Metamath Proof Explorer


Theorem itg2splitlem

Description: Lemma for itg2split . (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg2split.a φAdomvol
itg2split.b φBdomvol
itg2split.i φvol*AB=0
itg2split.u φU=AB
itg2split.c φxUC0+∞
itg2split.f F=xifxAC0
itg2split.g G=xifxBC0
itg2split.h H=xifxUC0
itg2split.sf φ2F
itg2split.sg φ2G
Assertion itg2splitlem φ2H2F+2G

Proof

Step Hyp Ref Expression
1 itg2split.a φAdomvol
2 itg2split.b φBdomvol
3 itg2split.i φvol*AB=0
4 itg2split.u φU=AB
5 itg2split.c φxUC0+∞
6 itg2split.f F=xifxAC0
7 itg2split.g G=xifxBC0
8 itg2split.h H=xifxUC0
9 itg2split.sf φ2F
10 itg2split.sg φ2G
11 simprl φfdom1ffHfdom1
12 itg1cl fdom11f
13 11 12 syl φfdom1ffH1f
14 1 adantr φfdom1ffHAdomvol
15 eqid xifxAfx0=xifxAfx0
16 15 i1fres fdom1AdomvolxifxAfx0dom1
17 11 14 16 syl2anc φfdom1ffHxifxAfx0dom1
18 itg1cl xifxAfx0dom11xifxAfx0
19 17 18 syl φfdom1ffH1xifxAfx0
20 2 adantr φfdom1ffHBdomvol
21 eqid xifxBfx0=xifxBfx0
22 21 i1fres fdom1BdomvolxifxBfx0dom1
23 11 20 22 syl2anc φfdom1ffHxifxBfx0dom1
24 itg1cl xifxBfx0dom11xifxBfx0
25 23 24 syl φfdom1ffH1xifxBfx0
26 19 25 readdcld φfdom1ffH1xifxAfx0+1xifxBfx0
27 9 10 readdcld φ2F+2G
28 27 adantr φfdom1ffH2F+2G
29 inss1 ABA
30 mblss AdomvolA
31 1 30 syl φA
32 29 31 sstrid φAB
33 32 adantr φfdom1ffHAB
34 3 adantr φfdom1ffHvol*AB=0
35 reex V
36 35 a1i φV
37 fvex fxV
38 c0ex 0V
39 37 38 ifex ifxAfx0V
40 39 a1i φxifxAfx0V
41 37 38 ifex ifxBfx0V
42 41 a1i φxifxBfx0V
43 eqidd φxifxAfx0=xifxAfx0
44 eqidd φxifxBfx0=xifxBfx0
45 36 40 42 43 44 offval2 φxifxAfx0+fxifxBfx0=xifxAfx0+ifxBfx0
46 45 adantr φfdom1ffHxifxAfx0+fxifxBfx0=xifxAfx0+ifxBfx0
47 17 23 i1fadd φfdom1ffHxifxAfx0+fxifxBfx0dom1
48 46 47 eqeltrrd φfdom1ffHxifxAfx0+ifxBfx0dom1
49 i1ff fdom1f:
50 11 49 syl φfdom1ffHf:
51 eldifi yABy
52 ffvelcdm f:yfy
53 50 51 52 syl2an φfdom1ffHyABfy
54 53 leidd φfdom1ffHyABfyfy
55 54 adantr φfdom1ffHyAByAfyfy
56 iftrue yAifyAfy0=fy
57 56 adantl φfdom1ffHyAByAifyAfy0=fy
58 eldifn yAB¬yAB
59 58 adantl φfdom1ffHyAB¬yAB
60 elin yAByAyB
61 59 60 sylnib φfdom1ffHyAB¬yAyB
62 imnan yA¬yB¬yAyB
63 61 62 sylibr φfdom1ffHyAByA¬yB
64 63 imp φfdom1ffHyAByA¬yB
65 iffalse ¬yBifyBfy0=0
66 64 65 syl φfdom1ffHyAByAifyBfy0=0
67 57 66 oveq12d φfdom1ffHyAByAifyAfy0+ifyBfy0=fy+0
68 53 recnd φfdom1ffHyABfy
69 68 adantr φfdom1ffHyAByAfy
70 69 addridd φfdom1ffHyAByAfy+0=fy
71 67 70 eqtrd φfdom1ffHyAByAifyAfy0+ifyBfy0=fy
72 55 71 breqtrrd φfdom1ffHyAByAfyifyAfy0+ifyBfy0
73 54 ad2antrr φfdom1ffHyAB¬yAyBfyfy
74 iftrue yBifyBfy0=fy
75 74 adantl φfdom1ffHyAB¬yAyBifyBfy0=fy
76 73 75 breqtrrd φfdom1ffHyAB¬yAyBfyifyBfy0
77 4 ad2antrr φfdom1ffHyABU=AB
78 77 eleq2d φfdom1ffHyAByUyAB
79 elun yAByAyB
80 78 79 bitrdi φfdom1ffHyAByUyAyB
81 80 notbid φfdom1ffHyAB¬yU¬yAyB
82 ioran ¬yAyB¬yA¬yB
83 81 82 bitrdi φfdom1ffHyAB¬yU¬yA¬yB
84 83 biimpar φfdom1ffHyAB¬yA¬yB¬yU
85 simprr φfdom1ffHffH
86 50 ffnd φfdom1ffHfFn
87 5 adantlr φxxUC0+∞
88 0e0iccpnf 00+∞
89 88 a1i φx¬xU00+∞
90 87 89 ifclda φxifxUC00+∞
91 90 8 fmptd φH:0+∞
92 91 ffnd φHFn
93 92 adantr φfdom1ffHHFn
94 35 a1i φfdom1ffHV
95 inidm =
96 eqidd φfdom1ffHyfy=fy
97 eqidd φfdom1ffHyHy=Hy
98 86 93 94 94 95 96 97 ofrfval φfdom1ffHffHyfyHy
99 85 98 mpbid φfdom1ffHyfyHy
100 99 r19.21bi φfdom1ffHyfyHy
101 51 100 sylan2 φfdom1ffHyABfyHy
102 101 adantr φfdom1ffHyAB¬yUfyHy
103 51 adantl φfdom1ffHyABy
104 eldif yUy¬yU
105 nfcv _xy
106 nfmpt1 _xxifxUC0
107 8 106 nfcxfr _xH
108 107 105 nffv _xHy
109 108 nfeq1 xHy=0
110 fveqeq2 x=yHx=0Hy=0
111 eldif xUx¬xU
112 8 fvmpt2i xHx=IifxUC0
113 iffalse ¬xUifxUC0=0
114 113 fveq2d ¬xUIifxUC0=I0
115 0cn 0
116 fvi 0I0=0
117 115 116 ax-mp I0=0
118 114 117 eqtrdi ¬xUIifxUC0=0
119 112 118 sylan9eq x¬xUHx=0
120 111 119 sylbi xUHx=0
121 105 109 110 120 vtoclgaf yUHy=0
122 104 121 sylbir y¬yUHy=0
123 103 122 sylan φfdom1ffHyAB¬yUHy=0
124 102 123 breqtrd φfdom1ffHyAB¬yUfy0
125 84 124 syldan φfdom1ffHyAB¬yA¬yBfy0
126 125 anassrs φfdom1ffHyAB¬yA¬yBfy0
127 65 adantl φfdom1ffHyAB¬yA¬yBifyBfy0=0
128 126 127 breqtrrd φfdom1ffHyAB¬yA¬yBfyifyBfy0
129 76 128 pm2.61dan φfdom1ffHyAB¬yAfyifyBfy0
130 iffalse ¬yAifyAfy0=0
131 130 adantl φfdom1ffHyAB¬yAifyAfy0=0
132 131 oveq1d φfdom1ffHyAB¬yAifyAfy0+ifyBfy0=0+ifyBfy0
133 0re 0
134 ifcl fy0ifyBfy0
135 53 133 134 sylancl φfdom1ffHyABifyBfy0
136 135 recnd φfdom1ffHyABifyBfy0
137 136 adantr φfdom1ffHyAB¬yAifyBfy0
138 137 addlidd φfdom1ffHyAB¬yA0+ifyBfy0=ifyBfy0
139 132 138 eqtrd φfdom1ffHyAB¬yAifyAfy0+ifyBfy0=ifyBfy0
140 129 139 breqtrrd φfdom1ffHyAB¬yAfyifyAfy0+ifyBfy0
141 72 140 pm2.61dan φfdom1ffHyABfyifyAfy0+ifyBfy0
142 eleq1w x=yxAyA
143 fveq2 x=yfx=fy
144 142 143 ifbieq1d x=yifxAfx0=ifyAfy0
145 eleq1w x=yxByB
146 145 143 ifbieq1d x=yifxBfx0=ifyBfy0
147 144 146 oveq12d x=yifxAfx0+ifxBfx0=ifyAfy0+ifyBfy0
148 eqid xifxAfx0+ifxBfx0=xifxAfx0+ifxBfx0
149 ovex ifyAfy0+ifyBfy0V
150 147 148 149 fvmpt yxifxAfx0+ifxBfx0y=ifyAfy0+ifyBfy0
151 103 150 syl φfdom1ffHyABxifxAfx0+ifxBfx0y=ifyAfy0+ifyBfy0
152 141 151 breqtrrd φfdom1ffHyABfyxifxAfx0+ifxBfx0y
153 11 33 34 48 152 itg1lea φfdom1ffH1f1xifxAfx0+ifxBfx0
154 46 fveq2d φfdom1ffH1xifxAfx0+fxifxBfx0=1xifxAfx0+ifxBfx0
155 17 23 itg1add φfdom1ffH1xifxAfx0+fxifxBfx0=1xifxAfx0+1xifxBfx0
156 154 155 eqtr3d φfdom1ffH1xifxAfx0+ifxBfx0=1xifxAfx0+1xifxBfx0
157 153 156 breqtrd φfdom1ffH1f1xifxAfx0+1xifxBfx0
158 9 adantr φfdom1ffH2F
159 10 adantr φfdom1ffH2G
160 ssun1 AAB
161 160 4 sseqtrrid φAU
162 161 sselda φxAxU
163 162 adantlr φxxAxU
164 163 87 syldan φxxAC0+∞
165 88 a1i φx¬xA00+∞
166 164 165 ifclda φxifxAC00+∞
167 166 6 fmptd φF:0+∞
168 167 adantr φfdom1ffHF:0+∞
169 nfv xφ
170 nfv xfdom1
171 nfcv _xf
172 nfcv _xr
173 171 172 107 nfbr xffH
174 170 173 nfan xfdom1ffH
175 169 174 nfan xφfdom1ffH
176 14 30 syl φfdom1ffHA
177 176 sselda φfdom1ffHxAx
178 35 a1i φfdom1V
179 37 a1i φfdom1xfxV
180 90 adantlr φfdom1xifxUC00+∞
181 49 adantl φfdom1f:
182 181 feqmptd φfdom1f=xfx
183 8 a1i φfdom1H=xifxUC0
184 178 179 180 182 183 ofrfval2 φfdom1ffHxfxifxUC0
185 184 biimpd φfdom1ffHxfxifxUC0
186 185 impr φfdom1ffHxfxifxUC0
187 186 r19.21bi φfdom1ffHxfxifxUC0
188 177 187 syldan φfdom1ffHxAfxifxUC0
189 162 adantlr φfdom1ffHxAxU
190 189 iftrued φfdom1ffHxAifxUC0=C
191 188 190 breqtrd φfdom1ffHxAfxC
192 iftrue xAifxAfx0=fx
193 192 adantl φfdom1ffHxAifxAfx0=fx
194 iftrue xAifxAC0=C
195 194 adantl φfdom1ffHxAifxAC0=C
196 191 193 195 3brtr4d φfdom1ffHxAifxAfx0ifxAC0
197 0le0 00
198 197 a1i ¬xA00
199 iffalse ¬xAifxAfx0=0
200 iffalse ¬xAifxAC0=0
201 198 199 200 3brtr4d ¬xAifxAfx0ifxAC0
202 201 adantl φfdom1ffH¬xAifxAfx0ifxAC0
203 196 202 pm2.61dan φfdom1ffHifxAfx0ifxAC0
204 203 a1d φfdom1ffHxifxAfx0ifxAC0
205 175 204 ralrimi φfdom1ffHxifxAfx0ifxAC0
206 6 a1i φF=xifxAC0
207 36 40 166 43 206 ofrfval2 φxifxAfx0fFxifxAfx0ifxAC0
208 207 adantr φfdom1ffHxifxAfx0fFxifxAfx0ifxAC0
209 205 208 mpbird φfdom1ffHxifxAfx0fF
210 itg2ub F:0+∞xifxAfx0dom1xifxAfx0fF1xifxAfx02F
211 168 17 209 210 syl3anc φfdom1ffH1xifxAfx02F
212 ssun2 BAB
213 212 4 sseqtrrid φBU
214 213 sselda φxBxU
215 214 adantlr φxxBxU
216 215 87 syldan φxxBC0+∞
217 88 a1i φx¬xB00+∞
218 216 217 ifclda φxifxBC00+∞
219 218 7 fmptd φG:0+∞
220 219 adantr φfdom1ffHG:0+∞
221 mblss BdomvolB
222 20 221 syl φfdom1ffHB
223 222 sselda φfdom1ffHxBx
224 223 187 syldan φfdom1ffHxBfxifxUC0
225 214 adantlr φfdom1ffHxBxU
226 225 iftrued φfdom1ffHxBifxUC0=C
227 224 226 breqtrd φfdom1ffHxBfxC
228 iftrue xBifxBfx0=fx
229 228 adantl φfdom1ffHxBifxBfx0=fx
230 iftrue xBifxBC0=C
231 230 adantl φfdom1ffHxBifxBC0=C
232 227 229 231 3brtr4d φfdom1ffHxBifxBfx0ifxBC0
233 197 a1i ¬xB00
234 iffalse ¬xBifxBfx0=0
235 iffalse ¬xBifxBC0=0
236 233 234 235 3brtr4d ¬xBifxBfx0ifxBC0
237 236 adantl φfdom1ffH¬xBifxBfx0ifxBC0
238 232 237 pm2.61dan φfdom1ffHifxBfx0ifxBC0
239 238 a1d φfdom1ffHxifxBfx0ifxBC0
240 175 239 ralrimi φfdom1ffHxifxBfx0ifxBC0
241 7 a1i φG=xifxBC0
242 36 42 218 44 241 ofrfval2 φxifxBfx0fGxifxBfx0ifxBC0
243 242 adantr φfdom1ffHxifxBfx0fGxifxBfx0ifxBC0
244 240 243 mpbird φfdom1ffHxifxBfx0fG
245 itg2ub G:0+∞xifxBfx0dom1xifxBfx0fG1xifxBfx02G
246 220 23 244 245 syl3anc φfdom1ffH1xifxBfx02G
247 19 25 158 159 211 246 le2addd φfdom1ffH1xifxAfx0+1xifxBfx02F+2G
248 13 26 28 157 247 letrd φfdom1ffH1f2F+2G
249 248 expr φfdom1ffH1f2F+2G
250 249 ralrimiva φfdom1ffH1f2F+2G
251 27 rexrd φ2F+2G*
252 itg2leub H:0+∞2F+2G*2H2F+2Gfdom1ffH1f2F+2G
253 91 251 252 syl2anc φ2H2F+2Gfdom1ffH1f2F+2G
254 250 253 mpbird φ2H2F+2G