Metamath Proof Explorer


Theorem nn0prpwlem

Description: Lemma for nn0prpw . Use strong induction to show that every positive integer has unique prime power divisors. (Contributed by Jeff Hankins, 28-Sep-2013)

Ref Expression
Assertion nn0prpwlem Akk<Apn¬pnkpnA

Proof

Step Hyp Ref Expression
1 breq2 x=Ak<xk<A
2 breq2 x=ApnxpnA
3 2 bibi2d x=ApnkpnxpnkpnA
4 3 notbid x=A¬pnkpnx¬pnkpnA
5 4 2rexbidv x=Apn¬pnkpnxpn¬pnkpnA
6 1 5 imbi12d x=Ak<xpn¬pnkpnxk<Apn¬pnkpnA
7 6 ralbidv x=Akk<xpn¬pnkpnxkk<Apn¬pnkpnA
8 breq2 x=1k<xk<1
9 breq2 x=1pnxpn1
10 9 bibi2d x=1pnkpnxpnkpn1
11 10 notbid x=1¬pnkpnx¬pnkpn1
12 11 2rexbidv x=1pn¬pnkpnxpn¬pnkpn1
13 8 12 imbi12d x=1k<xpn¬pnkpnxk<1pn¬pnkpn1
14 13 ralbidv x=1kk<xpn¬pnkpnxkk<1pn¬pnkpn1
15 breq2 x=yk<xk<y
16 breq2 x=ypnxpny
17 16 bibi2d x=ypnkpnxpnkpny
18 17 notbid x=y¬pnkpnx¬pnkpny
19 18 2rexbidv x=ypn¬pnkpnxpn¬pnkpny
20 15 19 imbi12d x=yk<xpn¬pnkpnxk<ypn¬pnkpny
21 20 ralbidv x=ykk<xpn¬pnkpnxkk<ypn¬pnkpny
22 nnnlt1 k¬k<1
23 22 pm2.21d kk<1pn¬pnkpn1
24 23 rgen kk<1pn¬pnkpn1
25 exprmfct x2qqx
26 prmz qq
27 26 adantr qtq
28 prmnn qq
29 28 nnne0d qq0
30 29 adantr qtq0
31 nnz tt
32 31 adantl qtt
33 dvdsval2 qq0tqttq
34 27 30 32 33 syl3anc qtqttq
35 34 biimpd qtqttq
36 35 3ad2antl2 x2qqxtqttq
37 36 adantrl x2qqxyy<xkk<ypn¬pnkpnytqttq
38 simprr x2qqxttqtq
39 nnre tt
40 nngt0 t0<t
41 39 40 jca tt0<t
42 nnre qq
43 nngt0 q0<q
44 42 43 jca qq0<q
45 28 44 syl qq0<q
46 divgt0 t0<tq0<q0<tq
47 41 45 46 syl2anr qt0<tq
48 47 3ad2antl2 x2qqxt0<tq
49 48 adantrr x2qqxttq0<tq
50 elnnz tqtq0<tq
51 38 49 50 sylanbrc x2qqxttqtq
52 51 expr x2qqxttqtq
53 52 adantrl x2qqxyy<xkk<ypn¬pnkpnyttqtq
54 26 adantr qx2q
55 29 adantr qx2q0
56 eluzelz x2x
57 56 adantl qx2x
58 dvdsval2 qq0xqxxq
59 54 55 57 58 syl3anc qx2qxxq
60 eluzelre x2x
61 2z 2
62 61 eluz1i x2x2x
63 2pos 0<2
64 zre xx
65 0re 0
66 2re 2
67 ltletr 02x0<22x0<x
68 65 66 67 mp3an12 x0<22x0<x
69 64 68 syl x0<22x0<x
70 63 69 mpani x2x0<x
71 70 imp x2x0<x
72 62 71 sylbi x20<x
73 60 72 jca x2x0<x
74 divgt0 x0<xq0<q0<xq
75 73 45 74 syl2anr qx20<xq
76 75 a1d qx2xq0<xq
77 76 ancld qx2xqxq0<xq
78 elnnz xqxq0<xq
79 77 78 syl6ibr qx2xqxq
80 59 79 sylbid qx2qxxq
81 80 ancoms x2qqxxq
82 breq1 y=xqy<xxq<x
83 breq2 y=xqk<yk<xq
84 breq2 y=xqpnypnxq
85 84 bibi2d y=xqpnkpnypnkpnxq
86 85 notbid y=xq¬pnkpny¬pnkpnxq
87 86 2rexbidv y=xqpn¬pnkpnypn¬pnkpnxq
88 83 87 imbi12d y=xqk<ypn¬pnkpnyk<xqpn¬pnkpnxq
89 88 ralbidv y=xqkk<ypn¬pnkpnykk<xqpn¬pnkpnxq
90 82 89 imbi12d y=xqy<xkk<ypn¬pnkpnyxq<xkk<xqpn¬pnkpnxq
91 90 rspcv xqyy<xkk<ypn¬pnkpnyxq<xkk<xqpn¬pnkpnxq
92 91 3ad2ant1 xqtqtyy<xkk<ypn¬pnkpnyxq<xkk<xqpn¬pnkpnxq
93 92 adantl x2qxqtqtyy<xkk<ypn¬pnkpnyxq<xkk<xqpn¬pnkpnxq
94 eluzelcn x2x
95 94 mullidd x21x=x
96 95 ad2antrr x2qxqtqt1x=x
97 prmgt1 q1<q
98 97 ad2antlr x2qxqtqt1<q
99 1red x2qxqtqt1
100 28 nnred qq
101 100 ad2antlr x2qxqtqtq
102 60 ad2antrr x2qxqtqtx
103 72 ad2antrr x2qxqtqt0<x
104 ltmul1 1qx0<x1<q1x<qx
105 99 101 102 103 104 syl112anc x2qxqtqt1<q1x<qx
106 98 105 mpbid x2qxqtqt1x<qx
107 96 106 eqbrtrrd x2qxqtqtx<qx
108 28 43 syl q0<q
109 108 ad2antlr x2qxqtqt0<q
110 ltdivmul xxq0<qxq<xx<qx
111 102 102 101 109 110 syl112anc x2qxqtqtxq<xx<qx
112 107 111 mpbird x2qxqtqtxq<x
113 breq1 k=tqk<xqtq<xq
114 breq2 k=tqpnkpntq
115 114 bibi1d k=tqpnkpnxqpntqpnxq
116 115 notbid k=tq¬pnkpnxq¬pntqpnxq
117 116 2rexbidv k=tqpn¬pnkpnxqpn¬pntqpnxq
118 113 117 imbi12d k=tqk<xqpn¬pnkpnxqtq<xqpn¬pntqpnxq
119 118 rspcv tqkk<xqpn¬pnkpnxqtq<xqpn¬pntqpnxq
120 119 3ad2ant2 xqtqtkk<xqpn¬pnkpnxqtq<xqpn¬pntqpnxq
121 120 adantl x2qxqtqtkk<xqpn¬pnkpnxqtq<xqpn¬pntqpnxq
122 39 3ad2ant3 xqtqtt
123 122 adantl x2qxqtqtt
124 ltdiv1 txq0<qt<xtq<xq
125 123 102 101 109 124 syl112anc x2qxqtqtt<xtq<xq
126 125 biimpa x2qxqtqtt<xtq<xq
127 simprll x2qxqtqtt<xpn¬pntqpnxqp
128 peano2nn nn+1
129 128 adantl pnn+1
130 129 ad2antrl x2qxqtqtt<xpn¬qntqqnxqn+1
131 26 ad4antlr x2qxqtqtt<xpnq
132 nnnn0 nn0
133 132 ad2antll x2qxqtqtt<xpnn0
134 zexpcl qn0qn
135 131 133 134 syl2anc x2qxqtqtt<xpnqn
136 nnz tqtq
137 136 3ad2ant2 xqtqttq
138 137 ad3antlr x2qxqtqtt<xpntq
139 29 ad4antlr x2qxqtqtt<xpnq0
140 dvdsmulcr qntqqq0qnqtqqqntq
141 135 138 131 139 140 syl112anc x2qxqtqtt<xpnqnqtqqqntq
142 28 nncnd qq
143 142 ad4antlr x2qxqtqtt<xpnq
144 143 133 expp1d x2qxqtqtt<xpnqn+1=qnq
145 144 eqcomd x2qxqtqtt<xpnqnq=qn+1
146 nncn tt
147 146 3ad2ant3 xqtqtt
148 147 ad3antlr x2qxqtqtt<xpnt
149 148 143 139 divcan1d x2qxqtqtt<xpntqq=t
150 145 149 breq12d x2qxqtqtt<xpnqnqtqqqn+1t
151 141 150 bitr3d x2qxqtqtt<xpnqntqqn+1t
152 nnz xqxq
153 152 3ad2ant1 xqtqtxq
154 153 ad3antlr x2qxqtqtt<xpnxq
155 dvdsmulcr qnxqqq0qnqxqqqnxq
156 135 154 131 139 155 syl112anc x2qxqtqtt<xpnqnqxqqqnxq
157 94 ad4antr x2qxqtqtt<xpnx
158 157 143 139 divcan1d x2qxqtqtt<xpnxqq=x
159 145 158 breq12d x2qxqtqtt<xpnqnqxqqqn+1x
160 156 159 bitr3d x2qxqtqtt<xpnqnxqqn+1x
161 151 160 bibi12d x2qxqtqtt<xpnqntqqnxqqn+1tqn+1x
162 161 notbid x2qxqtqtt<xpn¬qntqqnxq¬qn+1tqn+1x
163 162 biimpd x2qxqtqtt<xpn¬qntqqnxq¬qn+1tqn+1x
164 163 impr x2qxqtqtt<xpn¬qntqqnxq¬qn+1tqn+1x
165 oveq2 m=n+1qm=qn+1
166 165 breq1d m=n+1qmtqn+1t
167 165 breq1d m=n+1qmxqn+1x
168 166 167 bibi12d m=n+1qmtqmxqn+1tqn+1x
169 168 notbid m=n+1¬qmtqmx¬qn+1tqn+1x
170 169 rspcev n+1¬qn+1tqn+1xm¬qmtqmx
171 130 164 170 syl2anc x2qxqtqtt<xpn¬qntqqnxqm¬qmtqmx
172 oveq1 p=qpn=qn
173 172 breq1d p=qpntqqntq
174 172 breq1d p=qpnxqqnxq
175 173 174 bibi12d p=qpntqpnxqqntqqnxq
176 175 notbid p=q¬pntqpnxq¬qntqqnxq
177 176 anbi2d p=qpn¬pntqpnxqpn¬qntqqnxq
178 177 anbi2d p=qx2qxqtqtt<xpn¬pntqpnxqx2qxqtqtt<xpn¬qntqqnxq
179 oveq1 p=qpm=qm
180 179 breq1d p=qpmtqmt
181 179 breq1d p=qpmxqmx
182 180 181 bibi12d p=qpmtpmxqmtqmx
183 182 notbid p=q¬pmtpmx¬qmtqmx
184 183 rexbidv p=qm¬pmtpmxm¬qmtqmx
185 178 184 imbi12d p=qx2qxqtqtt<xpn¬pntqpnxqm¬pmtpmxx2qxqtqtt<xpn¬qntqqnxqm¬qmtqmx
186 171 185 mpbiri p=qx2qxqtqtt<xpn¬pntqpnxqm¬pmtpmx
187 186 com12 x2qxqtqtt<xpn¬pntqpnxqp=qm¬pmtpmx
188 simplr pn¬p=qn
189 188 ad2antlr x2qxqtqtt<xpn¬p=q¬pntqpnxqn
190 prmz pp
191 190 adantr pnp
192 191 ad2antrl x2qxqtqtt<xpn¬p=qp
193 132 adantl pnn0
194 193 ad2antrl x2qxqtqtt<xpn¬p=qn0
195 zexpcl pn0pn
196 192 194 195 syl2anc x2qxqtqtt<xpn¬p=qpn
197 26 ad4antlr x2qxqtqtt<xpn¬p=qq
198 137 ad3antlr x2qxqtqtt<xpn¬p=qtq
199 dvdsmultr2 pnqtqpntqpnqtq
200 196 197 198 199 syl3anc x2qxqtqtt<xpn¬p=qpntqpnqtq
201 196 197 gcdcomd x2qxqtqtt<xpn¬p=qpngcdq=qgcdpn
202 simp-4r x2qxqtqtt<xpnq
203 simprl x2qxqtqtt<xpnp
204 simprr x2qxqtqtt<xpnn
205 prmdvdsexpb qpnqpnq=p
206 equcom q=pp=q
207 205 206 bitrdi qpnqpnp=q
208 207 biimpd qpnqpnp=q
209 202 203 204 208 syl3anc x2qxqtqtt<xpnqpnp=q
210 209 con3d x2qxqtqtt<xpn¬p=q¬qpn
211 210 impr x2qxqtqtt<xpn¬p=q¬qpn
212 simp-4r x2qxqtqtt<xpn¬p=qq
213 coprm qpn¬qpnqgcdpn=1
214 212 196 213 syl2anc x2qxqtqtt<xpn¬p=q¬qpnqgcdpn=1
215 211 214 mpbid x2qxqtqtt<xpn¬p=qqgcdpn=1
216 201 215 eqtrd x2qxqtqtt<xpn¬p=qpngcdq=1
217 coprmdvds pnqtqpnqtqpngcdq=1pntq
218 196 197 198 217 syl3anc x2qxqtqtt<xpn¬p=qpnqtqpngcdq=1pntq
219 216 218 mpan2d x2qxqtqtt<xpn¬p=qpnqtqpntq
220 200 219 impbid x2qxqtqtt<xpn¬p=qpntqpnqtq
221 147 ad3antlr x2qxqtqtt<xpn¬p=qt
222 142 ad4antlr x2qxqtqtt<xpn¬p=qq
223 29 ad4antlr x2qxqtqtt<xpn¬p=qq0
224 221 222 223 divcan2d x2qxqtqtt<xpn¬p=qqtq=t
225 224 breq2d x2qxqtqtt<xpn¬p=qpnqtqpnt
226 220 225 bitrd x2qxqtqtt<xpn¬p=qpntqpnt
227 153 ad3antlr x2qxqtqtt<xpn¬p=qxq
228 dvdsmultr2 pnqxqpnxqpnqxq
229 196 197 227 228 syl3anc x2qxqtqtt<xpn¬p=qpnxqpnqxq
230 coprmdvds pnqxqpnqxqpngcdq=1pnxq
231 196 197 227 230 syl3anc x2qxqtqtt<xpn¬p=qpnqxqpngcdq=1pnxq
232 216 231 mpan2d x2qxqtqtt<xpn¬p=qpnqxqpnxq
233 229 232 impbid x2qxqtqtt<xpn¬p=qpnxqpnqxq
234 94 ad4antr x2qxqtqtt<xpn¬p=qx
235 234 222 223 divcan2d x2qxqtqtt<xpn¬p=qqxq=x
236 235 breq2d x2qxqtqtt<xpn¬p=qpnqxqpnx
237 233 236 bitrd x2qxqtqtt<xpn¬p=qpnxqpnx
238 226 237 bibi12d x2qxqtqtt<xpn¬p=qpntqpnxqpntpnx
239 238 notbid x2qxqtqtt<xpn¬p=q¬pntqpnxq¬pntpnx
240 239 biimpa x2qxqtqtt<xpn¬p=q¬pntqpnxq¬pntpnx
241 oveq2 m=npm=pn
242 241 breq1d m=npmtpnt
243 241 breq1d m=npmxpnx
244 242 243 bibi12d m=npmtpmxpntpnx
245 244 notbid m=n¬pmtpmx¬pntpnx
246 245 rspcev n¬pntpnxm¬pmtpmx
247 189 240 246 syl2anc x2qxqtqtt<xpn¬p=q¬pntqpnxqm¬pmtpmx
248 247 ex x2qxqtqtt<xpn¬p=q¬pntqpnxqm¬pmtpmx
249 248 expr x2qxqtqtt<xpn¬p=q¬pntqpnxqm¬pmtpmx
250 249 com23 x2qxqtqtt<xpn¬pntqpnxq¬p=qm¬pmtpmx
251 250 impr x2qxqtqtt<xpn¬pntqpnxq¬p=qm¬pmtpmx
252 187 251 pm2.61d x2qxqtqtt<xpn¬pntqpnxqm¬pmtpmx
253 oveq1 r=prm=pm
254 253 breq1d r=prmtpmt
255 253 breq1d r=prmxpmx
256 254 255 bibi12d r=prmtrmxpmtpmx
257 256 notbid r=p¬rmtrmx¬pmtpmx
258 257 rexbidv r=pm¬rmtrmxm¬pmtpmx
259 258 rspcev pm¬pmtpmxrm¬rmtrmx
260 127 252 259 syl2anc x2qxqtqtt<xpn¬pntqpnxqrm¬rmtrmx
261 260 exp32 x2qxqtqtt<xpn¬pntqpnxqrm¬rmtrmx
262 261 rexlimdvv x2qxqtqtt<xpn¬pntqpnxqrm¬rmtrmx
263 126 262 embantd x2qxqtqtt<xtq<xqpn¬pntqpnxqrm¬rmtrmx
264 263 ex x2qxqtqtt<xtq<xqpn¬pntqpnxqrm¬rmtrmx
265 264 com23 x2qxqtqttq<xqpn¬pntqpnxqt<xrm¬rmtrmx
266 121 265 syld x2qxqtqtkk<xqpn¬pnkpnxqt<xrm¬rmtrmx
267 112 266 embantd x2qxqtqtxq<xkk<xqpn¬pnkpnxqt<xrm¬rmtrmx
268 93 267 syld x2qxqtqtyy<xkk<ypn¬pnkpnyt<xrm¬rmtrmx
269 268 3exp2 x2qxqtqtyy<xkk<ypn¬pnkpnyt<xrm¬rmtrmx
270 81 269 syld x2qqxtqtyy<xkk<ypn¬pnkpnyt<xrm¬rmtrmx
271 270 3impia x2qqxtqtyy<xkk<ypn¬pnkpnyt<xrm¬rmtrmx
272 271 com24 x2qqxyy<xkk<ypn¬pnkpnyttqt<xrm¬rmtrmx
273 272 imp32 x2qqxyy<xkk<ypn¬pnkpnyttqt<xrm¬rmtrmx
274 37 53 273 3syld x2qqxyy<xkk<ypn¬pnkpnytqtt<xrm¬rmtrmx
275 simpl2 x2qqxt¬qtt<xq
276 1nn 1
277 276 a1i x2qqxt¬qtt<x1
278 142 exp1d qq1=q
279 278 breq1d qq1tqt
280 279 notbid q¬q1t¬qt
281 280 biimpar q¬qt¬q1t
282 281 3ad2antl2 x2qqx¬qt¬q1t
283 282 adantrr x2qqx¬qtt<x¬q1t
284 283 adantrl x2qqxt¬qtt<x¬q1t
285 278 breq1d qq1xqx
286 285 biimpar qqxq1x
287 286 3adant1 x2qqxq1x
288 idd x2qqxq1xq1tq1xq1t
289 287 288 mpid x2qqxq1xq1tq1t
290 289 adantr x2qqxt¬qtt<xq1xq1tq1t
291 284 290 mtod x2qqxt¬qtt<x¬q1xq1t
292 biimpr q1tq1xq1xq1t
293 291 292 nsyl x2qqxt¬qtt<x¬q1tq1x
294 oveq1 r=qrm=qm
295 294 breq1d r=qrmtqmt
296 294 breq1d r=qrmxqmx
297 295 296 bibi12d r=qrmtrmxqmtqmx
298 297 notbid r=q¬rmtrmx¬qmtqmx
299 oveq2 m=1qm=q1
300 299 breq1d m=1qmtq1t
301 299 breq1d m=1qmxq1x
302 300 301 bibi12d m=1qmtqmxq1tq1x
303 302 notbid m=1¬qmtqmx¬q1tq1x
304 298 303 rspc2ev q1¬q1tq1xrm¬rmtrmx
305 275 277 293 304 syl3anc x2qqxt¬qtt<xrm¬rmtrmx
306 305 expr x2qqxt¬qtt<xrm¬rmtrmx
307 306 expd x2qqxt¬qtt<xrm¬rmtrmx
308 307 adantrl x2qqxyy<xkk<ypn¬pnkpnyt¬qtt<xrm¬rmtrmx
309 274 308 pm2.61d x2qqxyy<xkk<ypn¬pnkpnytt<xrm¬rmtrmx
310 309 expr x2qqxyy<xkk<ypn¬pnkpnytt<xrm¬rmtrmx
311 310 ralrimiv x2qqxyy<xkk<ypn¬pnkpnytt<xrm¬rmtrmx
312 breq1 t=kt<xk<x
313 breq2 t=krmtrmk
314 313 bibi1d t=krmtrmxrmkrmx
315 314 notbid t=k¬rmtrmx¬rmkrmx
316 315 2rexbidv t=krm¬rmtrmxrm¬rmkrmx
317 253 breq1d r=prmkpmk
318 317 255 bibi12d r=prmkrmxpmkpmx
319 318 notbid r=p¬rmkrmx¬pmkpmx
320 241 breq1d m=npmkpnk
321 320 243 bibi12d m=npmkpmxpnkpnx
322 321 notbid m=n¬pmkpmx¬pnkpnx
323 319 322 cbvrex2vw rm¬rmkrmxpn¬pnkpnx
324 316 323 bitrdi t=krm¬rmtrmxpn¬pnkpnx
325 312 324 imbi12d t=kt<xrm¬rmtrmxk<xpn¬pnkpnx
326 325 cbvralvw tt<xrm¬rmtrmxkk<xpn¬pnkpnx
327 311 326 sylib x2qqxyy<xkk<ypn¬pnkpnykk<xpn¬pnkpnx
328 327 3exp1 x2qqxyy<xkk<ypn¬pnkpnykk<xpn¬pnkpnx
329 328 rexlimdv x2qqxyy<xkk<ypn¬pnkpnykk<xpn¬pnkpnx
330 25 329 mpd x2yy<xkk<ypn¬pnkpnykk<xpn¬pnkpnx
331 14 21 24 330 indstr2 xkk<xpn¬pnkpnx
332 7 331 vtoclga Akk<Apn¬pnkpnA