Metamath Proof Explorer


Theorem ovoliunnfl

Description: ovoliun is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017)

Ref Expression
Hypothesis ovoliunnfl.0 fFnnfnvol*fnvol*mfmsupranseq1+mvol*fm*<
Assertion ovoliunnfl AxAxA

Proof

Step Hyp Ref Expression
1 ovoliunnfl.0 fFnnfnvol*fnvol*mfmsupranseq1+mvol*fm*<
2 unieq A=A=
3 uni0 =
4 2 3 eqtrdi A=A=
5 4 fveq2d A=vol*A=vol*
6 ovol0 vol*=0
7 5 6 eqtr2di A=0=vol*A
8 7 a1d A=AxAxA0=vol*A
9 ovolge0 A0vol*A
10 9 ad2antll AAxAxA0vol*A
11 reldom Rel
12 11 brrelex1i AAV
13 0sdomg AVAA
14 12 13 syl AAA
15 14 biimparc AAA
16 fodomr AAff:ontoA
17 15 16 sylancom AAff:ontoA
18 unissb AxAx
19 18 anbi1i AxAxxAxxAx
20 r19.26 xAxxxAxxAx
21 19 20 bitr4i AxAxxAxx
22 brdom2 xxx
23 nnenom ω
24 sdomen2 ωxxω
25 23 24 ax-mp xxω
26 isfinite xFinxω
27 25 26 bitr4i xxFin
28 27 orbi1i xxxFinx
29 22 28 bitri xxFinx
30 ovolfi xFinxvol*x=0
31 30 expcom xxFinvol*x=0
32 ovolctb xxvol*x=0
33 32 ex xxvol*x=0
34 31 33 jaod xxFinxvol*x=0
35 29 34 biimtrid xxvol*x=0
36 35 imdistani xxxvol*x=0
37 36 ralimi xAxxxAxvol*x=0
38 21 37 sylbi AxAxxAxvol*x=0
39 38 ancoms xAxAxAxvol*x=0
40 foima f:ontoAf=A
41 40 raleqdv f:ontoAxfxvol*x=0xAxvol*x=0
42 fofn f:ontoAfFn
43 ssid
44 sseq1 x=flxfl
45 fveqeq2 x=flvol*x=0vol*fl=0
46 44 45 anbi12d x=flxvol*x=0flvol*fl=0
47 46 ralima fFnxfxvol*x=0lflvol*fl=0
48 42 43 47 sylancl f:ontoAxfxvol*x=0lflvol*fl=0
49 41 48 bitr3d f:ontoAxAxvol*x=0lflvol*fl=0
50 fveq2 l=nfl=fn
51 50 sseq1d l=nflfn
52 2fveq3 l=nvol*fl=vol*fn
53 52 eqeq1d l=nvol*fl=0vol*fn=0
54 51 53 anbi12d l=nflvol*fl=0fnvol*fn=0
55 54 cbvralvw lflvol*fl=0nfnvol*fn=0
56 0re 0
57 eleq1a 0vol*fn=0vol*fn
58 56 57 ax-mp vol*fn=0vol*fn
59 58 anim2i fnvol*fn=0fnvol*fn
60 59 ralimi nfnvol*fn=0nfnvol*fn
61 55 60 sylbi lflvol*fl=0nfnvol*fn
62 42 61 1 syl2an f:ontoAlflvol*fl=0vol*mfmsupranseq1+mvol*fm*<
63 fofun f:ontoAFunf
64 funiunfv Funfmfm=f
65 63 64 syl f:ontoAmfm=f
66 40 unieqd f:ontoAf=A
67 65 66 eqtrd f:ontoAmfm=A
68 67 fveq2d f:ontoAvol*mfm=vol*A
69 68 adantr f:ontoAlflvol*fl=0vol*mfm=vol*A
70 fveq2 l=mfl=fm
71 70 sseq1d l=mflfm
72 2fveq3 l=mvol*fl=vol*fm
73 72 eqeq1d l=mvol*fl=0vol*fm=0
74 71 73 anbi12d l=mflvol*fl=0fmvol*fm=0
75 74 rspccva lflvol*fl=0mfmvol*fm=0
76 75 simprd lflvol*fl=0mvol*fm=0
77 76 mpteq2dva lflvol*fl=0mvol*fm=m0
78 77 seqeq3d lflvol*fl=0seq1+mvol*fm=seq1+m0
79 78 rneqd lflvol*fl=0ranseq1+mvol*fm=ranseq1+m0
80 79 supeq1d lflvol*fl=0supranseq1+mvol*fm*<=supranseq1+m0*<
81 0cn 0
82 ser1const 0lseq1+×0l=l0
83 81 82 mpan lseq1+×0l=l0
84 nncn ll
85 84 mul01d ll0=0
86 83 85 eqtrd lseq1+×0l=0
87 86 mpteq2ia lseq1+×0l=l0
88 fconstmpt ×0=m0
89 seqeq3 ×0=m0seq1+×0=seq1+m0
90 88 89 ax-mp seq1+×0=seq1+m0
91 1z 1
92 seqfn 1seq1+×0Fn1
93 91 92 ax-mp seq1+×0Fn1
94 nnuz =1
95 94 fneq2i seq1+×0Fnseq1+×0Fn1
96 dffn5 seq1+×0Fnseq1+×0=lseq1+×0l
97 95 96 bitr3i seq1+×0Fn1seq1+×0=lseq1+×0l
98 93 97 mpbi seq1+×0=lseq1+×0l
99 90 98 eqtr3i seq1+m0=lseq1+×0l
100 fconstmpt ×0=l0
101 87 99 100 3eqtr4i seq1+m0=×0
102 101 rneqi ranseq1+m0=ran×0
103 1nn 1
104 ne0i 1
105 rnxp ran×0=0
106 103 104 105 mp2b ran×0=0
107 102 106 eqtri ranseq1+m0=0
108 107 supeq1i supranseq1+m0*<=sup0*<
109 xrltso <Or*
110 0xr 0*
111 supsn <Or*0*sup0*<=0
112 109 110 111 mp2an sup0*<=0
113 108 112 eqtri supranseq1+m0*<=0
114 80 113 eqtrdi lflvol*fl=0supranseq1+mvol*fm*<=0
115 114 adantl f:ontoAlflvol*fl=0supranseq1+mvol*fm*<=0
116 62 69 115 3brtr3d f:ontoAlflvol*fl=0vol*A0
117 116 ex f:ontoAlflvol*fl=0vol*A0
118 49 117 sylbid f:ontoAxAxvol*x=0vol*A0
119 118 exlimiv ff:ontoAxAxvol*x=0vol*A0
120 119 imp ff:ontoAxAxvol*x=0vol*A0
121 17 39 120 syl2an AAxAxAvol*A0
122 ovolcl Avol*A*
123 xrletri3 0*vol*A*0=vol*A0vol*Avol*A0
124 110 122 123 sylancr A0=vol*A0vol*Avol*A0
125 124 ad2antll AAxAxA0=vol*A0vol*Avol*A0
126 10 121 125 mpbir2and AAxAxA0=vol*A
127 126 expl AAxAxA0=vol*A
128 8 127 pm2.61ine AxAxA0=vol*A
129 renepnf 00+∞
130 56 129 mp1i A=0+∞
131 fveq2 A=vol*A=vol*
132 ovolre vol*=+∞
133 131 132 eqtrdi A=vol*A=+∞
134 130 133 neeqtrrd A=0vol*A
135 134 necon2i 0=vol*AA
136 128 135 syl AxAxAA
137 136 expr AxAxAA
138 eqimss A=A
139 138 necon3bi ¬AA
140 137 139 pm2.61d1 AxAxA