Metamath Proof Explorer


Theorem fourierdlem40

Description: H is a continuous function on any partition interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem40.f φF:
fourierdlem40.a φAππ
fourierdlem40.b φBππ
fourierdlem40.x φX
fourierdlem40.nxelab φ¬0AB
fourierdlem40.fcn φFA+XB+X:A+XB+Xcn
fourierdlem40.y φY
fourierdlem40.w φW
fourierdlem40.h H=sππifs=00FX+sif0<sYWs
Assertion fourierdlem40 φHAB:ABcn

Proof

Step Hyp Ref Expression
1 fourierdlem40.f φF:
2 fourierdlem40.a φAππ
3 fourierdlem40.b φBππ
4 fourierdlem40.x φX
5 fourierdlem40.nxelab φ¬0AB
6 fourierdlem40.fcn φFA+XB+X:A+XB+Xcn
7 fourierdlem40.y φY
8 fourierdlem40.w φW
9 fourierdlem40.h H=sππifs=00FX+sif0<sYWs
10 9 reseq1i HAB=sππifs=00FX+sif0<sYWsAB
11 10 a1i φHAB=sππifs=00FX+sif0<sYWsAB
12 pire π
13 12 renegcli π
14 13 a1i φsABπ
15 12 a1i φsABπ
16 elioore sABs
17 16 adantl φsABs
18 13 a1i φπ
19 12 a1i φπ
20 18 19 iccssred φππ
21 20 2 sseldd φA
22 21 adantr φsABA
23 13 12 elicc2i AππAπAAπ
24 23 simp2bi AπππA
25 2 24 syl φπA
26 25 adantr φsABπA
27 22 rexrd φsABA*
28 20 3 sseldd φB
29 28 rexrd φB*
30 29 adantr φsABB*
31 simpr φsABsAB
32 ioogtlb A*B*sABA<s
33 27 30 31 32 syl3anc φsABA<s
34 14 22 17 26 33 lelttrd φsABπ<s
35 14 17 34 ltled φsABπs
36 28 adantr φsABB
37 iooltub A*B*sABs<B
38 27 30 31 37 syl3anc φsABs<B
39 13 12 elicc2i BππBπBBπ
40 39 simp3bi BππBπ
41 3 40 syl φBπ
42 41 adantr φsABBπ
43 17 36 15 38 42 ltletrd φsABs<π
44 17 15 43 ltled φsABsπ
45 14 15 17 35 44 eliccd φsABsππ
46 45 ex φsABsππ
47 46 ssrdv φABππ
48 47 resmptd φsππifs=00FX+sif0<sYWsAB=sABifs=00FX+sif0<sYWs
49 eleq1 s=0sAB0AB
50 49 biimpac sABs=00AB
51 50 adantll φsABs=00AB
52 5 ad2antrr φsABs=0¬0AB
53 51 52 pm2.65da φsAB¬s=0
54 53 iffalsed φsABifs=00FX+sif0<sYWs=FX+sif0<sYWs
55 1 adantr φsABF:
56 4 adantr φsABX
57 56 17 readdcld φsABX+s
58 55 57 ffvelcdmd φsABFX+s
59 7 8 ifcld φif0<sYW
60 59 adantr φsABif0<sYW
61 58 60 resubcld φsABFX+sif0<sYW
62 61 recnd φsABFX+sif0<sYW
63 17 recnd φsABs
64 53 neqned φsABs0
65 62 63 64 divrecd φsABFX+sif0<sYWs=FX+sif0<sYW1s
66 54 65 eqtrd φsABifs=00FX+sif0<sYWs=FX+sif0<sYW1s
67 66 mpteq2dva φsABifs=00FX+sif0<sYWs=sABFX+sif0<sYW1s
68 11 48 67 3eqtrd φHAB=sABFX+sif0<sYW1s
69 58 recnd φsABFX+s
70 60 recnd φsABif0<sYW
71 69 70 negsubd φsABFX+s+if0<sYW=FX+sif0<sYW
72 71 eqcomd φsABFX+sif0<sYW=FX+s+if0<sYW
73 72 mpteq2dva φsABFX+sif0<sYW=sABFX+s+if0<sYW
74 21 4 readdcld φA+X
75 74 rexrd φA+X*
76 75 adantr φsABA+X*
77 28 4 readdcld φB+X
78 77 rexrd φB+X*
79 78 adantr φsABB+X*
80 21 recnd φA
81 4 recnd φX
82 80 81 addcomd φA+X=X+A
83 82 adantr φsABA+X=X+A
84 22 17 56 33 ltadd2dd φsABX+A<X+s
85 83 84 eqbrtrd φsABA+X<X+s
86 17 36 56 38 ltadd2dd φsABX+s<X+B
87 28 recnd φB
88 81 87 addcomd φX+B=B+X
89 88 adantr φsABX+B=B+X
90 86 89 breqtrd φsABX+s<B+X
91 76 79 57 85 90 eliood φsABX+sA+XB+X
92 fvres X+sA+XB+XFA+XB+XX+s=FX+s
93 91 92 syl φsABFA+XB+XX+s=FX+s
94 93 eqcomd φsABFX+s=FA+XB+XX+s
95 94 mpteq2dva φsABFX+s=sABFA+XB+XX+s
96 ioosscn A+XB+X
97 96 a1i φA+XB+X
98 ioosscn AB
99 98 a1i φAB
100 97 6 99 81 91 fourierdlem23 φsABFA+XB+XX+s:ABcn
101 95 100 eqeltrd φsABFX+s:ABcn
102 0red φ0AsAB0
103 21 ad2antrr φ0AsABA
104 16 adantl φ0AsABs
105 simplr φ0AsAB0A
106 33 adantlr φ0AsABA<s
107 102 103 104 105 106 lelttrd φ0AsAB0<s
108 107 iftrued φ0AsABif0<sYW=Y
109 108 negeqd φ0AsABif0<sYW=Y
110 109 mpteq2dva φ0AsABif0<sYW=sABY
111 7 renegcld φY
112 111 recnd φY
113 ssid
114 113 a1i φ
115 99 112 114 constcncfg φsABY:ABcn
116 115 adantr φ0AsABY:ABcn
117 110 116 eqeltrd φ0AsABif0<sYW:ABcn
118 21 rexrd φA*
119 118 ad2antrr φ¬0A¬B0A*
120 29 ad2antrr φ¬0A¬B0B*
121 0red φ¬0A¬B00
122 simpr φ¬0A¬0A
123 21 adantr φ¬0AA
124 0red φ¬0A0
125 123 124 ltnled φ¬0AA<0¬0A
126 122 125 mpbird φ¬0AA<0
127 126 adantr φ¬0A¬B0A<0
128 simpr φ¬B0¬B0
129 0red φ¬B00
130 28 adantr φ¬B0B
131 129 130 ltnled φ¬B00<B¬B0
132 128 131 mpbird φ¬B00<B
133 132 adantlr φ¬0A¬B00<B
134 119 120 121 127 133 eliood φ¬0A¬B00AB
135 5 ad2antrr φ¬0A¬B0¬0AB
136 134 135 condan φ¬0AB0
137 16 adantl φB0sABs
138 0red φB0sAB0
139 28 ad2antrr φB0sABB
140 38 adantlr φB0sABs<B
141 simplr φB0sABB0
142 137 139 138 140 141 ltletrd φB0sABs<0
143 137 138 142 ltnsymd φB0sAB¬0<s
144 143 iffalsed φB0sABif0<sYW=W
145 144 negeqd φB0sABif0<sYW=W
146 145 mpteq2dva φB0sABif0<sYW=sABW
147 8 recnd φW
148 147 negcld φW
149 99 148 114 constcncfg φsABW:ABcn
150 149 adantr φB0sABW:ABcn
151 146 150 eqeltrd φB0sABif0<sYW:ABcn
152 136 151 syldan φ¬0AsABif0<sYW:ABcn
153 117 152 pm2.61dan φsABif0<sYW:ABcn
154 101 153 addcncf φsABFX+s+if0<sYW:ABcn
155 73 154 eqeltrd φsABFX+sif0<sYW:ABcn
156 eqid s01s=s01s
157 1cnd φ1
158 156 cdivcncf 1s01s:0cn
159 157 158 syl φs01s:0cn
160 velsn s0s=0
161 53 160 sylnibr φsAB¬s0
162 63 161 eldifd φsABs0
163 162 ralrimiva φsABs0
164 dfss3 AB0sABs0
165 163 164 sylibr φAB0
166 17 64 rereccld φsAB1s
167 166 recnd φsAB1s
168 156 159 165 114 167 cncfmptssg φsAB1s:ABcn
169 155 168 mulcncf φsABFX+sif0<sYW1s:ABcn
170 68 169 eqeltrd φHAB:ABcn