Metamath Proof Explorer


Theorem itg2split

Description: The S.2 integral splits under an almost disjoint union. The proof avoids the use of itg2add , which requires countable choice. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg2split.a φAdomvol
itg2split.b φBdomvol
itg2split.i φvol*AB=0
itg2split.u φU=AB
itg2split.c φxUC0+∞
itg2split.f F=xifxAC0
itg2split.g G=xifxBC0
itg2split.h H=xifxUC0
itg2split.sf φ2F
itg2split.sg φ2G
Assertion itg2split φ2H=2F+2G

Proof

Step Hyp Ref Expression
1 itg2split.a φAdomvol
2 itg2split.b φBdomvol
3 itg2split.i φvol*AB=0
4 itg2split.u φU=AB
5 itg2split.c φxUC0+∞
6 itg2split.f F=xifxAC0
7 itg2split.g G=xifxBC0
8 itg2split.h H=xifxUC0
9 itg2split.sf φ2F
10 itg2split.sg φ2G
11 5 adantlr φxxUC0+∞
12 0e0iccpnf 00+∞
13 12 a1i φx¬xU00+∞
14 11 13 ifclda φxifxUC00+∞
15 14 8 fmptd φH:0+∞
16 itg2cl H:0+∞2H*
17 15 16 syl φ2H*
18 9 10 readdcld φ2F+2G
19 18 rexrd φ2F+2G*
20 1 2 3 4 5 6 7 8 9 10 itg2splitlem φ2H2F+2G
21 10 adantr φfdom1ffF2G
22 itg2lecl H:0+∞2F+2G2H2F+2G2H
23 15 18 20 22 syl3anc φ2H
24 23 adantr φfdom1ffF2H
25 itg1cl fdom11f
26 25 ad2antrl φfdom1ffF1f
27 simprll φfdom1ffFgdom1gfGfdom1
28 simprrl φfdom1ffFgdom1gfGgdom1
29 27 28 itg1add φfdom1ffFgdom1gfG1f+fg=1f+1g
30 15 adantr φfdom1ffFgdom1gfGH:0+∞
31 27 28 i1fadd φfdom1ffFgdom1gfGf+fgdom1
32 inss1 ABA
33 mblss AdomvolA
34 1 33 syl φA
35 32 34 sstrid φAB
36 35 adantr φfdom1ffFgdom1gfGAB
37 3 adantr φfdom1ffFgdom1gfGvol*AB=0
38 nfv xφ
39 nfv xfdom1
40 nfcv _xf
41 nfcv _xr
42 nfmpt1 _xxifxAC0
43 6 42 nfcxfr _xF
44 40 41 43 nfbr xffF
45 39 44 nfan xfdom1ffF
46 nfv xgdom1
47 nfcv _xg
48 nfmpt1 _xxifxBC0
49 7 48 nfcxfr _xG
50 47 41 49 nfbr xgfG
51 46 50 nfan xgdom1gfG
52 45 51 nfan xfdom1ffFgdom1gfG
53 38 52 nfan xφfdom1ffFgdom1gfG
54 eldifi xABx
55 i1ff fdom1f:
56 27 55 syl φfdom1ffFgdom1gfGf:
57 56 ffnd φfdom1ffFgdom1gfGfFn
58 i1ff gdom1g:
59 28 58 syl φfdom1ffFgdom1gfGg:
60 59 ffnd φfdom1ffFgdom1gfGgFn
61 reex V
62 61 a1i φfdom1ffFgdom1gfGV
63 inidm =
64 eqidd φfdom1ffFgdom1gfGxfx=fx
65 eqidd φfdom1ffFgdom1gfGxgx=gx
66 57 60 62 62 63 64 65 ofval φfdom1ffFgdom1gfGxf+fgx=fx+gx
67 54 66 sylan2 φfdom1ffFgdom1gfGxABf+fgx=fx+gx
68 ffvelcdm f:xfx
69 56 54 68 syl2an φfdom1ffFgdom1gfGxABfx
70 ffvelcdm g:xgx
71 59 54 70 syl2an φfdom1ffFgdom1gfGxABgx
72 69 71 readdcld φfdom1ffFgdom1gfGxABfx+gx
73 72 rexrd φfdom1ffFgdom1gfGxABfx+gx*
74 73 adantr φfdom1ffFgdom1gfGxABxAfx+gx*
75 69 adantr φfdom1ffFgdom1gfGxABxAfx
76 75 rexrd φfdom1ffFgdom1gfGxABxAfx*
77 iccssxr 0+∞*
78 ffvelcdm H:0+∞xHx0+∞
79 30 54 78 syl2an φfdom1ffFgdom1gfGxABHx0+∞
80 77 79 sselid φfdom1ffFgdom1gfGxABHx*
81 80 adantr φfdom1ffFgdom1gfGxABxAHx*
82 71 adantr φfdom1ffFgdom1gfGxABxAgx
83 0red φfdom1ffFgdom1gfGxABxA0
84 simprrr φfdom1ffFgdom1gfGgfG
85 61 a1i φgFnV
86 fvexd φgFnxgxV
87 ssun2 BAB
88 87 4 sseqtrrid φBU
89 88 sselda φxBxU
90 89 adantlr φxxBxU
91 90 11 syldan φxxBC0+∞
92 12 a1i φx¬xB00+∞
93 91 92 ifclda φxifxBC00+∞
94 93 adantlr φgFnxifxBC00+∞
95 simpr φgFngFn
96 dffn5 gFng=xgx
97 95 96 sylib φgFng=xgx
98 7 a1i φgFnG=xifxBC0
99 85 86 94 97 98 ofrfval2 φgFngfGxgxifxBC0
100 60 99 syldan φfdom1ffFgdom1gfGgfGxgxifxBC0
101 84 100 mpbid φfdom1ffFgdom1gfGxgxifxBC0
102 101 r19.21bi φfdom1ffFgdom1gfGxgxifxBC0
103 54 102 sylan2 φfdom1ffFgdom1gfGxABgxifxBC0
104 103 adantr φfdom1ffFgdom1gfGxABxAgxifxBC0
105 eldifn xAB¬xAB
106 105 adantl φfdom1ffFgdom1gfGxAB¬xAB
107 elin xABxAxB
108 106 107 sylnib φfdom1ffFgdom1gfGxAB¬xAxB
109 imnan xA¬xB¬xAxB
110 108 109 sylibr φfdom1ffFgdom1gfGxABxA¬xB
111 110 imp φfdom1ffFgdom1gfGxABxA¬xB
112 111 iffalsed φfdom1ffFgdom1gfGxABxAifxBC0=0
113 104 112 breqtrd φfdom1ffFgdom1gfGxABxAgx0
114 82 83 75 113 leadd2dd φfdom1ffFgdom1gfGxABxAfx+gxfx+0
115 75 recnd φfdom1ffFgdom1gfGxABxAfx
116 115 addridd φfdom1ffFgdom1gfGxABxAfx+0=fx
117 114 116 breqtrd φfdom1ffFgdom1gfGxABxAfx+gxfx
118 simprlr φfdom1ffFgdom1gfGffF
119 61 a1i φfFnV
120 fvexd φfFnxfxV
121 ssun1 AAB
122 121 4 sseqtrrid φAU
123 122 sselda φxAxU
124 123 adantlr φxxAxU
125 124 11 syldan φxxAC0+∞
126 12 a1i φx¬xA00+∞
127 125 126 ifclda φxifxAC00+∞
128 127 adantlr φfFnxifxAC00+∞
129 simpr φfFnfFn
130 dffn5 fFnf=xfx
131 129 130 sylib φfFnf=xfx
132 6 a1i φfFnF=xifxAC0
133 119 120 128 131 132 ofrfval2 φfFnffFxfxifxAC0
134 57 133 syldan φfdom1ffFgdom1gfGffFxfxifxAC0
135 118 134 mpbid φfdom1ffFgdom1gfGxfxifxAC0
136 135 r19.21bi φfdom1ffFgdom1gfGxfxifxAC0
137 54 136 sylan2 φfdom1ffFgdom1gfGxABfxifxAC0
138 137 adantr φfdom1ffFgdom1gfGxABxAfxifxAC0
139 122 ad2antrr φfdom1ffFgdom1gfGxABAU
140 139 sselda φfdom1ffFgdom1gfGxABxAxU
141 140 iftrued φfdom1ffFgdom1gfGxABxAifxUC0=C
142 simpr φfdom1ffFgdom1gfGxx
143 14 adantlr φfdom1ffFgdom1gfGxifxUC00+∞
144 8 fvmpt2 xifxUC00+∞Hx=ifxUC0
145 142 143 144 syl2anc φfdom1ffFgdom1gfGxHx=ifxUC0
146 54 145 sylan2 φfdom1ffFgdom1gfGxABHx=ifxUC0
147 146 adantr φfdom1ffFgdom1gfGxABxAHx=ifxUC0
148 iftrue xAifxAC0=C
149 148 adantl φfdom1ffFgdom1gfGxABxAifxAC0=C
150 141 147 149 3eqtr4d φfdom1ffFgdom1gfGxABxAHx=ifxAC0
151 138 150 breqtrrd φfdom1ffFgdom1gfGxABxAfxHx
152 74 76 81 117 151 xrletrd φfdom1ffFgdom1gfGxABxAfx+gxHx
153 73 adantr φfdom1ffFgdom1gfGxAB¬xAfx+gx*
154 71 adantr φfdom1ffFgdom1gfGxAB¬xAgx
155 154 rexrd φfdom1ffFgdom1gfGxAB¬xAgx*
156 80 adantr φfdom1ffFgdom1gfGxAB¬xAHx*
157 69 adantr φfdom1ffFgdom1gfGxAB¬xAfx
158 0red φfdom1ffFgdom1gfGxAB¬xA0
159 137 adantr φfdom1ffFgdom1gfGxAB¬xAfxifxAC0
160 iffalse ¬xAifxAC0=0
161 160 adantl φfdom1ffFgdom1gfGxAB¬xAifxAC0=0
162 159 161 breqtrd φfdom1ffFgdom1gfGxAB¬xAfx0
163 157 158 154 162 leadd1dd φfdom1ffFgdom1gfGxAB¬xAfx+gx0+gx
164 154 recnd φfdom1ffFgdom1gfGxAB¬xAgx
165 164 addlidd φfdom1ffFgdom1gfGxAB¬xA0+gx=gx
166 163 165 breqtrd φfdom1ffFgdom1gfGxAB¬xAfx+gxgx
167 103 adantr φfdom1ffFgdom1gfGxAB¬xAgxifxBC0
168 146 adantr φfdom1ffFgdom1gfGxAB¬xAHx=ifxUC0
169 4 ad3antrrr φfdom1ffFgdom1gfGxAB¬xAU=AB
170 169 eleq2d φfdom1ffFgdom1gfGxAB¬xAxUxAB
171 elun xABxAxB
172 biorf ¬xAxBxAxB
173 171 172 bitr4id ¬xAxABxB
174 173 adantl φfdom1ffFgdom1gfGxAB¬xAxABxB
175 170 174 bitrd φfdom1ffFgdom1gfGxAB¬xAxUxB
176 175 ifbid φfdom1ffFgdom1gfGxAB¬xAifxUC0=ifxBC0
177 168 176 eqtrd φfdom1ffFgdom1gfGxAB¬xAHx=ifxBC0
178 167 177 breqtrrd φfdom1ffFgdom1gfGxAB¬xAgxHx
179 153 155 156 166 178 xrletrd φfdom1ffFgdom1gfGxAB¬xAfx+gxHx
180 152 179 pm2.61dan φfdom1ffFgdom1gfGxABfx+gxHx
181 67 180 eqbrtrd φfdom1ffFgdom1gfGxABf+fgxHx
182 181 ex φfdom1ffFgdom1gfGxABf+fgxHx
183 53 182 ralrimi φfdom1ffFgdom1gfGxABf+fgxHx
184 nfv yf+fgxHx
185 nfcv _xf+fgy
186 nfcv _x
187 nfmpt1 _xxifxUC0
188 8 187 nfcxfr _xH
189 nfcv _xy
190 188 189 nffv _xHy
191 185 186 190 nfbr xf+fgyHy
192 fveq2 x=yf+fgx=f+fgy
193 fveq2 x=yHx=Hy
194 192 193 breq12d x=yf+fgxHxf+fgyHy
195 184 191 194 cbvralw xABf+fgxHxyABf+fgyHy
196 183 195 sylib φfdom1ffFgdom1gfGyABf+fgyHy
197 196 r19.21bi φfdom1ffFgdom1gfGyABf+fgyHy
198 30 31 36 37 197 itg2uba φfdom1ffFgdom1gfG1f+fg2H
199 29 198 eqbrtrrd φfdom1ffFgdom1gfG1f+1g2H
200 26 adantrr φfdom1ffFgdom1gfG1f
201 itg1cl gdom11g
202 28 201 syl φfdom1ffFgdom1gfG1g
203 23 adantr φfdom1ffFgdom1gfG2H
204 200 202 203 leaddsub2d φfdom1ffFgdom1gfG1f+1g2H1g2H1f
205 199 204 mpbid φfdom1ffFgdom1gfG1g2H1f
206 205 anassrs φfdom1ffFgdom1gfG1g2H1f
207 206 expr φfdom1ffFgdom1gfG1g2H1f
208 207 ralrimiva φfdom1ffFgdom1gfG1g2H1f
209 93 7 fmptd φG:0+∞
210 209 adantr φfdom1ffFG:0+∞
211 24 26 resubcld φfdom1ffF2H1f
212 211 rexrd φfdom1ffF2H1f*
213 itg2leub G:0+∞2H1f*2G2H1fgdom1gfG1g2H1f
214 210 212 213 syl2anc φfdom1ffF2G2H1fgdom1gfG1g2H1f
215 208 214 mpbird φfdom1ffF2G2H1f
216 21 24 26 215 lesubd φfdom1ffF1f2H2G
217 216 expr φfdom1ffF1f2H2G
218 217 ralrimiva φfdom1ffF1f2H2G
219 127 6 fmptd φF:0+∞
220 23 10 resubcld φ2H2G
221 220 rexrd φ2H2G*
222 itg2leub F:0+∞2H2G*2F2H2Gfdom1ffF1f2H2G
223 219 221 222 syl2anc φ2F2H2Gfdom1ffF1f2H2G
224 218 223 mpbird φ2F2H2G
225 leaddsub 2F2G2H2F+2G2H2F2H2G
226 9 10 23 225 syl3anc φ2F+2G2H2F2H2G
227 224 226 mpbird φ2F+2G2H
228 17 19 20 227 xrletrid φ2H=2F+2G