Metamath Proof Explorer


Theorem lcmgcdlem

Description: Lemma for lcmgcd and lcmdvds . Prove them for positive M , N , and K . (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmgcdlem MNMlcmNMgcdN= M NKMKNKMlcmNK

Proof

Step Hyp Ref Expression
1 nnmulcl MN M N
2 1 nnred MN M N
3 nnz MM
4 3 adantr MNM
5 4 zred MNM
6 nnz NN
7 6 adantl MNN
8 7 zred MNN
9 0red M0
10 nnre MM
11 nngt0 M0<M
12 9 10 11 ltled M0M
13 12 adantr MN0M
14 0red N0
15 nnre NN
16 nngt0 N0<N
17 14 15 16 ltled N0N
18 17 adantl MN0N
19 5 8 13 18 mulge0d MN0 M N
20 2 19 absidd MN M N= M N
21 3 6 anim12i MNMN
22 nnne0 MM0
23 22 neneqd M¬M=0
24 nnne0 NN0
25 24 neneqd N¬N=0
26 23 25 anim12i MN¬M=0¬N=0
27 ioran ¬M=0N=0¬M=0¬N=0
28 26 27 sylibr MN¬M=0N=0
29 lcmn0val MN¬M=0N=0MlcmN=supx|MxNx<
30 21 28 29 syl2anc MNMlcmN=supx|MxNx<
31 ltso <Or
32 31 a1i MN<Or
33 gcddvds MNMgcdNMMgcdNN
34 33 simpld MNMgcdNM
35 gcdcl MNMgcdN0
36 35 nn0zd MNMgcdN
37 dvdsmultr1 MgcdNMNMgcdNMMgcdN M N
38 37 3expb MgcdNMNMgcdNMMgcdN M N
39 36 38 mpancom MNMgcdNMMgcdN M N
40 34 39 mpd MNMgcdN M N
41 21 40 syl MNMgcdN M N
42 gcdnncl MNMgcdN
43 nndivdvds M NMgcdNMgcdN M N M NMgcdN
44 1 42 43 syl2anc MNMgcdN M N M NMgcdN
45 41 44 mpbid MN M NMgcdN
46 45 nnred MN M NMgcdN
47 breq2 x= M NMgcdNMxM M NMgcdN
48 breq2 x= M NMgcdNNxN M NMgcdN
49 47 48 anbi12d x= M NMgcdNMxNxM M NMgcdNN M NMgcdN
50 33 simprd MNMgcdNN
51 21 50 syl MNMgcdNN
52 21 36 syl MNMgcdN
53 42 nnne0d MNMgcdN0
54 dvdsval2 MgcdNMgcdN0NMgcdNNNMgcdN
55 52 53 7 54 syl3anc MNMgcdNNNMgcdN
56 51 55 mpbid MNNMgcdN
57 dvdsmul1 MNMgcdNMMNMgcdN
58 4 56 57 syl2anc MNMMNMgcdN
59 nncn MM
60 59 adantr MNM
61 nncn NN
62 61 adantl MNN
63 42 nncnd MNMgcdN
64 60 62 63 53 divassd MN M NMgcdN=MNMgcdN
65 58 64 breqtrrd MNM M NMgcdN
66 21 34 syl MNMgcdNM
67 dvdsval2 MgcdNMgcdN0MMgcdNMMMgcdN
68 52 53 4 67 syl3anc MNMgcdNMMMgcdN
69 66 68 mpbid MNMMgcdN
70 dvdsmul1 NMMgcdNNNMMgcdN
71 7 69 70 syl2anc MNNNMMgcdN
72 60 62 mulcomd MN M N= N M
73 72 oveq1d MN M NMgcdN= N MMgcdN
74 62 60 63 53 divassd MN N MMgcdN=NMMgcdN
75 73 74 eqtrd MN M NMgcdN=NMMgcdN
76 71 75 breqtrrd MNN M NMgcdN
77 65 76 jca MNM M NMgcdNN M NMgcdN
78 49 45 77 elrabd MN M NMgcdNx|MxNx
79 46 adantr MNnx|MxNx M NMgcdN
80 elrabi nx|MxNxn
81 80 nnred nx|MxNxn
82 81 adantl MNnx|MxNxn
83 breq2 x=nMxMn
84 breq2 x=nNxNn
85 83 84 anbi12d x=nMxNxMnNn
86 85 elrab nx|MxNxnMnNn
87 bezout MNxyMgcdN=Mx+Ny
88 21 87 syl MNxyMgcdN=Mx+Ny
89 88 adantr MNnMnNnxyMgcdN=Mx+Ny
90 nncn nn
91 90 ad2antlr MNnxyn
92 1 nncnd MN M N
93 92 ad2antrr MNnxy M N
94 63 ad2antrr MNnxyMgcdN
95 60 ad2antrr MNnxyM
96 61 ad3antlr MNnxyN
97 22 ad3antrrr MNnxyM0
98 24 ad3antlr MNnxyN0
99 95 96 97 98 mulne0d MNnxy M N0
100 53 ad2antrr MNnxyMgcdN0
101 91 93 94 99 100 divdiv2d MNnxyn M NMgcdN=nMgcdN M N
102 101 adantr MNnxyMgcdN=Mx+Nyn M NMgcdN=nMgcdN M N
103 oveq2 MgcdN=Mx+NynMgcdN=nMx+Ny
104 103 oveq1d MgcdN=Mx+NynMgcdN M N=nMx+Ny M N
105 zcn xx
106 105 ad2antrl MNnxyx
107 95 106 mulcld MNnxyMx
108 zcn yy
109 108 ad2antll MNnxyy
110 96 109 mulcld MNnxyNy
111 91 107 110 adddid MNnxynMx+Ny=nMx+nNy
112 111 oveq1d MNnxynMx+Ny M N=nMx+nNy M N
113 91 107 mulcld MNnxynMx
114 91 110 mulcld MNnxynNy
115 113 114 93 99 divdird MNnxynMx+nNy M N=nMx M N+nNy M N
116 112 115 eqtrd MNnxynMx+Ny M N=nMx M N+nNy M N
117 104 116 sylan9eqr MNnxyMgcdN=Mx+NynMgcdN M N=nMx M N+nNy M N
118 91 95 106 mul12d MNnxynMx=Mnx
119 118 oveq1d MNnxynMx M N=Mnx M N
120 91 106 mulcld MNnxynx
121 120 96 95 98 97 divcan5d MNnxyMnx M N=nxN
122 119 121 eqtrd MNnxynMx M N=nxN
123 91 96 109 mul12d MNnxynNy=Nny
124 123 oveq1d MNnxynNy M N=Nny M N
125 72 ad2antrr MNnxy M N= N M
126 125 oveq2d MNnxyNny M N=Nny N M
127 91 109 mulcld MNnxyny
128 127 95 96 97 98 divcan5d MNnxyNny N M=nyM
129 124 126 128 3eqtrd MNnxynNy M N=nyM
130 122 129 oveq12d MNnxynMx M N+nNy M N=nxN+nyM
131 130 adantr MNnxyMgcdN=Mx+NynMx M N+nNy M N=nxN+nyM
132 102 117 131 3eqtrd MNnxyMgcdN=Mx+Nyn M NMgcdN=nxN+nyM
133 132 ex MNnxyMgcdN=Mx+Nyn M NMgcdN=nxN+nyM
134 133 adantlrr MNnMnNnxyMgcdN=Mx+Nyn M NMgcdN=nxN+nyM
135 134 imp MNnMnNnxyMgcdN=Mx+Nyn M NMgcdN=nxN+nyM
136 6 ad3antlr MNnxyN
137 nnz nn
138 137 ad2antlr MNnxyn
139 simprl MNnxyx
140 dvdsmultr1 NnxNnNnx
141 136 138 139 140 syl3anc MNnxyNnNnx
142 138 139 zmulcld MNnxynx
143 dvdsval2 NN0nxNnxnxN
144 136 98 142 143 syl3anc MNnxyNnxnxN
145 141 144 sylibd MNnxyNnnxN
146 145 adantld MNnxyMnNnnxN
147 146 3impia MNnxyMnNnnxN
148 3 ad3antrrr MNnxyM
149 simprr MNnxyy
150 dvdsmultr1 MnyMnMny
151 148 138 149 150 syl3anc MNnxyMnMny
152 138 149 zmulcld MNnxyny
153 dvdsval2 MM0nyMnynyM
154 148 97 152 153 syl3anc MNnxyMnynyM
155 151 154 sylibd MNnxyMnnyM
156 155 adantrd MNnxyMnNnnyM
157 156 3impia MNnxyMnNnnyM
158 147 157 zaddcld MNnxyMnNnnxN+nyM
159 158 3expia MNnxyMnNnnxN+nyM
160 159 an32s MNxynMnNnnxN+nyM
161 160 impr MNxynMnNnnxN+nyM
162 161 an32s MNnMnNnxynxN+nyM
163 162 adantr MNnMnNnxyMgcdN=Mx+NynxN+nyM
164 135 163 eqeltrd MNnMnNnxyMgcdN=Mx+Nyn M NMgcdN
165 45 nnzd MN M NMgcdN
166 165 ad2antrr MNnMnNnxy M NMgcdN
167 1 nnne0d MN M N0
168 92 63 167 53 divne0d MN M NMgcdN0
169 168 ad2antrr MNnMnNnxy M NMgcdN0
170 138 adantlrr MNnMnNnxyn
171 dvdsval2 M NMgcdN M NMgcdN0n M NMgcdNnn M NMgcdN
172 166 169 170 171 syl3anc MNnMnNnxy M NMgcdNnn M NMgcdN
173 172 adantr MNnMnNnxyMgcdN=Mx+Ny M NMgcdNnn M NMgcdN
174 164 173 mpbird MNnMnNnxyMgcdN=Mx+Ny M NMgcdNn
175 174 ex MNnMnNnxyMgcdN=Mx+Ny M NMgcdNn
176 175 reximdvva MNnMnNnxyMgcdN=Mx+Nyxy M NMgcdNn
177 89 176 mpd MNnMnNnxy M NMgcdNn
178 1z 1
179 ne0i 1
180 r19.9rzv M NMgcdNny M NMgcdNn
181 178 179 180 mp2b M NMgcdNny M NMgcdNn
182 r19.9rzv y M NMgcdNnxy M NMgcdNn
183 178 179 182 mp2b y M NMgcdNnxy M NMgcdNn
184 181 183 bitri M NMgcdNnxy M NMgcdNn
185 177 184 sylibr MNnMnNn M NMgcdNn
186 165 adantr MNnMnNn M NMgcdN
187 simprl MNnMnNnn
188 dvdsle M NMgcdNn M NMgcdNn M NMgcdNn
189 186 187 188 syl2anc MNnMnNn M NMgcdNn M NMgcdNn
190 185 189 mpd MNnMnNn M NMgcdNn
191 86 190 sylan2b MNnx|MxNx M NMgcdNn
192 79 82 191 lensymd MNnx|MxNx¬n< M NMgcdN
193 32 46 78 192 infmin MNsupx|MxNx<= M NMgcdN
194 30 193 eqtr2d MN M NMgcdN=MlcmN
195 194 45 eqeltrrd MNMlcmN
196 195 nncnd MNMlcmN
197 92 196 63 53 divmul3d MN M NMgcdN=MlcmN M N=MlcmNMgcdN
198 194 197 mpbid MN M N=MlcmNMgcdN
199 20 198 eqtr2d MNMlcmNMgcdN= M N
200 simprl MNKMKNKK
201 eleq1 n=KnK
202 breq2 n=KMnMK
203 breq2 n=KNnNK
204 202 203 anbi12d n=KMnNnMKNK
205 201 204 anbi12d n=KnMnNnKMKNK
206 205 anbi2d n=KMNnMnNnMNKMKNK
207 breq2 n=KMlcmNnMlcmNK
208 206 207 imbi12d n=KMNnMnNnMlcmNnMNKMKNKMlcmNK
209 194 breq1d MN M NMgcdNnMlcmNn
210 209 adantr MNnMnNn M NMgcdNnMlcmNn
211 185 210 mpbid MNnMnNnMlcmNn
212 208 211 vtoclg KMNKMKNKMlcmNK
213 200 212 mpcom MNKMKNKMlcmNK
214 213 ex MNKMKNKMlcmNK
215 199 214 jca MNMlcmNMgcdN= M NKMKNKMlcmNK