD1stfv
78 simprl φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCvafCNatDg
79 8 78 nat1st2nd φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCva1stf2ndfCNatD1stg2ndg
80 8 79 5 24 65 natcl φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCvav1stfvHomD1stgv
81 22 24 7 57 64 66 72 77 80 catcocl φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCvav1stfu1stfvcompD1stgvu2ndfvh1stfuHomD1stgv
82 81 ralrimivva φfCFuncDuBaseCgCFuncDvBaseCafCNatDghuHomCvav1stfu1stfvcompD1stgvu2ndfvh1stfuHomD1stgv
83 eqid afCNatDg,huHomCvav1stfu1stfvcompD1stgvu2ndfvh=afCNatDg,huHomCvav1stfu1stfvcompD1stgvu2ndfvh
84 83 fmpo afCNatDghuHomCvav1stfu1stfvcompD1stgvu2ndfvh1stfuHomD1stgvafCNatDg,huHomCvav1stfu1stfvcompD1stgvu2ndfvh:fCNatDg×uHomCv1stfuHomD1stgv
85 82 84 sylib φfCFuncDuBaseCgCFuncDvBaseCafCNatDg,huHomCvav1stfu1stfvcompD1stgvu2ndfvh:fCNatDg×uHomCv1stfuHomD1stgv
86 3 ad2antrr φfCFuncDuBaseCgCFuncDvBaseCCCat
87 eqid fu2ndEgv=fu2ndEgv
88 1 86 56 5 6 7 8 58 67 62 73 87 evlf2 φfCFuncDuBaseCgCFuncDvBaseCfu2ndEgv=afCNatDg,huHomCvav1stfu1stfvcompD1stgvu2ndfvh
89 88 feq1d φfCFuncDuBaseCgCFuncDvBaseCfu2ndEgv:fCNatDg×uHomCv1stfuHomD1stgvafCNatDg,huHomCvav1stfu1stfvcompD1stgvu2ndfvh:fCNatDg×uHomCv1stfuHomD1stgv
90 85 89 mpbird φfCFuncDuBaseCgCFuncDvBaseCfu2ndEgv:fCNatDg×uHomCv1stfuHomD1stgv
91 2 8 fuchom CNatD=HomQ
92 19 20 5 91 6 58 62 67 73 23 xpchom2 φfCFuncDuBaseCgCFuncDvBaseCfuHomQ×cCgv=fCNatDg×uHomCv
93 1 86 56 5 58 62 evlf1 φfCFuncDuBaseCgCFuncDvBaseCf1stEu=1stfu
94 1 86 56 5 67 73 evlf1 φfCFuncDuBaseCgCFuncDvBaseCg1stEv=1stgv
95 93 94 oveq12d φfCFuncDuBaseCgCFuncDvBaseCf1stEuHomDg1stEv=1stfuHomD1stgv
96 92 95 feq23d φfCFuncDuBaseCgCFuncDvBaseCfu2ndEgv:fuHomQ×cCgvf1stEuHomDg1stEvfu2ndEgv:fCNatDg×uHomCv1stfuHomD1stgv
97 90 96 mpbird φfCFuncDuBaseCgCFuncDvBaseCfu2ndEgv:fuHomQ×cCgvf1stEuHomDg1stEv
98 97 ralrimivva φfCFuncDuBaseCgCFuncDvBaseCfu2ndEgv:fuHomQ×cCgvf1stEuHomDg1stEv
99 98 ralrimivva φfCFuncDuBaseCgCFuncDvBaseCfu2ndEgv:fuHomQ×cCgvf1stEuHomDg1stEv
100 oveq2 y=gvx2ndEy=x2ndEgv
101 oveq2 y=gvxHomQ×cCy=xHomQ×cCgv
102 fveq2 y=gv1stEy=1stEgv
103 df-ov g1stEv=1stEgv
104 102 103 eqtr4di y=gv1stEy=g1stEv
105 104 oveq2d y=gv1stExHomD1stEy=1stExHomDg1stEv
106 100 101 105 feq123d y=gvx2ndEy:xHomQ×cCy1stExHomD1stEyx2ndEgv:xHomQ×cCgv1stExHomDg1stEv
107 106 ralxp yCFuncD×BaseCx2ndEy:xHomQ×cCy1stExHomD1stEygCFuncDvBaseCx2ndEgv:xHomQ×cCgv1stExHomDg1stEv
108 oveq1 x=fux2ndEgv=fu2ndEgv
109 oveq1 x=fuxHomQ×cCgv=fuHomQ×cCgv
110 fveq2 x=fu1stEx=1stEfu
111 df-ov f1stEu=1stEfu
112 110 111 eqtr4di x=fu1stEx=f1stEu
113 112 oveq1d x=fu1stExHomDg1stEv=f1stEuHomDg1stEv
114 108 109 113 feq123d x=fux2ndEgv:xHomQ×cCgv1stExHomDg1stEvfu2ndEgv:fuHomQ×cCgvf1stEuHomDg1stEv
115 114 2ralbidv x=fugCFuncDvBaseCx2ndEgv:xHomQ×cCgv1stExHomDg1stEvgCFuncDvBaseCfu2ndEgv:fuHomQ×cCgvf1stEuHomDg1stEv
116 107 115 bitrid x=fuyCFuncD×BaseCx2ndEy:xHomQ×cCy1stExHomD1stEygCFuncDvBaseCfu2ndEgv:fuHomQ×cCgvf1stEuHomDg1stEv
117 116 ralxp xCFuncD×BaseCyCFuncD×BaseCx2ndEy:xHomQ×cCy1stExHomD1stEyfCFuncDuBaseCgCFuncDvBaseCfu2ndEgv:fuHomQ×cCgvf1stEuHomDg1stEv
118 99 117 sylibr φxCFuncD×BaseCyCFuncD×BaseCx2ndEy:xHomQ×cCy1stExHomD1stEy
119 118 r19.21bi φxCFuncD×BaseCyCFuncD×BaseCx2ndEy:xHomQ×cCy1stExHomD1stEy
120 119 r19.21bi φxCFuncD×BaseCyCFuncD×BaseCx2ndEy:xHomQ×cCy1stExHomD1stEy
121 120 anasss φxCFuncD×BaseCyCFuncD×BaseCx2ndEy:xHomQ×cCy1stExHomD1stEy
122 28 adantr φfCFuncDuBaseCQCat
123 3 adantr φfCFuncDuBaseCCCat
124 eqid IdQ=IdQ
125 eqid IdC=IdC
126 simprl φfCFuncDuBaseCfCFuncD
127 simprr φfCFuncDuBaseCuBaseC
128 19 122 123 20 5 124 125 25 126 127 xpcid φfCFuncDuBaseCIdQ×cCfu=IdQfIdCu
129 128 fveq2d φfCFuncDuBaseCfu2ndEfuIdQ×cCfu=fu2ndEfuIdQfIdCu
130 df-ov IdQffu2ndEfuIdCu=fu2ndEfuIdQfIdCu
131 129 130 eqtr4di φfCFuncDuBaseCfu2ndEfuIdQ×cCfu=IdQffu2ndEfuIdCu
132 4 adantr φfCFuncDuBaseCDCat
133 eqid fu2ndEfu=fu2ndEfu
134 20 91 124 122 126 catidcl φfCFuncDuBaseCIdQffCNatDf
135 5 6 125 123 127 catidcl φfCFuncDuBaseCIdCuuHomCu
136 1 123 132 5 6 7 8 126 126 127 127 133 134 135 evlf2val φfCFuncDuBaseCIdQffu2ndEfuIdCu=IdQfu1stfu1stfucompD1stfuu2ndfuIdCu
137 30 126 32 sylancr φfCFuncDuBaseC1stfCFuncD2ndf
138 5 22 137 funcf1 φfCFuncDuBaseC1stf:BaseCBaseD
139 138 127 ffvelcdmd φfCFuncDuBaseC1stfuBaseD
140 22 24 26 132 139 catidcl φfCFuncDuBaseCIdD1stfu1stfuHomD1stfu
141 22 24 26 132 139 7 139 140 catlid φfCFuncDuBaseCIdD1stfu1stfu1stfucompD1stfuIdD1stfu=IdD1stfu
142 2 124 26 126 fucid φfCFuncDuBaseCIdQf=IdD1stf
143 142 fveq1d φfCFuncDuBaseCIdQfu=IdD1stfu
144 fvco3 1stf:BaseCBaseDuBaseCIdD1stfu=IdD1stfu
145 138 127 144 syl2anc φfCFuncDuBaseCIdD1stfu=IdD1stfu
146 143 145 eqtrd φfCFuncDuBaseCIdQfu=IdD1stfu
147 5 125 26 137 127 funcid φfCFuncDuBaseCu2ndfuIdCu=IdD1stfu
148 146 147 oveq12d φfCFuncDuBaseCIdQfu1stfu1stfucompD1stfuu2ndfuIdCu=IdD1stfu1stfu1stfucompD1stfuIdD1stfu
149 1 123 132 5 126 127 evlf1 φfCFuncDuBaseCf1stEu=1stfu
150 149 fveq2d φfCFuncDuBaseCIdDf1stEu=IdD1stfu
151 141 148 150 3eqtr4d φfCFuncDuBaseCIdQfu1stfu1stfucompD1stfuu2ndfuIdCu=IdDf1stEu
152 131 136 151 3eqtrd φfCFuncDuBaseCfu2ndEfuIdQ×cCfu=IdDf1stEu
153 152 ralrimivva φfCFuncDuBaseCfu2ndEfuIdQ×cCfu=IdDf1stEu
154 id x=fux=fu
155 154 154 oveq12d x=fux2ndEx=fu2ndEfu
156 fveq2 x=fuIdQ×cCx=IdQ×cCfu
157 155 156 fveq12d x=fux2ndExIdQ×cCx=fu2ndEfuIdQ×cCfu
158 112 fveq2d x=fuIdD1stEx=IdDf1stEu
159 157 158 eqeq12d x=fux2ndExIdQ×cCx=IdD1stExfu2ndEfuIdQ×cCfu=IdDf1stEu
160 159 ralxp xCFuncD×BaseCx2ndExIdQ×cCx=IdD1stExfCFuncDuBaseCfu2ndEfuIdQ×cCfu=IdDf1stEu
161 153 160 sylibr φxCFuncD×BaseCx2ndExIdQ×cCx=IdD1stEx
162 161 r19.21bi φxCFuncD×BaseCx2ndExIdQ×cCx=IdD1stEx
163 3 3ad2ant1 φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzCCat
164 4 3ad2ant1 φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzDCat
165 simp21 φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzxCFuncD×BaseC
166 1st2nd2 xCFuncD×BaseCx=1stx2ndx
167 165 166 syl φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzx=1stx2ndx
168 167 165 eqeltrrd φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stx2ndxCFuncD×BaseC
169 opelxp 1stx2ndxCFuncD×BaseC1stxCFuncD2ndxBaseC
170 168 169 sylib φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stxCFuncD2ndxBaseC
171 simp22 φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzyCFuncD×BaseC
172 1st2nd2 yCFuncD×BaseCy=1sty2ndy
173 171 172 syl φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzy=1sty2ndy
174 173 171 eqeltrrd φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1sty2ndyCFuncD×BaseC
175 opelxp 1sty2ndyCFuncD×BaseC1styCFuncD2ndyBaseC
176 174 175 sylib φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1styCFuncD2ndyBaseC
177 simp23 φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzzCFuncD×BaseC
178 1st2nd2 zCFuncD×BaseCz=1stz2ndz
179 177 178 syl φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzz=1stz2ndz
180 179 177 eqeltrrd φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stz2ndzCFuncD×BaseC
181 opelxp 1stz2ndzCFuncD×BaseC1stzCFuncD2ndzBaseC
182 180 181 sylib φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stzCFuncD2ndzBaseC
183 simp3l φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzfxHomQ×cCy
184 19 21 91 6 23 165 171 xpchom φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzxHomQ×cCy=1stxCNatD1sty×2ndxHomC2ndy
185 183 184 eleqtrd φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzf1stxCNatD1sty×2ndxHomC2ndy
186 1st2nd2 f1stxCNatD1sty×2ndxHomC2ndyf=1stf2ndf
187 185 186 syl φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzf=1stf2ndf
188 187 185 eqeltrrd φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stf2ndf1stxCNatD1sty×2ndxHomC2ndy
189 opelxp 1stf2ndf1stxCNatD1sty×2ndxHomC2ndy1stf1stxCNatD1sty2ndf2ndxHomC2ndy
190 188 189 sylib φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stf1stxCNatD1sty2ndf2ndxHomC2ndy
191 simp3r φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzgyHomQ×cCz
192 19 21 91 6 23 171 177 xpchom φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzyHomQ×cCz=1styCNatD1stz×2ndyHomC2ndz
193 191 192 eleqtrd φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzg1styCNatD1stz×2ndyHomC2ndz
194 1st2nd2 g1styCNatD1stz×2ndyHomC2ndzg=1stg2ndg
195 193 194 syl φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzg=1stg2ndg
196 195 193 eqeltrrd φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stg2ndg1styCNatD1stz×2ndyHomC2ndz
197 opelxp 1stg2ndg1styCNatD1stz×2ndyHomC2ndz1stg1styCNatD1stz2ndg2ndyHomC2ndz
198 196 197 sylib φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stg1styCNatD1stz2ndg2ndyHomC2ndz
199 1 2 163 164 8 170 176 182 190 198 evlfcllem φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stx2ndx2ndE1stz2ndz1stg2ndg1stx2ndx1sty2ndycompQ×cC1stz2ndz1stf2ndf=1sty2ndy2ndE1stz2ndz1stg2ndg1stE1stx2ndx1stE1sty2ndycompD1stE1stz2ndz1stx2ndx2ndE1sty2ndy1stf2ndf
200 167 179 oveq12d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzx2ndEz=1stx2ndx2ndE1stz2ndz
201 167 173 opeq12d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzxy=1stx2ndx1sty2ndy
202 201 179 oveq12d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzxycompQ×cCz=1stx2ndx1sty2ndycompQ×cC1stz2ndz
203 202 195 187 oveq123d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzgxycompQ×cCzf=1stg2ndg1stx2ndx1sty2ndycompQ×cC1stz2ndz1stf2ndf
204 200 203 fveq12d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzx2ndEzgxycompQ×cCzf=1stx2ndx2ndE1stz2ndz1stg2ndg1stx2ndx1sty2ndycompQ×cC1stz2ndz1stf2ndf
205 167 fveq2d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stEx=1stE1stx2ndx
206 173 fveq2d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stEy=1stE1sty2ndy
207 205 206 opeq12d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stEx1stEy=1stE1stx2ndx1stE1sty2ndy
208 179 fveq2d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stEz=1stE1stz2ndz
209 207 208 oveq12d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCz1stEx1stEycompD1stEz=1stE1stx2ndx1stE1sty2ndycompD1stE1stz2ndz
210 173 179 oveq12d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzy2ndEz=1sty2ndy2ndE1stz2ndz
211 210 195 fveq12d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzy2ndEzg=1sty2ndy2ndE1stz2ndz1stg2ndg
212 167 173 oveq12d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzx2ndEy=1stx2ndx2ndE1sty2ndy
213 212 187 fveq12d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzx2ndEyf=1stx2ndx2ndE1sty2ndy1stf2ndf
214 209 211 213 oveq123d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzy2ndEzg1stEx1stEycompD1stEzx2ndEyf=1sty2ndy2ndE1stz2ndz1stg2ndg1stE1stx2ndx1stE1sty2ndycompD1stE1stz2ndz1stx2ndx2ndE1sty2ndy1stf2ndf
215 199 204 214 3eqtr4d φxCFuncD×BaseCyCFuncD×BaseCzCFuncD×BaseCfxHomQ×cCygyHomQ×cCzx2ndEzgxycompQ×cCzf=y2ndEzg1stEx1stEycompD1stEzx2ndEyf
216 21 22 23 24 25 26 27 7 29 4 44 55 121 162 215 isfuncd φ1stEQ×cCFuncD2ndE
217 df-br 1stEQ×cCFuncD2ndE1stE2ndEQ×cCFuncD
218 216 217 sylib φ1stE2ndEQ×cCFuncD
219 18 218 eqeltrd φEQ×cCFuncD