Metamath Proof Explorer


Theorem musum

Description: The sum of the Möbius function over the divisors of N gives one if N = 1 , but otherwise always sums to zero. Theorem 2.1 in ApostolNT p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv . (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion musum Nkn|nNμk=ifN=110

Proof

Step Hyp Ref Expression
1 fveq2 n=kμn=μk
2 1 neeq1d n=kμn0μk0
3 breq1 n=knNkN
4 2 3 anbi12d n=kμn0nNμk0kN
5 4 elrab kn|μn0nNkμk0kN
6 muval2 kμk0μk=1p|pk
7 6 adantrr kμk0kNμk=1p|pk
8 5 7 sylbi kn|μn0nNμk=1p|pk
9 8 adantl Nkn|μn0nNμk=1p|pk
10 9 sumeq2dv Nkn|μn0nNμk=kn|μn0nN1p|pk
11 simpr μn0nNnN
12 11 a1i Nnμn0nNnN
13 12 ss2rabdv Nn|μn0nNn|nN
14 ssrab2 n|μn0nN
15 simpr Nkn|μn0nNkn|μn0nN
16 14 15 sselid Nkn|μn0nNk
17 mucl kμk
18 16 17 syl Nkn|μn0nNμk
19 18 zcnd Nkn|μn0nNμk
20 difrab n|nNn|μn0nN=n|nN¬μn0nN
21 pm3.21 nNμn0μn0nN
22 21 necon1bd nN¬μn0nNμn=0
23 22 imp nN¬μn0nNμn=0
24 23 a1i nnN¬μn0nNμn=0
25 24 ss2rabi n|nN¬μn0nNn|μn=0
26 20 25 eqsstri n|nNn|μn0nNn|μn=0
27 26 sseli kn|nNn|μn0nNkn|μn=0
28 fveqeq2 n=kμn=0μk=0
29 28 elrab kn|μn=0kμk=0
30 29 simprbi kn|μn=0μk=0
31 27 30 syl kn|nNn|μn0nNμk=0
32 31 adantl Nkn|nNn|μn0nNμk=0
33 fzfid N1NFin
34 dvdsssfz1 Nn|nN1N
35 33 34 ssfid Nn|nNFin
36 13 19 32 35 fsumss Nkn|μn0nNμk=kn|nNμk
37 fveq2 x=p|pkx=p|pk
38 37 oveq2d x=p|pk1x=1p|pk
39 35 13 ssfid Nn|μn0nNFin
40 eqid n|μn0nN=n|μn0nN
41 eqid mn|μn0nNp|pm=mn|μn0nNp|pm
42 oveq1 q=pqpCntx=ppCntx
43 42 cbvmptv qqpCntx=pppCntx
44 oveq2 x=mppCntx=ppCntm
45 44 mpteq2dv x=mpppCntx=pppCntm
46 43 45 eqtrid x=mqqpCntx=pppCntm
47 46 cbvmptv xqqpCntx=mpppCntm
48 40 41 47 sqff1o Nmn|μn0nNp|pm:n|μn0nN1-1 onto𝒫p|pN
49 breq2 m=kpmpk
50 49 rabbidv m=kp|pm=p|pk
51 prmex V
52 51 rabex p|pkV
53 50 41 52 fvmpt kn|μn0nNmn|μn0nNp|pmk=p|pk
54 53 adantl Nkn|μn0nNmn|μn0nNp|pmk=p|pk
55 neg1cn 1
56 prmdvdsfi Np|pNFin
57 elpwi x𝒫p|pNxp|pN
58 ssfi p|pNFinxp|pNxFin
59 56 57 58 syl2an Nx𝒫p|pNxFin
60 hashcl xFinx0
61 59 60 syl Nx𝒫p|pNx0
62 expcl 1x01x
63 55 61 62 sylancr Nx𝒫p|pN1x
64 38 39 48 54 63 fsumf1o Nx𝒫p|pN1x=kn|μn0nN1p|pk
65 fzfid N0p|pNFin
66 56 adantr Nz0p|pNp|pNFin
67 pwfi p|pNFin𝒫p|pNFin
68 66 67 sylib Nz0p|pN𝒫p|pNFin
69 ssrab2 s𝒫p|pN|s=z𝒫p|pN
70 ssfi 𝒫p|pNFins𝒫p|pN|s=z𝒫p|pNs𝒫p|pN|s=zFin
71 68 69 70 sylancl Nz0p|pNs𝒫p|pN|s=zFin
72 simprr Nz0p|pNxs𝒫p|pN|s=zxs𝒫p|pN|s=z
73 fveqeq2 s=xs=zx=z
74 73 elrab xs𝒫p|pN|s=zx𝒫p|pNx=z
75 74 simprbi xs𝒫p|pN|s=zx=z
76 72 75 syl Nz0p|pNxs𝒫p|pN|s=zx=z
77 76 ralrimivva Nz0p|pNxs𝒫p|pN|s=zx=z
78 invdisj z0p|pNxs𝒫p|pN|s=zx=zDisjz=0p|pNs𝒫p|pN|s=z
79 77 78 syl NDisjz=0p|pNs𝒫p|pN|s=z
80 56 adantr Nz0p|pNxs𝒫p|pN|s=zp|pNFin
81 69 72 sselid Nz0p|pNxs𝒫p|pN|s=zx𝒫p|pN
82 81 57 syl Nz0p|pNxs𝒫p|pN|s=zxp|pN
83 80 82 ssfid Nz0p|pNxs𝒫p|pN|s=zxFin
84 83 60 syl Nz0p|pNxs𝒫p|pN|s=zx0
85 55 84 62 sylancr Nz0p|pNxs𝒫p|pN|s=z1x
86 65 71 79 85 fsumiun Nxz=0p|pNs𝒫p|pN|s=z1x=z=0p|pNxs𝒫p|pN|s=z1x
87 iunrab z=0p|pNs𝒫p|pN|s=z=s𝒫p|pN|z0p|pNs=z
88 56 adantr Ns𝒫p|pNp|pNFin
89 elpwi s𝒫p|pNsp|pN
90 89 adantl Ns𝒫p|pNsp|pN
91 ssdomg p|pNFinsp|pNsp|pN
92 88 90 91 sylc Ns𝒫p|pNsp|pN
93 ssfi p|pNFinsp|pNsFin
94 56 89 93 syl2an Ns𝒫p|pNsFin
95 hashdom sFinp|pNFinsp|pNsp|pN
96 94 88 95 syl2anc Ns𝒫p|pNsp|pNsp|pN
97 92 96 mpbird Ns𝒫p|pNsp|pN
98 hashcl sFins0
99 94 98 syl Ns𝒫p|pNs0
100 nn0uz 0=0
101 99 100 eleqtrdi Ns𝒫p|pNs0
102 hashcl p|pNFinp|pN0
103 56 102 syl Np|pN0
104 103 adantr Ns𝒫p|pNp|pN0
105 104 nn0zd Ns𝒫p|pNp|pN
106 elfz5 s0p|pNs0p|pNsp|pN
107 101 105 106 syl2anc Ns𝒫p|pNs0p|pNsp|pN
108 97 107 mpbird Ns𝒫p|pNs0p|pN
109 eqidd Ns𝒫p|pNs=s
110 eqeq2 z=ss=zs=s
111 110 rspcev s0p|pNs=sz0p|pNs=z
112 108 109 111 syl2anc Ns𝒫p|pNz0p|pNs=z
113 112 ralrimiva Ns𝒫p|pNz0p|pNs=z
114 rabid2 𝒫p|pN=s𝒫p|pN|z0p|pNs=zs𝒫p|pNz0p|pNs=z
115 113 114 sylibr N𝒫p|pN=s𝒫p|pN|z0p|pNs=z
116 87 115 eqtr4id Nz=0p|pNs𝒫p|pN|s=z=𝒫p|pN
117 116 sumeq1d Nxz=0p|pNs𝒫p|pN|s=z1x=x𝒫p|pN1x
118 elfznn0 z0p|pNz0
119 118 adantl Nz0p|pNz0
120 expcl 1z01z
121 55 119 120 sylancr Nz0p|pN1z
122 fsumconst s𝒫p|pN|s=zFin1zxs𝒫p|pN|s=z1z=s𝒫p|pN|s=z1z
123 71 121 122 syl2anc Nz0p|pNxs𝒫p|pN|s=z1z=s𝒫p|pN|s=z1z
124 75 adantl Nz0p|pNxs𝒫p|pN|s=zx=z
125 124 oveq2d Nz0p|pNxs𝒫p|pN|s=z1x=1z
126 125 sumeq2dv Nz0p|pNxs𝒫p|pN|s=z1x=xs𝒫p|pN|s=z1z
127 elfzelz z0p|pNz
128 hashbc p|pNFinz(p|pNz)=s𝒫p|pN|s=z
129 56 127 128 syl2an Nz0p|pN(p|pNz)=s𝒫p|pN|s=z
130 129 oveq1d Nz0p|pN(p|pNz)1z=s𝒫p|pN|s=z1z
131 123 126 130 3eqtr4d Nz0p|pNxs𝒫p|pN|s=z1x=(p|pNz)1z
132 131 sumeq2dv Nz=0p|pNxs𝒫p|pN|s=z1x=z=0p|pN(p|pNz)1z
133 1pneg1e0 1+-1=0
134 133 oveq1i 1+-1p|pN=0p|pN
135 binom1p 1p|pN01+-1p|pN=z=0p|pN(p|pNz)1z
136 55 103 135 sylancr N1+-1p|pN=z=0p|pN(p|pNz)1z
137 134 136 eqtr3id N0p|pN=z=0p|pN(p|pNz)1z
138 eqeq2 1=ifN=1100p|pN=10p|pN=ifN=110
139 eqeq2 0=ifN=1100p|pN=00p|pN=ifN=110
140 nprmdvds1 p¬p1
141 simpr NN=1N=1
142 141 breq2d NN=1pNp1
143 142 notbid NN=1¬pN¬p1
144 140 143 imbitrrid NN=1p¬pN
145 144 ralrimiv NN=1p¬pN
146 rabeq0 p|pN=p¬pN
147 145 146 sylibr NN=1p|pN=
148 147 fveq2d NN=1p|pN=
149 hash0 =0
150 148 149 eqtrdi NN=1p|pN=0
151 150 oveq2d NN=10p|pN=00
152 0exp0e1 00=1
153 151 152 eqtrdi NN=10p|pN=1
154 df-ne N1¬N=1
155 eluz2b3 N2NN1
156 155 biimpri NN1N2
157 154 156 sylan2br N¬N=1N2
158 exprmfct N2ppN
159 157 158 syl N¬N=1ppN
160 rabn0 p|pNppN
161 159 160 sylibr N¬N=1p|pN
162 56 adantr N¬N=1p|pNFin
163 hashnncl p|pNFinp|pNp|pN
164 162 163 syl N¬N=1p|pNp|pN
165 161 164 mpbird N¬N=1p|pN
166 165 0expd N¬N=10p|pN=0
167 138 139 153 166 ifbothda N0p|pN=ifN=110
168 132 137 167 3eqtr2d Nz=0p|pNxs𝒫p|pN|s=z1x=ifN=110
169 86 117 168 3eqtr3d Nx𝒫p|pN1x=ifN=110
170 64 169 eqtr3d Nkn|μn0nN1p|pk=ifN=110
171 10 36 170 3eqtr3d Nkn|nNμk=ifN=110