| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovoliunnfl.0 |
|
| 2 |
|
unieq |
|
| 3 |
|
uni0 |
|
| 4 |
2 3
|
eqtrdi |
|
| 5 |
4
|
fveq2d |
|
| 6 |
|
ovol0 |
|
| 7 |
5 6
|
eqtr2di |
|
| 8 |
7
|
a1d |
|
| 9 |
|
ovolge0 |
|
| 10 |
9
|
ad2antll |
|
| 11 |
|
reldom |
|
| 12 |
11
|
brrelex1i |
|
| 13 |
|
0sdomg |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
biimparc |
|
| 16 |
|
fodomr |
|
| 17 |
15 16
|
sylancom |
|
| 18 |
|
unissb |
|
| 19 |
18
|
anbi1i |
|
| 20 |
|
r19.26 |
|
| 21 |
19 20
|
bitr4i |
|
| 22 |
|
brdom2 |
|
| 23 |
|
nnenom |
|
| 24 |
|
sdomen2 |
|
| 25 |
23 24
|
ax-mp |
|
| 26 |
|
isfinite |
|
| 27 |
25 26
|
bitr4i |
|
| 28 |
27
|
orbi1i |
|
| 29 |
22 28
|
bitri |
|
| 30 |
|
ovolfi |
|
| 31 |
30
|
expcom |
|
| 32 |
|
ovolctb |
|
| 33 |
32
|
ex |
|
| 34 |
31 33
|
jaod |
|
| 35 |
29 34
|
biimtrid |
|
| 36 |
35
|
imdistani |
|
| 37 |
36
|
ralimi |
|
| 38 |
21 37
|
sylbi |
|
| 39 |
38
|
ancoms |
|
| 40 |
|
foima |
|
| 41 |
40
|
raleqdv |
|
| 42 |
|
fofn |
|
| 43 |
|
ssid |
|
| 44 |
|
sseq1 |
|
| 45 |
|
fveqeq2 |
|
| 46 |
44 45
|
anbi12d |
|
| 47 |
46
|
ralima |
|
| 48 |
42 43 47
|
sylancl |
|
| 49 |
41 48
|
bitr3d |
|
| 50 |
|
fveq2 |
|
| 51 |
50
|
sseq1d |
|
| 52 |
|
2fveq3 |
|
| 53 |
52
|
eqeq1d |
|
| 54 |
51 53
|
anbi12d |
|
| 55 |
54
|
cbvralvw |
|
| 56 |
|
0re |
|
| 57 |
|
eleq1a |
|
| 58 |
56 57
|
ax-mp |
|
| 59 |
58
|
anim2i |
|
| 60 |
59
|
ralimi |
|
| 61 |
55 60
|
sylbi |
|
| 62 |
42 61 1
|
syl2an |
|
| 63 |
|
fofun |
|
| 64 |
|
funiunfv |
|
| 65 |
63 64
|
syl |
|
| 66 |
40
|
unieqd |
|
| 67 |
65 66
|
eqtrd |
|
| 68 |
67
|
fveq2d |
|
| 69 |
68
|
adantr |
|
| 70 |
|
fveq2 |
|
| 71 |
70
|
sseq1d |
|
| 72 |
|
2fveq3 |
|
| 73 |
72
|
eqeq1d |
|
| 74 |
71 73
|
anbi12d |
|
| 75 |
74
|
rspccva |
|
| 76 |
75
|
simprd |
|
| 77 |
76
|
mpteq2dva |
|
| 78 |
77
|
seqeq3d |
|
| 79 |
78
|
rneqd |
|
| 80 |
79
|
supeq1d |
|
| 81 |
|
0cn |
|
| 82 |
|
ser1const |
|
| 83 |
81 82
|
mpan |
|
| 84 |
|
nncn |
|
| 85 |
84
|
mul01d |
|
| 86 |
83 85
|
eqtrd |
|
| 87 |
86
|
mpteq2ia |
|
| 88 |
|
fconstmpt |
|
| 89 |
|
seqeq3 |
|
| 90 |
88 89
|
ax-mp |
|
| 91 |
|
1z |
|
| 92 |
|
seqfn |
|
| 93 |
91 92
|
ax-mp |
|
| 94 |
|
nnuz |
|
| 95 |
94
|
fneq2i |
|
| 96 |
|
dffn5 |
|
| 97 |
95 96
|
bitr3i |
|
| 98 |
93 97
|
mpbi |
|
| 99 |
90 98
|
eqtr3i |
|
| 100 |
|
fconstmpt |
|
| 101 |
87 99 100
|
3eqtr4i |
|
| 102 |
101
|
rneqi |
|
| 103 |
|
1nn |
|
| 104 |
|
ne0i |
|
| 105 |
|
rnxp |
|
| 106 |
103 104 105
|
mp2b |
|
| 107 |
102 106
|
eqtri |
|
| 108 |
107
|
supeq1i |
|
| 109 |
|
xrltso |
|
| 110 |
|
0xr |
|
| 111 |
|
supsn |
|
| 112 |
109 110 111
|
mp2an |
|
| 113 |
108 112
|
eqtri |
|
| 114 |
80 113
|
eqtrdi |
|
| 115 |
114
|
adantl |
|
| 116 |
62 69 115
|
3brtr3d |
|
| 117 |
116
|
ex |
|
| 118 |
49 117
|
sylbid |
|
| 119 |
118
|
exlimiv |
|
| 120 |
119
|
imp |
|
| 121 |
17 39 120
|
syl2an |
|
| 122 |
|
ovolcl |
|
| 123 |
|
xrletri3 |
|
| 124 |
110 122 123
|
sylancr |
|
| 125 |
124
|
ad2antll |
|
| 126 |
10 121 125
|
mpbir2and |
|
| 127 |
126
|
expl |
|
| 128 |
8 127
|
pm2.61ine |
|
| 129 |
|
renepnf |
|
| 130 |
56 129
|
mp1i |
|
| 131 |
|
fveq2 |
|
| 132 |
|
ovolre |
|
| 133 |
131 132
|
eqtrdi |
|
| 134 |
130 133
|
neeqtrrd |
|
| 135 |
134
|
necon2i |
|
| 136 |
128 135
|
syl |
|
| 137 |
136
|
expr |
|
| 138 |
|
eqimss |
|
| 139 |
138
|
necon3bi |
|
| 140 |
137 139
|
pm2.61d1 |
|