Metamath Proof Explorer


Theorem nn0prpwlem

Description: Lemma for nn0prpw . Use strong induction to show that every positive integer has unique prime power divisors. (Contributed by Jeff Hankins, 28-Sep-2013)

Ref Expression
Assertion nn0prpwlem A k k < A p n ¬ p n k p n A

Proof

Step Hyp Ref Expression
1 breq2 x = A k < x k < A
2 breq2 x = A p n x p n A
3 2 bibi2d x = A p n k p n x p n k p n A
4 3 notbid x = A ¬ p n k p n x ¬ p n k p n A
5 4 2rexbidv x = A p n ¬ p n k p n x p n ¬ p n k p n A
6 1 5 imbi12d x = A k < x p n ¬ p n k p n x k < A p n ¬ p n k p n A
7 6 ralbidv x = A k k < x p n ¬ p n k p n x k k < A p n ¬ p n k p n A
8 breq2 x = 1 k < x k < 1
9 breq2 x = 1 p n x p n 1
10 9 bibi2d x = 1 p n k p n x p n k p n 1
11 10 notbid x = 1 ¬ p n k p n x ¬ p n k p n 1
12 11 2rexbidv x = 1 p n ¬ p n k p n x p n ¬ p n k p n 1
13 8 12 imbi12d x = 1 k < x p n ¬ p n k p n x k < 1 p n ¬ p n k p n 1
14 13 ralbidv x = 1 k k < x p n ¬ p n k p n x k k < 1 p n ¬ p n k p n 1
15 breq2 x = y k < x k < y
16 breq2 x = y p n x p n y
17 16 bibi2d x = y p n k p n x p n k p n y
18 17 notbid x = y ¬ p n k p n x ¬ p n k p n y
19 18 2rexbidv x = y p n ¬ p n k p n x p n ¬ p n k p n y
20 15 19 imbi12d x = y k < x p n ¬ p n k p n x k < y p n ¬ p n k p n y
21 20 ralbidv x = y k k < x p n ¬ p n k p n x k k < y p n ¬ p n k p n y
22 nnnlt1 k ¬ k < 1
23 22 pm2.21d k k < 1 p n ¬ p n k p n 1
24 23 rgen k k < 1 p n ¬ p n k p n 1
25 exprmfct x 2 q q x
26 prmz q q
27 26 adantr q t q
28 prmnn q q
29 28 nnne0d q q 0
30 29 adantr q t q 0
31 nnz t t
32 31 adantl q t t
33 dvdsval2 q q 0 t q t t q
34 27 30 32 33 syl3anc q t q t t q
35 34 biimpd q t q t t q
36 35 3ad2antl2 x 2 q q x t q t t q
37 36 adantrl x 2 q q x y y < x k k < y p n ¬ p n k p n y t q t t q
38 simprr x 2 q q x t t q t q
39 nnre t t
40 nngt0 t 0 < t
41 39 40 jca t t 0 < t
42 nnre q q
43 nngt0 q 0 < q
44 42 43 jca q q 0 < q
45 28 44 syl q q 0 < q
46 divgt0 t 0 < t q 0 < q 0 < t q
47 41 45 46 syl2anr q t 0 < t q
48 47 3ad2antl2 x 2 q q x t 0 < t q
49 48 adantrr x 2 q q x t t q 0 < t q
50 elnnz t q t q 0 < t q
51 38 49 50 sylanbrc x 2 q q x t t q t q
52 51 expr x 2 q q x t t q t q
53 52 adantrl x 2 q q x y y < x k k < y p n ¬ p n k p n y t t q t q
54 26 adantr q x 2 q
55 29 adantr q x 2 q 0
56 eluzelz x 2 x
57 56 adantl q x 2 x
58 dvdsval2 q q 0 x q x x q
59 54 55 57 58 syl3anc q x 2 q x x q
60 eluzelre x 2 x
61 2z 2
62 61 eluz1i x 2 x 2 x
63 2pos 0 < 2
64 zre x x
65 0re 0
66 2re 2
67 ltletr 0 2 x 0 < 2 2 x 0 < x
68 65 66 67 mp3an12 x 0 < 2 2 x 0 < x
69 64 68 syl x 0 < 2 2 x 0 < x
70 63 69 mpani x 2 x 0 < x
71 70 imp x 2 x 0 < x
72 62 71 sylbi x 2 0 < x
73 60 72 jca x 2 x 0 < x
74 divgt0 x 0 < x q 0 < q 0 < x q
75 73 45 74 syl2anr q x 2 0 < x q
76 75 a1d q x 2 x q 0 < x q
77 76 ancld q x 2 x q x q 0 < x q
78 elnnz x q x q 0 < x q
79 77 78 syl6ibr q x 2 x q x q
80 59 79 sylbid q x 2 q x x q
81 80 ancoms x 2 q q x x q
82 breq1 y = x q y < x x q < x
83 breq2 y = x q k < y k < x q
84 breq2 y = x q p n y p n x q
85 84 bibi2d y = x q p n k p n y p n k p n x q
86 85 notbid y = x q ¬ p n k p n y ¬ p n k p n x q
87 86 2rexbidv y = x q p n ¬ p n k p n y p n ¬ p n k p n x q
88 83 87 imbi12d y = x q k < y p n ¬ p n k p n y k < x q p n ¬ p n k p n x q
89 88 ralbidv y = x q k k < y p n ¬ p n k p n y k k < x q p n ¬ p n k p n x q
90 82 89 imbi12d y = x q y < x k k < y p n ¬ p n k p n y x q < x k k < x q p n ¬ p n k p n x q
91 90 rspcv x q y y < x k k < y p n ¬ p n k p n y x q < x k k < x q p n ¬ p n k p n x q
92 91 3ad2ant1 x q t q t y y < x k k < y p n ¬ p n k p n y x q < x k k < x q p n ¬ p n k p n x q
93 92 adantl x 2 q x q t q t y y < x k k < y p n ¬ p n k p n y x q < x k k < x q p n ¬ p n k p n x q
94 eluzelcn x 2 x
95 94 mulid2d x 2 1 x = x
96 95 ad2antrr x 2 q x q t q t 1 x = x
97 prmgt1 q 1 < q
98 97 ad2antlr x 2 q x q t q t 1 < q
99 1red x 2 q x q t q t 1
100 28 nnred q q
101 100 ad2antlr x 2 q x q t q t q
102 60 ad2antrr x 2 q x q t q t x
103 72 ad2antrr x 2 q x q t q t 0 < x
104 ltmul1 1 q x 0 < x 1 < q 1 x < q x
105 99 101 102 103 104 syl112anc x 2 q x q t q t 1 < q 1 x < q x
106 98 105 mpbid x 2 q x q t q t 1 x < q x
107 96 106 eqbrtrrd x 2 q x q t q t x < q x
108 28 43 syl q 0 < q
109 108 ad2antlr x 2 q x q t q t 0 < q
110 ltdivmul x x q 0 < q x q < x x < q x
111 102 102 101 109 110 syl112anc x 2 q x q t q t x q < x x < q x
112 107 111 mpbird x 2 q x q t q t x q < x
113 breq1 k = t q k < x q t q < x q
114 breq2 k = t q p n k p n t q
115 114 bibi1d k = t q p n k p n x q p n t q p n x q
116 115 notbid k = t q ¬ p n k p n x q ¬ p n t q p n x q
117 116 2rexbidv k = t q p n ¬ p n k p n x q p n ¬ p n t q p n x q
118 113 117 imbi12d k = t q k < x q p n ¬ p n k p n x q t q < x q p n ¬ p n t q p n x q
119 118 rspcv t q k k < x q p n ¬ p n k p n x q t q < x q p n ¬ p n t q p n x q
120 119 3ad2ant2 x q t q t k k < x q p n ¬ p n k p n x q t q < x q p n ¬ p n t q p n x q
121 120 adantl x 2 q x q t q t k k < x q p n ¬ p n k p n x q t q < x q p n ¬ p n t q p n x q
122 39 3ad2ant3 x q t q t t
123 122 adantl x 2 q x q t q t t
124 ltdiv1 t x q 0 < q t < x t q < x q
125 123 102 101 109 124 syl112anc x 2 q x q t q t t < x t q < x q
126 125 biimpa x 2 q x q t q t t < x t q < x q
127 simprll x 2 q x q t q t t < x p n ¬ p n t q p n x q p
128 peano2nn n n + 1
129 128 adantl p n n + 1
130 129 ad2antrl x 2 q x q t q t t < x p n ¬ q n t q q n x q n + 1
131 26 ad4antlr x 2 q x q t q t t < x p n q
132 nnnn0 n n 0
133 132 ad2antll x 2 q x q t q t t < x p n n 0
134 zexpcl q n 0 q n
135 131 133 134 syl2anc x 2 q x q t q t t < x p n q n
136 nnz t q t q
137 136 3ad2ant2 x q t q t t q
138 137 ad3antlr x 2 q x q t q t t < x p n t q
139 29 ad4antlr x 2 q x q t q t t < x p n q 0
140 dvdsmulcr q n t q q q 0 q n q t q q q n t q
141 135 138 131 139 140 syl112anc x 2 q x q t q t t < x p n q n q t q q q n t q
142 28 nncnd q q
143 142 ad4antlr x 2 q x q t q t t < x p n q
144 143 133 expp1d x 2 q x q t q t t < x p n q n + 1 = q n q
145 144 eqcomd x 2 q x q t q t t < x p n q n q = q n + 1
146 nncn t t
147 146 3ad2ant3 x q t q t t
148 147 ad3antlr x 2 q x q t q t t < x p n t
149 148 143 139 divcan1d x 2 q x q t q t t < x p n t q q = t
150 145 149 breq12d x 2 q x q t q t t < x p n q n q t q q q n + 1 t
151 141 150 bitr3d x 2 q x q t q t t < x p n q n t q q n + 1 t
152 nnz x q x q
153 152 3ad2ant1 x q t q t x q
154 153 ad3antlr x 2 q x q t q t t < x p n x q
155 dvdsmulcr q n x q q q 0 q n q x q q q n x q
156 135 154 131 139 155 syl112anc x 2 q x q t q t t < x p n q n q x q q q n x q
157 94 ad4antr x 2 q x q t q t t < x p n x
158 157 143 139 divcan1d x 2 q x q t q t t < x p n x q q = x
159 145 158 breq12d x 2 q x q t q t t < x p n q n q x q q q n + 1 x
160 156 159 bitr3d x 2 q x q t q t t < x p n q n x q q n + 1 x
161 151 160 bibi12d x 2 q x q t q t t < x p n q n t q q n x q q n + 1 t q n + 1 x
162 161 notbid x 2 q x q t q t t < x p n ¬ q n t q q n x q ¬ q n + 1 t q n + 1 x
163 162 biimpd x 2 q x q t q t t < x p n ¬ q n t q q n x q ¬ q n + 1 t q n + 1 x
164 163 impr x 2 q x q t q t t < x p n ¬ q n t q q n x q ¬ q n + 1 t q n + 1 x
165 oveq2 m = n + 1 q m = q n + 1
166 165 breq1d m = n + 1 q m t q n + 1 t
167 165 breq1d m = n + 1 q m x q n + 1 x
168 166 167 bibi12d m = n + 1 q m t q m x q n + 1 t q n + 1 x
169 168 notbid m = n + 1 ¬ q m t q m x ¬ q n + 1 t q n + 1 x
170 169 rspcev n + 1 ¬ q n + 1 t q n + 1 x m ¬ q m t q m x
171 130 164 170 syl2anc x 2 q x q t q t t < x p n ¬ q n t q q n x q m ¬ q m t q m x
172 oveq1 p = q p n = q n
173 172 breq1d p = q p n t q q n t q
174 172 breq1d p = q p n x q q n x q
175 173 174 bibi12d p = q p n t q p n x q q n t q q n x q
176 175 notbid p = q ¬ p n t q p n x q ¬ q n t q q n x q
177 176 anbi2d p = q p n ¬ p n t q p n x q p n ¬ q n t q q n x q
178 177 anbi2d p = q x 2 q x q t q t t < x p n ¬ p n t q p n x q x 2 q x q t q t t < x p n ¬ q n t q q n x q
179 oveq1 p = q p m = q m
180 179 breq1d p = q p m t q m t
181 179 breq1d p = q p m x q m x
182 180 181 bibi12d p = q p m t p m x q m t q m x
183 182 notbid p = q ¬ p m t p m x ¬ q m t q m x
184 183 rexbidv p = q m ¬ p m t p m x m ¬ q m t q m x
185 178 184 imbi12d p = q x 2 q x q t q t t < x p n ¬ p n t q p n x q m ¬ p m t p m x x 2 q x q t q t t < x p n ¬ q n t q q n x q m ¬ q m t q m x
186 171 185 mpbiri p = q x 2 q x q t q t t < x p n ¬ p n t q p n x q m ¬ p m t p m x
187 186 com12 x 2 q x q t q t t < x p n ¬ p n t q p n x q p = q m ¬ p m t p m x
188 simplr p n ¬ p = q n
189 188 ad2antlr x 2 q x q t q t t < x p n ¬ p = q ¬ p n t q p n x q n
190 prmz p p
191 190 adantr p n p
192 191 ad2antrl x 2 q x q t q t t < x p n ¬ p = q p
193 132 adantl p n n 0
194 193 ad2antrl x 2 q x q t q t t < x p n ¬ p = q n 0
195 zexpcl p n 0 p n
196 192 194 195 syl2anc x 2 q x q t q t t < x p n ¬ p = q p n
197 26 ad4antlr x 2 q x q t q t t < x p n ¬ p = q q
198 137 ad3antlr x 2 q x q t q t t < x p n ¬ p = q t q
199 dvdsmultr2 p n q t q p n t q p n q t q
200 196 197 198 199 syl3anc x 2 q x q t q t t < x p n ¬ p = q p n t q p n q t q
201 gcdcom p n q p n gcd q = q gcd p n
202 196 197 201 syl2anc x 2 q x q t q t t < x p n ¬ p = q p n gcd q = q gcd p n
203 simp-4r x 2 q x q t q t t < x p n q
204 simprl x 2 q x q t q t t < x p n p
205 simprr x 2 q x q t q t t < x p n n
206 prmdvdsexpb q p n q p n q = p
207 equcom q = p p = q
208 206 207 syl6bb q p n q p n p = q
209 208 biimpd q p n q p n p = q
210 203 204 205 209 syl3anc x 2 q x q t q t t < x p n q p n p = q
211 210 con3d x 2 q x q t q t t < x p n ¬ p = q ¬ q p n
212 211 impr x 2 q x q t q t t < x p n ¬ p = q ¬ q p n
213 simp-4r x 2 q x q t q t t < x p n ¬ p = q q
214 coprm q p n ¬ q p n q gcd p n = 1
215 213 196 214 syl2anc x 2 q x q t q t t < x p n ¬ p = q ¬ q p n q gcd p n = 1
216 212 215 mpbid x 2 q x q t q t t < x p n ¬ p = q q gcd p n = 1
217 202 216 eqtrd x 2 q x q t q t t < x p n ¬ p = q p n gcd q = 1
218 coprmdvds p n q t q p n q t q p n gcd q = 1 p n t q
219 196 197 198 218 syl3anc x 2 q x q t q t t < x p n ¬ p = q p n q t q p n gcd q = 1 p n t q
220 217 219 mpan2d x 2 q x q t q t t < x p n ¬ p = q p n q t q p n t q
221 200 220 impbid x 2 q x q t q t t < x p n ¬ p = q p n t q p n q t q
222 147 ad3antlr x 2 q x q t q t t < x p n ¬ p = q t
223 142 ad4antlr x 2 q x q t q t t < x p n ¬ p = q q
224 29 ad4antlr x 2 q x q t q t t < x p n ¬ p = q q 0
225 222 223 224 divcan2d x 2 q x q t q t t < x p n ¬ p = q q t q = t
226 225 breq2d x 2 q x q t q t t < x p n ¬ p = q p n q t q p n t
227 221 226 bitrd x 2 q x q t q t t < x p n ¬ p = q p n t q p n t
228 153 ad3antlr x 2 q x q t q t t < x p n ¬ p = q x q
229 dvdsmultr2 p n q x q p n x q p n q x q
230 196 197 228 229 syl3anc x 2 q x q t q t t < x p n ¬ p = q p n x q p n q x q
231 coprmdvds p n q x q p n q x q p n gcd q = 1 p n x q
232 196 197 228 231 syl3anc x 2 q x q t q t t < x p n ¬ p = q p n q x q p n gcd q = 1 p n x q
233 217 232 mpan2d x 2 q x q t q t t < x p n ¬ p = q p n q x q p n x q
234 230 233 impbid x 2 q x q t q t t < x p n ¬ p = q p n x q p n q x q
235 94 ad4antr x 2 q x q t q t t < x p n ¬ p = q x
236 235 223 224 divcan2d x 2 q x q t q t t < x p n ¬ p = q q x q = x
237 236 breq2d x 2 q x q t q t t < x p n ¬ p = q p n q x q p n x
238 234 237 bitrd x 2 q x q t q t t < x p n ¬ p = q p n x q p n x
239 227 238 bibi12d x 2 q x q t q t t < x p n ¬ p = q p n t q p n x q p n t p n x
240 239 notbid x 2 q x q t q t t < x p n ¬ p = q ¬ p n t q p n x q ¬ p n t p n x
241 240 biimpa x 2 q x q t q t t < x p n ¬ p = q ¬ p n t q p n x q ¬ p n t p n x
242 oveq2 m = n p m = p n
243 242 breq1d m = n p m t p n t
244 242 breq1d m = n p m x p n x
245 243 244 bibi12d m = n p m t p m x p n t p n x
246 245 notbid m = n ¬ p m t p m x ¬ p n t p n x
247 246 rspcev n ¬ p n t p n x m ¬ p m t p m x
248 189 241 247 syl2anc x 2 q x q t q t t < x p n ¬ p = q ¬ p n t q p n x q m ¬ p m t p m x
249 248 ex x 2 q x q t q t t < x p n ¬ p = q ¬ p n t q p n x q m ¬ p m t p m x
250 249 expr x 2 q x q t q t t < x p n ¬ p = q ¬ p n t q p n x q m ¬ p m t p m x
251 250 com23 x 2 q x q t q t t < x p n ¬ p n t q p n x q ¬ p = q m ¬ p m t p m x
252 251 impr x 2 q x q t q t t < x p n ¬ p n t q p n x q ¬ p = q m ¬ p m t p m x
253 187 252 pm2.61d x 2 q x q t q t t < x p n ¬ p n t q p n x q m ¬ p m t p m x
254 oveq1 r = p r m = p m
255 254 breq1d r = p r m t p m t
256 254 breq1d r = p r m x p m x
257 255 256 bibi12d r = p r m t r m x p m t p m x
258 257 notbid r = p ¬ r m t r m x ¬ p m t p m x
259 258 rexbidv r = p m ¬ r m t r m x m ¬ p m t p m x
260 259 rspcev p m ¬ p m t p m x r m ¬ r m t r m x
261 127 253 260 syl2anc x 2 q x q t q t t < x p n ¬ p n t q p n x q r m ¬ r m t r m x
262 261 exp32 x 2 q x q t q t t < x p n ¬ p n t q p n x q r m ¬ r m t r m x
263 262 rexlimdvv x 2 q x q t q t t < x p n ¬ p n t q p n x q r m ¬ r m t r m x
264 126 263 embantd x 2 q x q t q t t < x t q < x q p n ¬ p n t q p n x q r m ¬ r m t r m x
265 264 ex x 2 q x q t q t t < x t q < x q p n ¬ p n t q p n x q r m ¬ r m t r m x
266 265 com23 x 2 q x q t q t t q < x q p n ¬ p n t q p n x q t < x r m ¬ r m t r m x
267 121 266 syld x 2 q x q t q t k k < x q p n ¬ p n k p n x q t < x r m ¬ r m t r m x
268 112 267 embantd x 2 q x q t q t x q < x k k < x q p n ¬ p n k p n x q t < x r m ¬ r m t r m x
269 93 268 syld x 2 q x q t q t y y < x k k < y p n ¬ p n k p n y t < x r m ¬ r m t r m x
270 269 3exp2 x 2 q x q t q t y y < x k k < y p n ¬ p n k p n y t < x r m ¬ r m t r m x
271 81 270 syld x 2 q q x t q t y y < x k k < y p n ¬ p n k p n y t < x r m ¬ r m t r m x
272 271 3impia x 2 q q x t q t y y < x k k < y p n ¬ p n k p n y t < x r m ¬ r m t r m x
273 272 com24 x 2 q q x y y < x k k < y p n ¬ p n k p n y t t q t < x r m ¬ r m t r m x
274 273 imp32 x 2 q q x y y < x k k < y p n ¬ p n k p n y t t q t < x r m ¬ r m t r m x
275 37 53 274 3syld x 2 q q x y y < x k k < y p n ¬ p n k p n y t q t t < x r m ¬ r m t r m x
276 simpl2 x 2 q q x t ¬ q t t < x q
277 1nn 1
278 277 a1i x 2 q q x t ¬ q t t < x 1
279 142 exp1d q q 1 = q
280 279 breq1d q q 1 t q t
281 280 notbid q ¬ q 1 t ¬ q t
282 281 biimpar q ¬ q t ¬ q 1 t
283 282 3ad2antl2 x 2 q q x ¬ q t ¬ q 1 t
284 283 adantrr x 2 q q x ¬ q t t < x ¬ q 1 t
285 284 adantrl x 2 q q x t ¬ q t t < x ¬ q 1 t
286 279 breq1d q q 1 x q x
287 286 biimpar q q x q 1 x
288 287 3adant1 x 2 q q x q 1 x
289 idd x 2 q q x q 1 x q 1 t q 1 x q 1 t
290 288 289 mpid x 2 q q x q 1 x q 1 t q 1 t
291 290 adantr x 2 q q x t ¬ q t t < x q 1 x q 1 t q 1 t
292 285 291 mtod x 2 q q x t ¬ q t t < x ¬ q 1 x q 1 t
293 biimpr q 1 t q 1 x q 1 x q 1 t
294 292 293 nsyl x 2 q q x t ¬ q t t < x ¬ q 1 t q 1 x
295 oveq1 r = q r m = q m
296 295 breq1d r = q r m t q m t
297 295 breq1d r = q r m x q m x
298 296 297 bibi12d r = q r m t r m x q m t q m x
299 298 notbid r = q ¬ r m t r m x ¬ q m t q m x
300 oveq2 m = 1 q m = q 1
301 300 breq1d m = 1 q m t q 1 t
302 300 breq1d m = 1 q m x q 1 x
303 301 302 bibi12d m = 1 q m t q m x q 1 t q 1 x
304 303 notbid m = 1 ¬ q m t q m x ¬ q 1 t q 1 x
305 299 304 rspc2ev q 1 ¬ q 1 t q 1 x r m ¬ r m t r m x
306 276 278 294 305 syl3anc x 2 q q x t ¬ q t t < x r m ¬ r m t r m x
307 306 expr x 2 q q x t ¬ q t t < x r m ¬ r m t r m x
308 307 expd x 2 q q x t ¬ q t t < x r m ¬ r m t r m x
309 308 adantrl x 2 q q x y y < x k k < y p n ¬ p n k p n y t ¬ q t t < x r m ¬ r m t r m x
310 275 309 pm2.61d x 2 q q x y y < x k k < y p n ¬ p n k p n y t t < x r m ¬ r m t r m x
311 310 expr x 2 q q x y y < x k k < y p n ¬ p n k p n y t t < x r m ¬ r m t r m x
312 311 ralrimiv x 2 q q x y y < x k k < y p n ¬ p n k p n y t t < x r m ¬ r m t r m x
313 breq1 t = k t < x k < x
314 breq2 t = k r m t r m k
315 314 bibi1d t = k r m t r m x r m k r m x
316 315 notbid t = k ¬ r m t r m x ¬ r m k r m x
317 316 2rexbidv t = k r m ¬ r m t r m x r m ¬ r m k r m x
318 254 breq1d r = p r m k p m k
319 318 256 bibi12d r = p r m k r m x p m k p m x
320 319 notbid r = p ¬ r m k r m x ¬ p m k p m x
321 242 breq1d m = n p m k p n k
322 321 244 bibi12d m = n p m k p m x p n k p n x
323 322 notbid m = n ¬ p m k p m x ¬ p n k p n x
324 320 323 cbvrex2vw r m ¬ r m k r m x p n ¬ p n k p n x
325 317 324 syl6bb t = k r m ¬ r m t r m x p n ¬ p n k p n x
326 313 325 imbi12d t = k t < x r m ¬ r m t r m x k < x p n ¬ p n k p n x
327 326 cbvralvw t t < x r m ¬ r m t r m x k k < x p n ¬ p n k p n x
328 312 327 sylib x 2 q q x y y < x k k < y p n ¬ p n k p n y k k < x p n ¬ p n k p n x
329 328 3exp1 x 2 q q x y y < x k k < y p n ¬ p n k p n y k k < x p n ¬ p n k p n x
330 329 rexlimdv x 2 q q x y y < x k k < y p n ¬ p n k p n y k k < x p n ¬ p n k p n x
331 25 330 mpd x 2 y y < x k k < y p n ¬ p n k p n y k k < x p n ¬ p n k p n x
332 14 21 24 331 indstr2 x k k < x p n ¬ p n k p n x
333 7 332 vtoclga A k k < A p n ¬ p n k p n A