Metamath Proof Explorer


Theorem pcorevlem

Description: Lemma for pcorev . Prove continuity of the homotopy function. (Contributed by Jeff Madsen, 11-Jun-2010) (Proof shortened by Mario Carneiro, 8-Jun-2014)

Ref Expression
Hypotheses pcorev.1 G=x01F1x
pcorev.2 P=01×F1
pcorevlem.3 H=s01,t01Fifs1211t2s11t12s1
Assertion pcorevlem FIICnJHG*𝑝JFPHtpyJPG*𝑝JFphJP

Proof

Step Hyp Ref Expression
1 pcorev.1 G=x01F1x
2 pcorev.2 P=01×F1
3 pcorevlem.3 H=s01,t01Fifs1211t2s11t12s1
4 iitopon IITopOn01
5 4 a1i FIICnJIITopOn01
6 iirevcn x011xIICnII
7 6 a1i FIICnJx011xIICnII
8 id FIICnJFIICnJ
9 5 7 8 cnmpt11f FIICnJx01F1xIICnJ
10 1 9 eqeltrid FIICnJGIICnJ
11 1elunit 101
12 oveq2 x=11x=11
13 1m1e0 11=0
14 12 13 eqtrdi x=11x=0
15 14 fveq2d x=1F1x=F0
16 fvex F0V
17 15 1 16 fvmpt 101G1=F0
18 11 17 mp1i FIICnJG1=F0
19 10 8 18 pcocn FIICnJG*𝑝JFIICnJ
20 cntop2 FIICnJJTop
21 toptopon2 JTopJTopOnJ
22 20 21 sylib FIICnJJTopOnJ
23 iiuni 01=II
24 eqid J=J
25 23 24 cnf FIICnJF:01J
26 ffvelcdm F:01J101F1J
27 25 11 26 sylancl FIICnJF1J
28 2 pcoptcl JTopOnJF1JPIICnJP0=F1P1=F1
29 22 27 28 syl2anc FIICnJPIICnJP0=F1P1=F1
30 29 simp1d FIICnJPIICnJ
31 eqid topGenran.=topGenran.
32 eqid topGenran.𝑡012=topGenran.𝑡012
33 eqid topGenran.𝑡121=topGenran.𝑡121
34 dfii2 II=topGenran.𝑡01
35 0red FIICnJ0
36 1red FIICnJ1
37 halfre 12
38 halfge0 012
39 1re 1
40 halflt1 12<1
41 37 39 40 ltleii 121
42 elicc01 120112012121
43 37 38 41 42 mpbir3an 1201
44 43 a1i FIICnJ1201
45 simprl FIICnJs=12t01s=12
46 45 oveq2d FIICnJs=12t012s=212
47 2cn 2
48 2ne0 20
49 47 48 recidi 212=1
50 46 49 eqtrdi FIICnJs=12t012s=1
51 50 oveq1d FIICnJs=12t012s1=11
52 51 13 eqtrdi FIICnJs=12t012s1=0
53 52 oveq2d FIICnJs=12t0112s1=10
54 1m0e1 10=1
55 53 54 eqtrdi FIICnJs=12t0112s1=1
56 50 55 eqtr4d FIICnJs=12t012s=12s1
57 56 oveq2d FIICnJs=12t011t2s=1t12s1
58 57 oveq2d FIICnJs=12t0111t2s=11t12s1
59 retopon topGenran.TopOn
60 0re 0
61 iccssre 012012
62 60 37 61 mp2an 012
63 resttopon topGenran.TopOn012topGenran.𝑡012TopOn012
64 59 62 63 mp2an topGenran.𝑡012TopOn012
65 64 a1i FIICnJtopGenran.𝑡012TopOn012
66 65 5 cnmpt2nd FIICnJs012,t01ttopGenran.𝑡012×tIICnII
67 oveq2 x=t1x=1t
68 65 5 66 5 7 67 cnmpt21 FIICnJs012,t011ttopGenran.𝑡012×tIICnII
69 65 5 cnmpt1st FIICnJs012,t01stopGenran.𝑡012×tIICntopGenran.𝑡012
70 32 iihalf1cn x0122xtopGenran.𝑡012CnII
71 70 a1i FIICnJx0122xtopGenran.𝑡012CnII
72 oveq2 x=s2x=2s
73 65 5 69 65 71 72 cnmpt21 FIICnJs012,t012stopGenran.𝑡012×tIICnII
74 iimulcn x01,y01xyII×tIICnII
75 74 a1i FIICnJx01,y01xyII×tIICnII
76 oveq12 x=1ty=2sxy=1t2s
77 65 5 68 73 5 5 75 76 cnmpt22 FIICnJs012,t011t2stopGenran.𝑡012×tIICnII
78 oveq2 x=1t2s1x=11t2s
79 65 5 77 5 7 78 cnmpt21 FIICnJs012,t0111t2stopGenran.𝑡012×tIICnII
80 iccssre 121121
81 37 39 80 mp2an 121
82 resttopon topGenran.TopOn121topGenran.𝑡121TopOn121
83 59 81 82 mp2an topGenran.𝑡121TopOn121
84 83 a1i FIICnJtopGenran.𝑡121TopOn121
85 84 5 cnmpt2nd FIICnJs121,t01ttopGenran.𝑡121×tIICnII
86 84 5 85 5 7 67 cnmpt21 FIICnJs121,t011ttopGenran.𝑡121×tIICnII
87 84 5 cnmpt1st FIICnJs121,t01stopGenran.𝑡121×tIICntopGenran.𝑡121
88 33 iihalf2cn x1212x1topGenran.𝑡121CnII
89 88 a1i FIICnJx1212x1topGenran.𝑡121CnII
90 72 oveq1d x=s2x1=2s1
91 84 5 87 84 89 90 cnmpt21 FIICnJs121,t012s1topGenran.𝑡121×tIICnII
92 oveq2 x=2s11x=12s1
93 84 5 91 5 7 92 cnmpt21 FIICnJs121,t0112s1topGenran.𝑡121×tIICnII
94 oveq12 x=1ty=12s1xy=1t12s1
95 84 5 86 93 5 5 75 94 cnmpt22 FIICnJs121,t011t12s1topGenran.𝑡121×tIICnII
96 oveq2 x=1t12s11x=11t12s1
97 84 5 95 5 7 96 cnmpt21 FIICnJs121,t0111t12s1topGenran.𝑡121×tIICnII
98 31 32 33 34 35 36 44 5 58 79 97 cnmpopc FIICnJs01,t01ifs1211t2s11t12s1II×tIICnII
99 5 5 98 8 cnmpt21f FIICnJs01,t01Fifs1211t2s11t12s1II×tIICnJ
100 3 99 eqeltrid FIICnJHII×tIICnJ
101 simpr FIICnJy01y01
102 0elunit 001
103 simpl s=yt=0s=y
104 103 breq1d s=yt=0s12y12
105 simpr s=yt=0t=0
106 105 oveq2d s=yt=01t=10
107 106 54 eqtrdi s=yt=01t=1
108 103 oveq2d s=yt=02s=2y
109 107 108 oveq12d s=yt=01t2s=12y
110 109 oveq2d s=yt=011t2s=112y
111 108 oveq1d s=yt=02s1=2y1
112 111 oveq2d s=yt=012s1=12y1
113 107 112 oveq12d s=yt=01t12s1=112y1
114 113 oveq2d s=yt=011t12s1=1112y1
115 104 110 114 ifbieq12d s=yt=0ifs1211t2s11t12s1=ify12112y1112y1
116 115 fveq2d s=yt=0Fifs1211t2s11t12s1=Fify12112y1112y1
117 fvex Fify12112y1112y1V
118 116 3 117 ovmpoa y01001yH0=Fify12112y1112y1
119 101 102 118 sylancl FIICnJy01yH0=Fify12112y1112y1
120 iftrue y12ify12112y1112y1=112y
121 120 adantl FIICnJy01y12ify12112y1112y1=112y
122 121 fveq2d FIICnJy01y12Fify12112y1112y1=F112y
123 elii1 y012y01y12
124 10 8 pcoval1 FIICnJy012G*𝑝JFy=G2y
125 iihalf1 y0122y01
126 125 adantl FIICnJy0122y01
127 oveq2 x=2y1x=12y
128 127 fveq2d x=2yF1x=F12y
129 fvex F12yV
130 128 1 129 fvmpt 2y01G2y=F12y
131 unitssre 01
132 131 sseli 2y012y
133 132 recnd 2y012y
134 133 mullidd 2y0112y=2y
135 134 oveq2d 2y01112y=12y
136 135 fveq2d 2y01F112y=F12y
137 130 136 eqtr4d 2y01G2y=F112y
138 126 137 syl FIICnJy012G2y=F112y
139 124 138 eqtrd FIICnJy012G*𝑝JFy=F112y
140 123 139 sylan2br FIICnJy01y12G*𝑝JFy=F112y
141 140 anassrs FIICnJy01y12G*𝑝JFy=F112y
142 122 141 eqtr4d FIICnJy01y12Fify12112y1112y1=G*𝑝JFy
143 iffalse ¬y12ify12112y1112y1=1112y1
144 143 adantl FIICnJy01¬y12ify12112y1112y1=1112y1
145 144 fveq2d FIICnJy01¬y12Fify12112y1112y1=F1112y1
146 elii2 y01¬y12y121
147 10 8 18 pcoval2 FIICnJy121G*𝑝JFy=F2y1
148 iihalf2 y1212y101
149 148 adantl FIICnJy1212y101
150 ax-1cn 1
151 131 sseli 2y1012y1
152 151 recnd 2y1012y1
153 subcl 12y112y1
154 150 152 153 sylancr 2y10112y1
155 154 mullidd 2y101112y1=12y1
156 155 oveq2d 2y1011112y1=112y1
157 nncan 12y1112y1=2y1
158 150 152 157 sylancr 2y101112y1=2y1
159 156 158 eqtr2d 2y1012y1=1112y1
160 149 159 syl FIICnJy1212y1=1112y1
161 160 fveq2d FIICnJy121F2y1=F1112y1
162 147 161 eqtrd FIICnJy121G*𝑝JFy=F1112y1
163 146 162 sylan2 FIICnJy01¬y12G*𝑝JFy=F1112y1
164 163 anassrs FIICnJy01¬y12G*𝑝JFy=F1112y1
165 145 164 eqtr4d FIICnJy01¬y12Fify12112y1112y1=G*𝑝JFy
166 142 165 pm2.61dan FIICnJy01Fify12112y1112y1=G*𝑝JFy
167 119 166 eqtrd FIICnJy01yH0=G*𝑝JFy
168 131 sseli y01y
169 168 recnd y01y
170 mulcl 2y2y
171 47 169 170 sylancr y012y
172 171 adantl FIICnJy012y
173 172 mul02d FIICnJy0102y=0
174 173 oveq2d FIICnJy01102y=10
175 174 54 eqtrdi FIICnJy01102y=1
176 subcl 2y12y1
177 172 150 176 sylancl FIICnJy012y1
178 150 177 153 sylancr FIICnJy0112y1
179 178 mul02d FIICnJy01012y1=0
180 179 oveq2d FIICnJy011012y1=10
181 180 54 eqtrdi FIICnJy011012y1=1
182 175 181 ifeq12d FIICnJy01ify12102y1012y1=ify1211
183 ifid ify1211=1
184 182 183 eqtrdi FIICnJy01ify12102y1012y1=1
185 184 fveq2d FIICnJy01Fify12102y1012y1=F1
186 simpl s=yt=1s=y
187 186 breq1d s=yt=1s12y12
188 simpr s=yt=1t=1
189 188 oveq2d s=yt=11t=11
190 189 13 eqtrdi s=yt=11t=0
191 186 oveq2d s=yt=12s=2y
192 190 191 oveq12d s=yt=11t2s=02y
193 192 oveq2d s=yt=111t2s=102y
194 191 oveq1d s=yt=12s1=2y1
195 194 oveq2d s=yt=112s1=12y1
196 190 195 oveq12d s=yt=11t12s1=012y1
197 196 oveq2d s=yt=111t12s1=1012y1
198 187 193 197 ifbieq12d s=yt=1ifs1211t2s11t12s1=ify12102y1012y1
199 198 fveq2d s=yt=1Fifs1211t2s11t12s1=Fify12102y1012y1
200 fvex Fify12102y1012y1V
201 199 3 200 ovmpoa y01101yH1=Fify12102y1012y1
202 101 11 201 sylancl FIICnJy01yH1=Fify12102y1012y1
203 2 fveq1i Py=01×F1y
204 fvex F1V
205 204 fvconst2 y0101×F1y=F1
206 205 adantl FIICnJy0101×F1y=F1
207 203 206 eqtrid FIICnJy01Py=F1
208 185 202 207 3eqtr4d FIICnJy01yH1=Py
209 simpl s=0t=ys=0
210 209 38 eqbrtrdi s=0t=ys12
211 210 iftrued s=0t=yifs1211t2s11t12s1=11t2s
212 simpr s=0t=yt=y
213 212 oveq2d s=0t=y1t=1y
214 209 oveq2d s=0t=y2s=20
215 2t0e0 20=0
216 214 215 eqtrdi s=0t=y2s=0
217 213 216 oveq12d s=0t=y1t2s=1y0
218 217 oveq2d s=0t=y11t2s=11y0
219 211 218 eqtrd s=0t=yifs1211t2s11t12s1=11y0
220 219 fveq2d s=0t=yFifs1211t2s11t12s1=F11y0
221 fvex F11y0V
222 220 3 221 ovmpoa 001y010Hy=F11y0
223 102 222 mpan y010Hy=F11y0
224 subcl 1y1y
225 150 169 224 sylancr y011y
226 225 mul01d y011y0=0
227 226 oveq2d y0111y0=10
228 227 54 eqtrdi y0111y0=1
229 228 fveq2d y01F11y0=F1
230 223 229 eqtrd y010Hy=F1
231 10 8 pco0 FIICnJG*𝑝JF0=G0
232 oveq2 x=01x=10
233 232 54 eqtrdi x=01x=1
234 233 fveq2d x=0F1x=F1
235 234 1 204 fvmpt 001G0=F1
236 102 235 ax-mp G0=F1
237 231 236 eqtr2di FIICnJF1=G*𝑝JF0
238 230 237 sylan9eqr FIICnJy010Hy=G*𝑝JF0
239 37 39 ltnlei 12<1¬112
240 40 239 mpbi ¬112
241 simpl s=1t=ys=1
242 241 breq1d s=1t=ys12112
243 240 242 mtbiri s=1t=y¬s12
244 243 iffalsed s=1t=yifs1211t2s11t12s1=11t12s1
245 simpr s=1t=yt=y
246 245 oveq2d s=1t=y1t=1y
247 241 oveq2d s=1t=y2s=21
248 2t1e2 21=2
249 247 248 eqtrdi s=1t=y2s=2
250 249 oveq1d s=1t=y2s1=21
251 2m1e1 21=1
252 250 251 eqtrdi s=1t=y2s1=1
253 252 oveq2d s=1t=y12s1=11
254 253 13 eqtrdi s=1t=y12s1=0
255 246 254 oveq12d s=1t=y1t12s1=1y0
256 255 oveq2d s=1t=y11t12s1=11y0
257 244 256 eqtrd s=1t=yifs1211t2s11t12s1=11y0
258 257 fveq2d s=1t=yFifs1211t2s11t12s1=F11y0
259 258 3 221 ovmpoa 101y011Hy=F11y0
260 11 259 mpan y011Hy=F11y0
261 260 229 eqtrd y011Hy=F1
262 10 8 pco1 FIICnJG*𝑝JF1=F1
263 262 eqcomd FIICnJF1=G*𝑝JF1
264 261 263 sylan9eqr FIICnJy011Hy=G*𝑝JF1
265 19 30 100 167 208 238 264 isphtpy2d FIICnJHG*𝑝JFPHtpyJP
266 265 ne0d FIICnJG*𝑝JFPHtpyJP
267 isphtpc G*𝑝JFphJPG*𝑝JFIICnJPIICnJG*𝑝JFPHtpyJP
268 19 30 266 267 syl3anbrc FIICnJG*𝑝JFphJP
269 265 268 jca FIICnJHG*𝑝JFPHtpyJPG*𝑝JFphJP