Metamath Proof Explorer


Theorem naddwordnexlem4

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, there exists a product with omega such that the ordinal sum with A is less than or equal to B while the natural sum is larger than B . (Contributed by RP, 15-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a φA=ω𝑜C+𝑜M
naddwordnex.b φB=ω𝑜D+𝑜N
naddwordnex.c φCD
naddwordnex.d φDOn
naddwordnex.m φMω
naddwordnex.n φNM
naddwordnexlem4.s S=yOn|DC+𝑜y
Assertion naddwordnexlem4 Could not format assertion : No typesetting found for |- ( ph -> E. x e. ( On \ 1o ) ( ( C +o x ) = D /\ ( A +o ( _om .o x ) ) C_ B /\ B e. ( A +no ( _om .o x ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 naddwordnex.a φA=ω𝑜C+𝑜M
2 naddwordnex.b φB=ω𝑜D+𝑜N
3 naddwordnex.c φCD
4 naddwordnex.d φDOn
5 naddwordnex.m φMω
6 naddwordnex.n φNM
7 naddwordnexlem4.s S=yOn|DC+𝑜y
8 7 ssrab3 SOn
9 oveq2 y=DC+𝑜y=C+𝑜D
10 9 sseq2d y=DDC+𝑜yDC+𝑜D
11 onelon DOnCDCOn
12 4 3 11 syl2anc φCOn
13 oaword2 DOnCOnDC+𝑜D
14 4 12 13 syl2anc φDC+𝑜D
15 10 4 14 elrabd φDyOn|DC+𝑜y
16 15 7 eleqtrrdi φDS
17 16 ne0d φS
18 oninton SOnSSOn
19 8 17 18 sylancr φSOn
20 oveq2 y=C+𝑜y=C+𝑜
21 oa0 COnC+𝑜=C
22 12 21 syl φC+𝑜=C
23 20 22 sylan9eqr φy=C+𝑜y=C
24 3 adantr φy=CD
25 23 24 eqeltrd φy=C+𝑜yD
26 25 ex φy=C+𝑜yD
27 26 adantr φyOny=C+𝑜yD
28 27 con3d φyOn¬C+𝑜yD¬y=
29 oacl COnyOnC+𝑜yOn
30 12 29 sylan φyOnC+𝑜yOn
31 ontri1 DOnC+𝑜yOnDC+𝑜y¬C+𝑜yD
32 4 30 31 syl2an2r φyOnDC+𝑜y¬C+𝑜yD
33 on0eln0 yOnyy
34 df-ne y¬y=
35 33 34 bitrdi yOny¬y=
36 35 adantl φyOny¬y=
37 28 32 36 3imtr4d φyOnDC+𝑜yy
38 37 ex φyOnDC+𝑜yy
39 38 ralrimiv φyOnDC+𝑜yy
40 0ex V
41 40 elintrab yOn|DC+𝑜yyOnDC+𝑜yy
42 39 41 sylibr φyOn|DC+𝑜y
43 7 inteqi S=yOn|DC+𝑜y
44 42 43 eleqtrrdi φS
45 ondif1 SOn1𝑜SOnS
46 19 44 45 sylanbrc φSOn1𝑜
47 onzsl SOnS=zOnS=suczSVLimS
48 19 47 sylib φS=zOnS=suczSVLimS
49 oveq2 S=C+𝑜S=C+𝑜
50 49 22 sylan9eqr φS=C+𝑜S=C
51 onelpss COnDOnCDCDCD
52 12 4 51 syl2anc φCDCDCD
53 3 52 mpbid φCDCD
54 53 simpld φCD
55 54 adantr φS=CD
56 50 55 eqsstrd φS=C+𝑜SD
57 56 ex φS=C+𝑜SD
58 oveq2 S=suczC+𝑜S=C+𝑜sucz
59 oasuc COnzOnC+𝑜sucz=sucC+𝑜z
60 12 59 sylan φzOnC+𝑜sucz=sucC+𝑜z
61 58 60 sylan9eqr φzOnS=suczC+𝑜S=sucC+𝑜z
62 vex zV
63 62 sucid zsucz
64 eleq2 S=suczzSzsucz
65 63 64 mpbiri S=suczzS
66 65 a1i φzOnS=suczzS
67 43 eleq2i zSzyOn|DC+𝑜y
68 oveq2 y=zC+𝑜y=C+𝑜z
69 68 sseq2d y=zDC+𝑜yDC+𝑜z
70 69 onnminsb zOnzyOn|DC+𝑜y¬DC+𝑜z
71 70 adantl φzOnzyOn|DC+𝑜y¬DC+𝑜z
72 67 71 biimtrid φzOnzS¬DC+𝑜z
73 oacl COnzOnC+𝑜zOn
74 12 73 sylan φzOnC+𝑜zOn
75 ontri1 DOnC+𝑜zOnDC+𝑜z¬C+𝑜zD
76 4 74 75 syl2an2r φzOnDC+𝑜z¬C+𝑜zD
77 76 con2bid φzOnC+𝑜zD¬DC+𝑜z
78 72 77 sylibrd φzOnzSC+𝑜zD
79 onsucss DOnC+𝑜zDsucC+𝑜zD
80 4 79 syl φC+𝑜zDsucC+𝑜zD
81 80 adantr φzOnC+𝑜zDsucC+𝑜zD
82 66 78 81 3syld φzOnS=suczsucC+𝑜zD
83 82 imp φzOnS=suczsucC+𝑜zD
84 61 83 eqsstrd φzOnS=suczC+𝑜SD
85 84 rexlimdva2 φzOnS=suczC+𝑜SD
86 oalim COnSVLimSC+𝑜S=zSC+𝑜z
87 12 86 sylan φSVLimSC+𝑜S=zSC+𝑜z
88 onelon SOnzSzOn
89 19 88 sylan φzSzOn
90 89 ex φzSzOn
91 90 ancrd φzSzOnzS
92 78 expimpd φzOnzSC+𝑜zD
93 onelss DOnC+𝑜zDC+𝑜zD
94 4 93 syl φC+𝑜zDC+𝑜zD
95 91 92 94 3syld φzSC+𝑜zD
96 95 ralrimiv φzSC+𝑜zD
97 iunss zSC+𝑜zDzSC+𝑜zD
98 96 97 sylibr φzSC+𝑜zD
99 98 adantr φSVLimSzSC+𝑜zD
100 87 99 eqsstrd φSVLimSC+𝑜SD
101 100 ex φSVLimSC+𝑜SD
102 57 85 101 3jaod φS=zOnS=suczSVLimSC+𝑜SD
103 48 102 mpd φC+𝑜SD
104 10 rspcev DOnDC+𝑜DyOnDC+𝑜y
105 4 14 104 syl2anc φyOnDC+𝑜y
106 nfcv _yD
107 nfcv _yC
108 nfcv _y+𝑜
109 nfrab1 _yyOn|DC+𝑜y
110 109 nfint _yyOn|DC+𝑜y
111 107 108 110 nfov _yC+𝑜yOn|DC+𝑜y
112 106 111 nfss yDC+𝑜yOn|DC+𝑜y
113 oveq2 y=yOn|DC+𝑜yC+𝑜y=C+𝑜yOn|DC+𝑜y
114 113 sseq2d y=yOn|DC+𝑜yDC+𝑜yDC+𝑜yOn|DC+𝑜y
115 112 114 onminsb yOnDC+𝑜yDC+𝑜yOn|DC+𝑜y
116 105 115 syl φDC+𝑜yOn|DC+𝑜y
117 43 oveq2i C+𝑜S=C+𝑜yOn|DC+𝑜y
118 116 117 sseqtrrdi φDC+𝑜S
119 103 118 eqssd φC+𝑜S=D
120 omelon ωOn
121 omcl ωOnDOnω𝑜DOn
122 120 4 121 sylancr φω𝑜DOn
123 120 a1i φωOn
124 6 5 jca φNMMω
125 ontr1 ωOnNMMωNω
126 123 124 125 sylc φNω
127 nnon NωNOn
128 126 127 syl φNOn
129 oaword1 ω𝑜DOnNOnω𝑜Dω𝑜D+𝑜N
130 122 128 129 syl2anc φω𝑜Dω𝑜D+𝑜N
131 1 oveq1d φA+𝑜ω𝑜S=ω𝑜C+𝑜M+𝑜ω𝑜S
132 omcl ωOnCOnω𝑜COn
133 120 12 132 sylancr φω𝑜COn
134 nnon MωMOn
135 5 134 syl φMOn
136 omcl ωOnSOnω𝑜SOn
137 120 19 136 sylancr φω𝑜SOn
138 oaass ω𝑜COnMOnω𝑜SOnω𝑜C+𝑜M+𝑜ω𝑜S=ω𝑜C+𝑜M+𝑜ω𝑜S
139 133 135 137 138 syl3anc φω𝑜C+𝑜M+𝑜ω𝑜S=ω𝑜C+𝑜M+𝑜ω𝑜S
140 19 120 jctil φωOnSOn
141 omword1 ωOnSOnSωω𝑜S
142 140 44 141 syl2anc φωω𝑜S
143 oaabs Mωω𝑜SOnωω𝑜SM+𝑜ω𝑜S=ω𝑜S
144 5 137 142 143 syl21anc φM+𝑜ω𝑜S=ω𝑜S
145 144 oveq2d φω𝑜C+𝑜M+𝑜ω𝑜S=ω𝑜C+𝑜ω𝑜S
146 odi ωOnCOnSOnω𝑜C+𝑜S=ω𝑜C+𝑜ω𝑜S
147 123 12 19 146 syl3anc φω𝑜C+𝑜S=ω𝑜C+𝑜ω𝑜S
148 119 oveq2d φω𝑜C+𝑜S=ω𝑜D
149 145 147 148 3eqtr2d φω𝑜C+𝑜M+𝑜ω𝑜S=ω𝑜D
150 131 139 149 3eqtrd φA+𝑜ω𝑜S=ω𝑜D
151 130 150 2 3sstr4d φA+𝑜ω𝑜SB
152 naddcl Could not format ( ( ( _om .o C ) e. On /\ ( _om .o |^| S ) e. On ) -> ( ( _om .o C ) +no ( _om .o |^| S ) ) e. On ) : No typesetting found for |- ( ( ( _om .o C ) e. On /\ ( _om .o |^| S ) e. On ) -> ( ( _om .o C ) +no ( _om .o |^| S ) ) e. On ) with typecode |-
153 133 137 152 syl2anc Could not format ( ph -> ( ( _om .o C ) +no ( _om .o |^| S ) ) e. On ) : No typesetting found for |- ( ph -> ( ( _om .o C ) +no ( _om .o |^| S ) ) e. On ) with typecode |-
154 122 153 135 3jca Could not format ( ph -> ( ( _om .o D ) e. On /\ ( ( _om .o C ) +no ( _om .o |^| S ) ) e. On /\ M e. On ) ) : No typesetting found for |- ( ph -> ( ( _om .o D ) e. On /\ ( ( _om .o C ) +no ( _om .o |^| S ) ) e. On /\ M e. On ) ) with typecode |-
155 148 147 eqtr3d φω𝑜D=ω𝑜C+𝑜ω𝑜S
156 naddgeoa Could not format ( ( ( _om .o C ) e. On /\ ( _om .o |^| S ) e. On ) -> ( ( _om .o C ) +o ( _om .o |^| S ) ) C_ ( ( _om .o C ) +no ( _om .o |^| S ) ) ) : No typesetting found for |- ( ( ( _om .o C ) e. On /\ ( _om .o |^| S ) e. On ) -> ( ( _om .o C ) +o ( _om .o |^| S ) ) C_ ( ( _om .o C ) +no ( _om .o |^| S ) ) ) with typecode |-
157 133 137 156 syl2anc Could not format ( ph -> ( ( _om .o C ) +o ( _om .o |^| S ) ) C_ ( ( _om .o C ) +no ( _om .o |^| S ) ) ) : No typesetting found for |- ( ph -> ( ( _om .o C ) +o ( _om .o |^| S ) ) C_ ( ( _om .o C ) +no ( _om .o |^| S ) ) ) with typecode |-
158 155 157 eqsstrd Could not format ( ph -> ( _om .o D ) C_ ( ( _om .o C ) +no ( _om .o |^| S ) ) ) : No typesetting found for |- ( ph -> ( _om .o D ) C_ ( ( _om .o C ) +no ( _om .o |^| S ) ) ) with typecode |-
159 oawordri Could not format ( ( ( _om .o D ) e. On /\ ( ( _om .o C ) +no ( _om .o |^| S ) ) e. On /\ M e. On ) -> ( ( _om .o D ) C_ ( ( _om .o C ) +no ( _om .o |^| S ) ) -> ( ( _om .o D ) +o M ) C_ ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) ) ) : No typesetting found for |- ( ( ( _om .o D ) e. On /\ ( ( _om .o C ) +no ( _om .o |^| S ) ) e. On /\ M e. On ) -> ( ( _om .o D ) C_ ( ( _om .o C ) +no ( _om .o |^| S ) ) -> ( ( _om .o D ) +o M ) C_ ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) ) ) with typecode |-
160 154 158 159 sylc Could not format ( ph -> ( ( _om .o D ) +o M ) C_ ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) ) : No typesetting found for |- ( ph -> ( ( _om .o D ) +o M ) C_ ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) ) with typecode |-
161 naddonnn Could not format ( ( ( _om .o C ) e. On /\ M e. _om ) -> ( ( _om .o C ) +o M ) = ( ( _om .o C ) +no M ) ) : No typesetting found for |- ( ( ( _om .o C ) e. On /\ M e. _om ) -> ( ( _om .o C ) +o M ) = ( ( _om .o C ) +no M ) ) with typecode |-
162 133 5 161 syl2anc Could not format ( ph -> ( ( _om .o C ) +o M ) = ( ( _om .o C ) +no M ) ) : No typesetting found for |- ( ph -> ( ( _om .o C ) +o M ) = ( ( _om .o C ) +no M ) ) with typecode |-
163 1 162 eqtrd Could not format ( ph -> A = ( ( _om .o C ) +no M ) ) : No typesetting found for |- ( ph -> A = ( ( _om .o C ) +no M ) ) with typecode |-
164 163 oveq1d Could not format ( ph -> ( A +no ( _om .o |^| S ) ) = ( ( ( _om .o C ) +no M ) +no ( _om .o |^| S ) ) ) : No typesetting found for |- ( ph -> ( A +no ( _om .o |^| S ) ) = ( ( ( _om .o C ) +no M ) +no ( _om .o |^| S ) ) ) with typecode |-
165 naddass Could not format ( ( ( _om .o C ) e. On /\ M e. On /\ ( _om .o |^| S ) e. On ) -> ( ( ( _om .o C ) +no M ) +no ( _om .o |^| S ) ) = ( ( _om .o C ) +no ( M +no ( _om .o |^| S ) ) ) ) : No typesetting found for |- ( ( ( _om .o C ) e. On /\ M e. On /\ ( _om .o |^| S ) e. On ) -> ( ( ( _om .o C ) +no M ) +no ( _om .o |^| S ) ) = ( ( _om .o C ) +no ( M +no ( _om .o |^| S ) ) ) ) with typecode |-
166 133 135 137 165 syl3anc Could not format ( ph -> ( ( ( _om .o C ) +no M ) +no ( _om .o |^| S ) ) = ( ( _om .o C ) +no ( M +no ( _om .o |^| S ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( _om .o C ) +no M ) +no ( _om .o |^| S ) ) = ( ( _om .o C ) +no ( M +no ( _om .o |^| S ) ) ) ) with typecode |-
167 naddcom Could not format ( ( M e. On /\ ( _om .o |^| S ) e. On ) -> ( M +no ( _om .o |^| S ) ) = ( ( _om .o |^| S ) +no M ) ) : No typesetting found for |- ( ( M e. On /\ ( _om .o |^| S ) e. On ) -> ( M +no ( _om .o |^| S ) ) = ( ( _om .o |^| S ) +no M ) ) with typecode |-
168 135 137 167 syl2anc Could not format ( ph -> ( M +no ( _om .o |^| S ) ) = ( ( _om .o |^| S ) +no M ) ) : No typesetting found for |- ( ph -> ( M +no ( _om .o |^| S ) ) = ( ( _om .o |^| S ) +no M ) ) with typecode |-
169 168 oveq2d Could not format ( ph -> ( ( _om .o C ) +no ( M +no ( _om .o |^| S ) ) ) = ( ( _om .o C ) +no ( ( _om .o |^| S ) +no M ) ) ) : No typesetting found for |- ( ph -> ( ( _om .o C ) +no ( M +no ( _om .o |^| S ) ) ) = ( ( _om .o C ) +no ( ( _om .o |^| S ) +no M ) ) ) with typecode |-
170 naddonnn Could not format ( ( ( ( _om .o C ) +no ( _om .o |^| S ) ) e. On /\ M e. _om ) -> ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) = ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +no M ) ) : No typesetting found for |- ( ( ( ( _om .o C ) +no ( _om .o |^| S ) ) e. On /\ M e. _om ) -> ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) = ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +no M ) ) with typecode |-
171 153 5 170 syl2anc Could not format ( ph -> ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) = ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +no M ) ) : No typesetting found for |- ( ph -> ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) = ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +no M ) ) with typecode |-
172 naddass Could not format ( ( ( _om .o C ) e. On /\ ( _om .o |^| S ) e. On /\ M e. On ) -> ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +no M ) = ( ( _om .o C ) +no ( ( _om .o |^| S ) +no M ) ) ) : No typesetting found for |- ( ( ( _om .o C ) e. On /\ ( _om .o |^| S ) e. On /\ M e. On ) -> ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +no M ) = ( ( _om .o C ) +no ( ( _om .o |^| S ) +no M ) ) ) with typecode |-
173 133 137 135 172 syl3anc Could not format ( ph -> ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +no M ) = ( ( _om .o C ) +no ( ( _om .o |^| S ) +no M ) ) ) : No typesetting found for |- ( ph -> ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +no M ) = ( ( _om .o C ) +no ( ( _om .o |^| S ) +no M ) ) ) with typecode |-
174 171 173 eqtr2d Could not format ( ph -> ( ( _om .o C ) +no ( ( _om .o |^| S ) +no M ) ) = ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) ) : No typesetting found for |- ( ph -> ( ( _om .o C ) +no ( ( _om .o |^| S ) +no M ) ) = ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) ) with typecode |-
175 166 169 174 3eqtrd Could not format ( ph -> ( ( ( _om .o C ) +no M ) +no ( _om .o |^| S ) ) = ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) ) : No typesetting found for |- ( ph -> ( ( ( _om .o C ) +no M ) +no ( _om .o |^| S ) ) = ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) ) with typecode |-
176 164 175 eqtr2d Could not format ( ph -> ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) = ( A +no ( _om .o |^| S ) ) ) : No typesetting found for |- ( ph -> ( ( ( _om .o C ) +no ( _om .o |^| S ) ) +o M ) = ( A +no ( _om .o |^| S ) ) ) with typecode |-
177 160 176 sseqtrd Could not format ( ph -> ( ( _om .o D ) +o M ) C_ ( A +no ( _om .o |^| S ) ) ) : No typesetting found for |- ( ph -> ( ( _om .o D ) +o M ) C_ ( A +no ( _om .o |^| S ) ) ) with typecode |-
178 135 122 jca φMOnω𝑜DOn
179 oaordi MOnω𝑜DOnNMω𝑜D+𝑜Nω𝑜D+𝑜M
180 178 6 179 sylc φω𝑜D+𝑜Nω𝑜D+𝑜M
181 2 180 eqeltrd φBω𝑜D+𝑜M
182 177 181 sseldd Could not format ( ph -> B e. ( A +no ( _om .o |^| S ) ) ) : No typesetting found for |- ( ph -> B e. ( A +no ( _om .o |^| S ) ) ) with typecode |-
183 119 151 182 3jca Could not format ( ph -> ( ( C +o |^| S ) = D /\ ( A +o ( _om .o |^| S ) ) C_ B /\ B e. ( A +no ( _om .o |^| S ) ) ) ) : No typesetting found for |- ( ph -> ( ( C +o |^| S ) = D /\ ( A +o ( _om .o |^| S ) ) C_ B /\ B e. ( A +no ( _om .o |^| S ) ) ) ) with typecode |-
184 oveq2 x=SC+𝑜x=C+𝑜S
185 184 eqeq1d x=SC+𝑜x=DC+𝑜S=D
186 oveq2 x=Sω𝑜x=ω𝑜S
187 186 oveq2d x=SA+𝑜ω𝑜x=A+𝑜ω𝑜S
188 187 sseq1d x=SA+𝑜ω𝑜xBA+𝑜ω𝑜SB
189 186 oveq2d Could not format ( x = |^| S -> ( A +no ( _om .o x ) ) = ( A +no ( _om .o |^| S ) ) ) : No typesetting found for |- ( x = |^| S -> ( A +no ( _om .o x ) ) = ( A +no ( _om .o |^| S ) ) ) with typecode |-
190 189 eleq2d Could not format ( x = |^| S -> ( B e. ( A +no ( _om .o x ) ) <-> B e. ( A +no ( _om .o |^| S ) ) ) ) : No typesetting found for |- ( x = |^| S -> ( B e. ( A +no ( _om .o x ) ) <-> B e. ( A +no ( _om .o |^| S ) ) ) ) with typecode |-
191 185 188 190 3anbi123d Could not format ( x = |^| S -> ( ( ( C +o x ) = D /\ ( A +o ( _om .o x ) ) C_ B /\ B e. ( A +no ( _om .o x ) ) ) <-> ( ( C +o |^| S ) = D /\ ( A +o ( _om .o |^| S ) ) C_ B /\ B e. ( A +no ( _om .o |^| S ) ) ) ) ) : No typesetting found for |- ( x = |^| S -> ( ( ( C +o x ) = D /\ ( A +o ( _om .o x ) ) C_ B /\ B e. ( A +no ( _om .o x ) ) ) <-> ( ( C +o |^| S ) = D /\ ( A +o ( _om .o |^| S ) ) C_ B /\ B e. ( A +no ( _om .o |^| S ) ) ) ) ) with typecode |-
192 191 rspcev Could not format ( ( |^| S e. ( On \ 1o ) /\ ( ( C +o |^| S ) = D /\ ( A +o ( _om .o |^| S ) ) C_ B /\ B e. ( A +no ( _om .o |^| S ) ) ) ) -> E. x e. ( On \ 1o ) ( ( C +o x ) = D /\ ( A +o ( _om .o x ) ) C_ B /\ B e. ( A +no ( _om .o x ) ) ) ) : No typesetting found for |- ( ( |^| S e. ( On \ 1o ) /\ ( ( C +o |^| S ) = D /\ ( A +o ( _om .o |^| S ) ) C_ B /\ B e. ( A +no ( _om .o |^| S ) ) ) ) -> E. x e. ( On \ 1o ) ( ( C +o x ) = D /\ ( A +o ( _om .o x ) ) C_ B /\ B e. ( A +no ( _om .o x ) ) ) ) with typecode |-
193 46 183 192 syl2anc Could not format ( ph -> E. x e. ( On \ 1o ) ( ( C +o x ) = D /\ ( A +o ( _om .o x ) ) C_ B /\ B e. ( A +no ( _om .o x ) ) ) ) : No typesetting found for |- ( ph -> E. x e. ( On \ 1o ) ( ( C +o x ) = D /\ ( A +o ( _om .o x ) ) C_ B /\ B e. ( A +no ( _om .o x ) ) ) ) with typecode |-