Metamath Proof Explorer


Theorem mplcoe5

Description: Decompose a monomial into a finite product of powers of variables. Instead of assuming that R is a commutative ring (as in mplcoe2 ), it is sufficient that R is a ring and all the variables of the multivariate polynomial commute. (Contributed by AV, 7-Oct-2019)

Ref Expression
Hypotheses mplcoe1.p P=ImPolyR
mplcoe1.d D=f0I|f-1Fin
mplcoe1.z 0˙=0R
mplcoe1.o 1˙=1R
mplcoe1.i φIW
mplcoe2.g G=mulGrpP
mplcoe2.m ×˙=G
mplcoe2.v V=ImVarR
mplcoe5.r φRRing
mplcoe5.y φYD
mplcoe5.c φxIyIVy+GVx=Vx+GVy
Assertion mplcoe5 φyDify=Y1˙0˙=GkIYk×˙Vk

Proof

Step Hyp Ref Expression
1 mplcoe1.p P=ImPolyR
2 mplcoe1.d D=f0I|f-1Fin
3 mplcoe1.z 0˙=0R
4 mplcoe1.o 1˙=1R
5 mplcoe1.i φIW
6 mplcoe2.g G=mulGrpP
7 mplcoe2.m ×˙=G
8 mplcoe2.v V=ImVarR
9 mplcoe5.r φRRing
10 mplcoe5.y φYD
11 mplcoe5.c φxIyIVy+GVx=Vx+GVy
12 2 psrbag IWYDY:I0Y-1Fin
13 5 12 syl φYDY:I0Y-1Fin
14 10 13 mpbid φY:I0Y-1Fin
15 14 simpld φY:I0
16 15 feqmptd φY=iIYi
17 iftrue iY-1ifiY-1Yi0=Yi
18 17 adantl φiIiY-1ifiY-1Yi0=Yi
19 eldif iIY-1iI¬iY-1
20 fcdmnn0supp IWY:I0Ysupp0=Y-1
21 5 15 20 syl2anc φYsupp0=Y-1
22 eqimss Ysupp0=Y-1Ysupp0Y-1
23 21 22 syl φYsupp0Y-1
24 c0ex 0V
25 24 a1i φ0V
26 15 23 5 25 suppssr φiIY-1Yi=0
27 26 ifeq2d φiIY-1ifiY-1YiYi=ifiY-1Yi0
28 ifid ifiY-1YiYi=Yi
29 27 28 eqtr3di φiIY-1ifiY-1Yi0=Yi
30 19 29 sylan2br φiI¬iY-1ifiY-1Yi0=Yi
31 30 anassrs φiI¬iY-1ifiY-1Yi0=Yi
32 18 31 pm2.61dan φiIifiY-1Yi0=Yi
33 32 mpteq2dva φiIifiY-1Yi0=iIYi
34 16 33 eqtr4d φY=iIifiY-1Yi0
35 34 eqeq2d φy=Yy=iIifiY-1Yi0
36 35 ifbid φify=Y1˙0˙=ify=iIifiY-1Yi01˙0˙
37 36 mpteq2dv φyDify=Y1˙0˙=yDify=iIifiY-1Yi01˙0˙
38 cnvimass Y-1domY
39 38 15 fssdm φY-1I
40 14 simprd φY-1Fin
41 sseq1 w=wII
42 noel ¬i
43 eleq2 w=iwi
44 42 43 mtbiri w=¬iw
45 44 iffalsed w=ifiwYi0=0
46 45 mpteq2dv w=iIifiwYi0=iI0
47 fconstmpt I×0=iI0
48 46 47 eqtr4di w=iIifiwYi0=I×0
49 48 eqeq2d w=y=iIifiwYi0y=I×0
50 49 ifbid w=ify=iIifiwYi01˙0˙=ify=I×01˙0˙
51 50 mpteq2dv w=yDify=iIifiwYi01˙0˙=yDify=I×01˙0˙
52 mpteq1 w=kwYk×˙Vk=kYk×˙Vk
53 mpt0 kYk×˙Vk=
54 52 53 eqtrdi w=kwYk×˙Vk=
55 54 oveq2d w=GkwYk×˙Vk=G
56 eqid 1P=1P
57 6 56 ringidval 1P=0G
58 57 gsum0 G=1P
59 55 58 eqtrdi w=GkwYk×˙Vk=1P
60 51 59 eqeq12d w=yDify=iIifiwYi01˙0˙=GkwYk×˙VkyDify=I×01˙0˙=1P
61 41 60 imbi12d w=wIyDify=iIifiwYi01˙0˙=GkwYk×˙VkIyDify=I×01˙0˙=1P
62 61 imbi2d w=φwIyDify=iIifiwYi01˙0˙=GkwYk×˙VkφIyDify=I×01˙0˙=1P
63 sseq1 w=xwIxI
64 eleq2 w=xiwix
65 64 ifbid w=xifiwYi0=ifixYi0
66 65 mpteq2dv w=xiIifiwYi0=iIifixYi0
67 66 eqeq2d w=xy=iIifiwYi0y=iIifixYi0
68 67 ifbid w=xify=iIifiwYi01˙0˙=ify=iIifixYi01˙0˙
69 68 mpteq2dv w=xyDify=iIifiwYi01˙0˙=yDify=iIifixYi01˙0˙
70 mpteq1 w=xkwYk×˙Vk=kxYk×˙Vk
71 70 oveq2d w=xGkwYk×˙Vk=GkxYk×˙Vk
72 69 71 eqeq12d w=xyDify=iIifiwYi01˙0˙=GkwYk×˙VkyDify=iIifixYi01˙0˙=GkxYk×˙Vk
73 63 72 imbi12d w=xwIyDify=iIifiwYi01˙0˙=GkwYk×˙VkxIyDify=iIifixYi01˙0˙=GkxYk×˙Vk
74 73 imbi2d w=xφwIyDify=iIifiwYi01˙0˙=GkwYk×˙VkφxIyDify=iIifixYi01˙0˙=GkxYk×˙Vk
75 sseq1 w=xzwIxzI
76 eleq2 w=xziwixz
77 76 ifbid w=xzifiwYi0=ifixzYi0
78 77 mpteq2dv w=xziIifiwYi0=iIifixzYi0
79 78 eqeq2d w=xzy=iIifiwYi0y=iIifixzYi0
80 79 ifbid w=xzify=iIifiwYi01˙0˙=ify=iIifixzYi01˙0˙
81 80 mpteq2dv w=xzyDify=iIifiwYi01˙0˙=yDify=iIifixzYi01˙0˙
82 mpteq1 w=xzkwYk×˙Vk=kxzYk×˙Vk
83 82 oveq2d w=xzGkwYk×˙Vk=GkxzYk×˙Vk
84 81 83 eqeq12d w=xzyDify=iIifiwYi01˙0˙=GkwYk×˙VkyDify=iIifixzYi01˙0˙=GkxzYk×˙Vk
85 75 84 imbi12d w=xzwIyDify=iIifiwYi01˙0˙=GkwYk×˙VkxzIyDify=iIifixzYi01˙0˙=GkxzYk×˙Vk
86 85 imbi2d w=xzφwIyDify=iIifiwYi01˙0˙=GkwYk×˙VkφxzIyDify=iIifixzYi01˙0˙=GkxzYk×˙Vk
87 sseq1 w=Y-1wIY-1I
88 eleq2 w=Y-1iwiY-1
89 88 ifbid w=Y-1ifiwYi0=ifiY-1Yi0
90 89 mpteq2dv w=Y-1iIifiwYi0=iIifiY-1Yi0
91 90 eqeq2d w=Y-1y=iIifiwYi0y=iIifiY-1Yi0
92 91 ifbid w=Y-1ify=iIifiwYi01˙0˙=ify=iIifiY-1Yi01˙0˙
93 92 mpteq2dv w=Y-1yDify=iIifiwYi01˙0˙=yDify=iIifiY-1Yi01˙0˙
94 mpteq1 w=Y-1kwYk×˙Vk=kY-1Yk×˙Vk
95 94 oveq2d w=Y-1GkwYk×˙Vk=GkY-1Yk×˙Vk
96 93 95 eqeq12d w=Y-1yDify=iIifiwYi01˙0˙=GkwYk×˙VkyDify=iIifiY-1Yi01˙0˙=GkY-1Yk×˙Vk
97 87 96 imbi12d w=Y-1wIyDify=iIifiwYi01˙0˙=GkwYk×˙VkY-1IyDify=iIifiY-1Yi01˙0˙=GkY-1Yk×˙Vk
98 97 imbi2d w=Y-1φwIyDify=iIifiwYi01˙0˙=GkwYk×˙VkφY-1IyDify=iIifiY-1Yi01˙0˙=GkY-1Yk×˙Vk
99 1 2 3 4 56 5 9 mpl1 φ1P=yDify=I×01˙0˙
100 99 56 eqtr3di φyDify=I×01˙0˙=1P
101 100 a1d φIyDify=I×01˙0˙=1P
102 ssun1 xxz
103 sstr2 xxzxzIxI
104 102 103 ax-mp xzIxI
105 104 imim1i xIyDify=iIifixYi01˙0˙=GkxYk×˙VkxzIyDify=iIifixYi01˙0˙=GkxYk×˙Vk
106 oveq1 yDify=iIifixYi01˙0˙=GkxYk×˙VkyDify=iIifixYi01˙0˙PYz×˙Vz=GkxYk×˙VkPYz×˙Vz
107 eqid BaseP=BaseP
108 5 adantr φxFin¬zxxzIIW
109 9 adantr φxFin¬zxxzIRRing
110 15 adantr φxFin¬zxxzIY:I0
111 110 ffvelcdmda φxFin¬zxxzIiIYi0
112 0nn0 00
113 ifcl Yi000ifixYi00
114 111 112 113 sylancl φxFin¬zxxzIiIifixYi00
115 114 fmpttd φxFin¬zxxzIiIifixYi0:I0
116 fcdmnn0supp IWiIifixYi0:I0iIifixYi0supp0=iIifixYi0-1
117 108 115 116 syl2anc φxFin¬zxxzIiIifixYi0supp0=iIifixYi0-1
118 simprll φxFin¬zxxzIxFin
119 eldifn iIx¬ix
120 119 adantl φxFin¬zxxzIiIx¬ix
121 120 iffalsed φxFin¬zxxzIiIxifixYi0=0
122 121 108 suppss2 φxFin¬zxxzIiIifixYi0supp0x
123 118 122 ssfid φxFin¬zxxzIiIifixYi0supp0Fin
124 117 123 eqeltrrd φxFin¬zxxzIiIifixYi0-1Fin
125 2 psrbag IWiIifixYi0DiIifixYi0:I0iIifixYi0-1Fin
126 108 125 syl φxFin¬zxxzIiIifixYi0DiIifixYi0:I0iIifixYi0-1Fin
127 115 124 126 mpbir2and φxFin¬zxxzIiIifixYi0D
128 eqid P=P
129 ssun2 zxz
130 simprr φxFin¬zxxzIxzI
131 129 130 sstrid φxFin¬zxxzIzI
132 vex zV
133 132 snss zIzI
134 131 133 sylibr φxFin¬zxxzIzI
135 110 134 ffvelcdmd φxFin¬zxxzIYz0
136 2 snifpsrbag IWYz0iIifi=zYz0D
137 108 135 136 syl2anc φxFin¬zxxzIiIifi=zYz0D
138 1 107 3 4 2 108 109 127 128 137 mplmonmul φxFin¬zxxzIyDify=iIifixYi01˙0˙PyDify=iIifi=zYz01˙0˙=yDify=iIifixYi0+fiIifi=zYz01˙0˙
139 1 2 3 4 108 6 7 8 109 134 135 mplcoe3 φxFin¬zxxzIyDify=iIifi=zYz01˙0˙=Yz×˙Vz
140 139 oveq2d φxFin¬zxxzIyDify=iIifixYi01˙0˙PyDify=iIifi=zYz01˙0˙=yDify=iIifixYi01˙0˙PYz×˙Vz
141 135 adantr φxFin¬zxxzIiIYz0
142 ifcl Yz000ifi=zYz00
143 141 112 142 sylancl φxFin¬zxxzIiIifi=zYz00
144 eqidd φxFin¬zxxzIiIifixYi0=iIifixYi0
145 eqidd φxFin¬zxxzIiIifi=zYz0=iIifi=zYz0
146 108 114 143 144 145 offval2 φxFin¬zxxzIiIifixYi0+fiIifi=zYz0=iIifixYi0+ifi=zYz0
147 111 adantr φxFin¬zxxzIiIizYi0
148 147 nn0cnd φxFin¬zxxzIiIizYi
149 148 addlidd φxFin¬zxxzIiIiz0+Yi=Yi
150 elsni izi=z
151 150 adantl φxFin¬zxxzIiIizi=z
152 simprlr φxFin¬zxxzI¬zx
153 152 ad2antrr φxFin¬zxxzIiIiz¬zx
154 151 153 eqneltrd φxFin¬zxxzIiIiz¬ix
155 154 iffalsed φxFin¬zxxzIiIizifixYi0=0
156 151 iftrued φxFin¬zxxzIiIizifi=zYz0=Yz
157 151 fveq2d φxFin¬zxxzIiIizYi=Yz
158 156 157 eqtr4d φxFin¬zxxzIiIizifi=zYz0=Yi
159 155 158 oveq12d φxFin¬zxxzIiIizifixYi0+ifi=zYz0=0+Yi
160 simpr φxFin¬zxxzIiIiziz
161 129 160 sselid φxFin¬zxxzIiIizixz
162 161 iftrued φxFin¬zxxzIiIizifixzYi0=Yi
163 149 159 162 3eqtr4d φxFin¬zxxzIiIizifixYi0+ifi=zYz0=ifixzYi0
164 114 adantr φxFin¬zxxzIiI¬izifixYi00
165 164 nn0cnd φxFin¬zxxzIiI¬izifixYi0
166 165 addridd φxFin¬zxxzIiI¬izifixYi0+0=ifixYi0
167 simpr φxFin¬zxxzIiI¬iz¬iz
168 velsn izi=z
169 167 168 sylnib φxFin¬zxxzIiI¬iz¬i=z
170 169 iffalsed φxFin¬zxxzIiI¬izifi=zYz0=0
171 170 oveq2d φxFin¬zxxzIiI¬izifixYi0+ifi=zYz0=ifixYi0+0
172 elun ixzixiz
173 orcom ixizizix
174 172 173 bitri ixzizix
175 biorf ¬izixizix
176 174 175 bitr4id ¬izixzix
177 176 adantl φxFin¬zxxzIiI¬izixzix
178 177 ifbid φxFin¬zxxzIiI¬izifixzYi0=ifixYi0
179 166 171 178 3eqtr4d φxFin¬zxxzIiI¬izifixYi0+ifi=zYz0=ifixzYi0
180 163 179 pm2.61dan φxFin¬zxxzIiIifixYi0+ifi=zYz0=ifixzYi0
181 180 mpteq2dva φxFin¬zxxzIiIifixYi0+ifi=zYz0=iIifixzYi0
182 146 181 eqtrd φxFin¬zxxzIiIifixYi0+fiIifi=zYz0=iIifixzYi0
183 182 eqeq2d φxFin¬zxxzIy=iIifixYi0+fiIifi=zYz0y=iIifixzYi0
184 183 ifbid φxFin¬zxxzIify=iIifixYi0+fiIifi=zYz01˙0˙=ify=iIifixzYi01˙0˙
185 184 mpteq2dv φxFin¬zxxzIyDify=iIifixYi0+fiIifi=zYz01˙0˙=yDify=iIifixzYi01˙0˙
186 138 140 185 3eqtr3rd φxFin¬zxxzIyDify=iIifixzYi01˙0˙=yDify=iIifixYi01˙0˙PYz×˙Vz
187 6 107 mgpbas BaseP=BaseG
188 6 128 mgpplusg P=+G
189 eqid CntzG=CntzG
190 eqid kxzYk×˙Vk=kxzYk×˙Vk
191 1 mplring IWRRingPRing
192 5 9 191 syl2anc φPRing
193 6 ringmgp PRingGMnd
194 192 193 syl φGMnd
195 194 adantr φxFin¬zxxzIGMnd
196 10 adantr φxFin¬zxxzIYD
197 fveq2 x=aVx=Va
198 197 oveq2d x=aVy+GVx=Vy+GVa
199 197 oveq1d x=aVx+GVy=Va+GVy
200 198 199 eqeq12d x=aVy+GVx=Vx+GVyVy+GVa=Va+GVy
201 fveq2 y=bVy=Vb
202 201 oveq1d y=bVy+GVa=Vb+GVa
203 201 oveq2d y=bVa+GVy=Va+GVb
204 202 203 eqeq12d y=bVy+GVa=Va+GVyVb+GVa=Va+GVb
205 200 204 cbvral2vw xIyIVy+GVx=Vx+GVyaIbIVb+GVa=Va+GVb
206 11 205 sylib φaIbIVb+GVa=Va+GVb
207 206 adantr φxFin¬zxxzIaIbIVb+GVa=Va+GVb
208 1 2 3 4 108 6 7 8 109 196 207 130 mplcoe5lem φxFin¬zxxzIrankxzYk×˙VkCntzGrankxzYk×˙Vk
209 102 130 sstrid φxFin¬zxxzIxI
210 209 sselda φxFin¬zxxzIkxkI
211 194 adantr φkIGMnd
212 15 ffvelcdmda φkIYk0
213 5 adantr φkIIW
214 9 adantr φkIRRing
215 simpr φkIkI
216 1 8 107 213 214 215 mvrcl φkIVkBaseP
217 187 7 211 212 216 mulgnn0cld φkIYk×˙VkBaseP
218 217 adantlr φxFin¬zxxzIkIYk×˙VkBaseP
219 210 218 syldan φxFin¬zxxzIkxYk×˙VkBaseP
220 1 8 107 108 109 134 mvrcl φxFin¬zxxzIVzBaseP
221 187 7 195 135 220 mulgnn0cld φxFin¬zxxzIYz×˙VzBaseP
222 fveq2 k=zYk=Yz
223 fveq2 k=zVk=Vz
224 222 223 oveq12d k=zYk×˙Vk=Yz×˙Vz
225 224 adantl φxFin¬zxxzIk=zYk×˙Vk=Yz×˙Vz
226 187 188 189 190 195 118 208 219 134 152 221 225 gsumzunsnd φxFin¬zxxzIGkxzYk×˙Vk=GkxYk×˙VkPYz×˙Vz
227 186 226 eqeq12d φxFin¬zxxzIyDify=iIifixzYi01˙0˙=GkxzYk×˙VkyDify=iIifixYi01˙0˙PYz×˙Vz=GkxYk×˙VkPYz×˙Vz
228 106 227 imbitrrid φxFin¬zxxzIyDify=iIifixYi01˙0˙=GkxYk×˙VkyDify=iIifixzYi01˙0˙=GkxzYk×˙Vk
229 228 expr φxFin¬zxxzIyDify=iIifixYi01˙0˙=GkxYk×˙VkyDify=iIifixzYi01˙0˙=GkxzYk×˙Vk
230 229 a2d φxFin¬zxxzIyDify=iIifixYi01˙0˙=GkxYk×˙VkxzIyDify=iIifixzYi01˙0˙=GkxzYk×˙Vk
231 105 230 syl5 φxFin¬zxxIyDify=iIifixYi01˙0˙=GkxYk×˙VkxzIyDify=iIifixzYi01˙0˙=GkxzYk×˙Vk
232 231 expcom xFin¬zxφxIyDify=iIifixYi01˙0˙=GkxYk×˙VkxzIyDify=iIifixzYi01˙0˙=GkxzYk×˙Vk
233 232 a2d xFin¬zxφxIyDify=iIifixYi01˙0˙=GkxYk×˙VkφxzIyDify=iIifixzYi01˙0˙=GkxzYk×˙Vk
234 62 74 86 98 101 233 findcard2s Y-1FinφY-1IyDify=iIifiY-1Yi01˙0˙=GkY-1Yk×˙Vk
235 40 234 mpcom φY-1IyDify=iIifiY-1Yi01˙0˙=GkY-1Yk×˙Vk
236 39 235 mpd φyDify=iIifiY-1Yi01˙0˙=GkY-1Yk×˙Vk
237 39 resmptd φkIYk×˙VkY-1=kY-1Yk×˙Vk
238 237 oveq2d φGkIYk×˙VkY-1=GkY-1Yk×˙Vk
239 217 fmpttd φkIYk×˙Vk:IBaseP
240 ssidd φII
241 1 2 3 4 5 6 7 8 9 10 11 240 mplcoe5lem φrankIYk×˙VkCntzGrankIYk×˙Vk
242 15 23 5 25 suppssr φkIY-1Yk=0
243 242 oveq1d φkIY-1Yk×˙Vk=0×˙Vk
244 eldifi kIY-1kI
245 244 216 sylan2 φkIY-1VkBaseP
246 187 57 7 mulg0 VkBaseP0×˙Vk=1P
247 245 246 syl φkIY-10×˙Vk=1P
248 243 247 eqtrd φkIY-1Yk×˙Vk=1P
249 248 5 suppss2 φkIYk×˙Vksupp1PY-1
250 5 mptexd φkIYk×˙VkV
251 funmpt FunkIYk×˙Vk
252 251 a1i φFunkIYk×˙Vk
253 fvexd φ1PV
254 suppssfifsupp kIYk×˙VkVFunkIYk×˙Vk1PVY-1FinkIYk×˙Vksupp1PY-1finSupp1PkIYk×˙Vk
255 250 252 253 40 249 254 syl32anc φfinSupp1PkIYk×˙Vk
256 187 57 189 194 5 239 241 249 255 gsumzres φGkIYk×˙VkY-1=GkIYk×˙Vk
257 236 238 256 3eqtr2d φyDify=iIifiY-1Yi01˙0˙=GkIYk×˙Vk
258 37 257 eqtrd φyDify=Y1˙0˙=GkIYk×˙Vk