Metamath Proof Explorer


Theorem ovoliunnfl

Description: ovoliun is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017)

Ref Expression
Hypothesis ovoliunnfl.0 f Fn n f n vol * f n vol * m f m sup ran seq 1 + m vol * f m * <
Assertion ovoliunnfl A x A x A

Proof

Step Hyp Ref Expression
1 ovoliunnfl.0 f Fn n f n vol * f n vol * m f m sup ran seq 1 + m vol * f m * <
2 unieq A = A =
3 uni0 =
4 2 3 syl6eq A = A =
5 4 fveq2d A = vol * A = vol *
6 ovol0 vol * = 0
7 5 6 syl6req A = 0 = vol * A
8 7 a1d A = A x A x A 0 = vol * A
9 ovolge0 A 0 vol * A
10 9 ad2antll A A x A x A 0 vol * A
11 reldom Rel
12 11 brrelex1i A A V
13 0sdomg A V A A
14 12 13 syl A A A
15 14 biimparc A A A
16 fodomr A A f f : onto A
17 15 16 sylancom A A f f : onto A
18 unissb A x A x
19 18 anbi1i A x A x x A x x A x
20 r19.26 x A x x x A x x A x
21 19 20 bitr4i A x A x x A x x
22 brdom2 x x x
23 nnenom ω
24 sdomen2 ω x x ω
25 23 24 ax-mp x x ω
26 isfinite x Fin x ω
27 25 26 bitr4i x x Fin
28 27 orbi1i x x x Fin x
29 22 28 bitri x x Fin x
30 ovolfi x Fin x vol * x = 0
31 30 expcom x x Fin vol * x = 0
32 ovolctb x x vol * x = 0
33 32 ex x x vol * x = 0
34 31 33 jaod x x Fin x vol * x = 0
35 29 34 syl5bi x x vol * x = 0
36 35 imdistani x x x vol * x = 0
37 36 ralimi x A x x x A x vol * x = 0
38 21 37 sylbi A x A x x A x vol * x = 0
39 38 ancoms x A x A x A x vol * x = 0
40 foima f : onto A f = A
41 40 raleqdv f : onto A x f x vol * x = 0 x A x vol * x = 0
42 fofn f : onto A f Fn
43 ssid
44 sseq1 x = f l x f l
45 fveqeq2 x = f l vol * x = 0 vol * f l = 0
46 44 45 anbi12d x = f l x vol * x = 0 f l vol * f l = 0
47 46 ralima f Fn x f x vol * x = 0 l f l vol * f l = 0
48 42 43 47 sylancl f : onto A x f x vol * x = 0 l f l vol * f l = 0
49 41 48 bitr3d f : onto A x A x vol * x = 0 l f l vol * f l = 0
50 fveq2 l = n f l = f n
51 50 sseq1d l = n f l f n
52 2fveq3 l = n vol * f l = vol * f n
53 52 eqeq1d l = n vol * f l = 0 vol * f n = 0
54 51 53 anbi12d l = n f l vol * f l = 0 f n vol * f n = 0
55 54 cbvralvw l f l vol * f l = 0 n f n vol * f n = 0
56 0re 0
57 eleq1a 0 vol * f n = 0 vol * f n
58 56 57 ax-mp vol * f n = 0 vol * f n
59 58 anim2i f n vol * f n = 0 f n vol * f n
60 59 ralimi n f n vol * f n = 0 n f n vol * f n
61 55 60 sylbi l f l vol * f l = 0 n f n vol * f n
62 42 61 1 syl2an f : onto A l f l vol * f l = 0 vol * m f m sup ran seq 1 + m vol * f m * <
63 fofun f : onto A Fun f
64 funiunfv Fun f m f m = f
65 63 64 syl f : onto A m f m = f
66 40 unieqd f : onto A f = A
67 65 66 eqtrd f : onto A m f m = A
68 67 fveq2d f : onto A vol * m f m = vol * A
69 68 adantr f : onto A l f l vol * f l = 0 vol * m f m = vol * A
70 fveq2 l = m f l = f m
71 70 sseq1d l = m f l f m
72 2fveq3 l = m vol * f l = vol * f m
73 72 eqeq1d l = m vol * f l = 0 vol * f m = 0
74 71 73 anbi12d l = m f l vol * f l = 0 f m vol * f m = 0
75 74 rspccva l f l vol * f l = 0 m f m vol * f m = 0
76 75 simprd l f l vol * f l = 0 m vol * f m = 0
77 76 mpteq2dva l f l vol * f l = 0 m vol * f m = m 0
78 77 seqeq3d l f l vol * f l = 0 seq 1 + m vol * f m = seq 1 + m 0
79 78 rneqd l f l vol * f l = 0 ran seq 1 + m vol * f m = ran seq 1 + m 0
80 79 supeq1d l f l vol * f l = 0 sup ran seq 1 + m vol * f m * < = sup ran seq 1 + m 0 * <
81 0cn 0
82 ser1const 0 l seq 1 + × 0 l = l 0
83 81 82 mpan l seq 1 + × 0 l = l 0
84 nncn l l
85 84 mul01d l l 0 = 0
86 83 85 eqtrd l seq 1 + × 0 l = 0
87 86 mpteq2ia l seq 1 + × 0 l = l 0
88 fconstmpt × 0 = m 0
89 seqeq3 × 0 = m 0 seq 1 + × 0 = seq 1 + m 0
90 88 89 ax-mp seq 1 + × 0 = seq 1 + m 0
91 1z 1
92 seqfn 1 seq 1 + × 0 Fn 1
93 91 92 ax-mp seq 1 + × 0 Fn 1
94 nnuz = 1
95 94 fneq2i seq 1 + × 0 Fn seq 1 + × 0 Fn 1
96 dffn5 seq 1 + × 0 Fn seq 1 + × 0 = l seq 1 + × 0 l
97 95 96 bitr3i seq 1 + × 0 Fn 1 seq 1 + × 0 = l seq 1 + × 0 l
98 93 97 mpbi seq 1 + × 0 = l seq 1 + × 0 l
99 90 98 eqtr3i seq 1 + m 0 = l seq 1 + × 0 l
100 fconstmpt × 0 = l 0
101 87 99 100 3eqtr4i seq 1 + m 0 = × 0
102 101 rneqi ran seq 1 + m 0 = ran × 0
103 1nn 1
104 ne0i 1
105 rnxp ran × 0 = 0
106 103 104 105 mp2b ran × 0 = 0
107 102 106 eqtri ran seq 1 + m 0 = 0
108 107 supeq1i sup ran seq 1 + m 0 * < = sup 0 * <
109 xrltso < Or *
110 0xr 0 *
111 supsn < Or * 0 * sup 0 * < = 0
112 109 110 111 mp2an sup 0 * < = 0
113 108 112 eqtri sup ran seq 1 + m 0 * < = 0
114 80 113 syl6eq l f l vol * f l = 0 sup ran seq 1 + m vol * f m * < = 0
115 114 adantl f : onto A l f l vol * f l = 0 sup ran seq 1 + m vol * f m * < = 0
116 62 69 115 3brtr3d f : onto A l f l vol * f l = 0 vol * A 0
117 116 ex f : onto A l f l vol * f l = 0 vol * A 0
118 49 117 sylbid f : onto A x A x vol * x = 0 vol * A 0
119 118 exlimiv f f : onto A x A x vol * x = 0 vol * A 0
120 119 imp f f : onto A x A x vol * x = 0 vol * A 0
121 17 39 120 syl2an A A x A x A vol * A 0
122 ovolcl A vol * A *
123 xrletri3 0 * vol * A * 0 = vol * A 0 vol * A vol * A 0
124 110 122 123 sylancr A 0 = vol * A 0 vol * A vol * A 0
125 124 ad2antll A A x A x A 0 = vol * A 0 vol * A vol * A 0
126 10 121 125 mpbir2and A A x A x A 0 = vol * A
127 126 expl A A x A x A 0 = vol * A
128 8 127 pm2.61ine A x A x A 0 = vol * A
129 renepnf 0 0 +∞
130 56 129 mp1i A = 0 +∞
131 fveq2 A = vol * A = vol *
132 ovolre vol * = +∞
133 131 132 syl6eq A = vol * A = +∞
134 130 133 neeqtrrd A = 0 vol * A
135 134 necon2i 0 = vol * A A
136 128 135 syl A x A x A A
137 136 expr A x A x A A
138 eqimss A = A
139 138 necon3bi ¬ A A
140 137 139 pm2.61d1 A x A x A