Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
|
2 |
|
plydiv.tm |
|
3 |
|
plydiv.rc |
|
4 |
|
plydiv.m1 |
|
5 |
|
plydiv.f |
|
6 |
|
plydiv.g |
|
7 |
|
plydiv.z |
|
8 |
|
plydiv.r |
|
9 |
|
plydiv.d |
|
10 |
|
plydiv.e |
|
11 |
|
plydiv.fz |
|
12 |
|
plydiv.u |
|
13 |
|
plydiv.h |
|
14 |
|
plydiv.al |
|
15 |
|
plydiv.a |
|
16 |
|
plydiv.b |
|
17 |
|
plydiv.m |
|
18 |
|
plydiv.n |
|
19 |
|
plybss |
|
20 |
5 19
|
syl |
|
21 |
1 2 3 4
|
plydivlem1 |
|
22 |
15
|
coef2 |
|
23 |
5 21 22
|
syl2anc |
|
24 |
|
dgrcl |
|
25 |
5 24
|
syl |
|
26 |
17 25
|
eqeltrid |
|
27 |
23 26
|
ffvelrnd |
|
28 |
20 27
|
sseldd |
|
29 |
16
|
coef2 |
|
30 |
6 21 29
|
syl2anc |
|
31 |
|
dgrcl |
|
32 |
6 31
|
syl |
|
33 |
18 32
|
eqeltrid |
|
34 |
30 33
|
ffvelrnd |
|
35 |
20 34
|
sseldd |
|
36 |
18 16
|
dgreq0 |
|
37 |
6 36
|
syl |
|
38 |
37
|
necon3bid |
|
39 |
7 38
|
mpbid |
|
40 |
28 35 39
|
divrecd |
|
41 |
|
fvex |
|
42 |
|
eleq1 |
|
43 |
|
neeq1 |
|
44 |
42 43
|
anbi12d |
|
45 |
44
|
anbi2d |
|
46 |
|
oveq2 |
|
47 |
46
|
eleq1d |
|
48 |
45 47
|
imbi12d |
|
49 |
41 48 3
|
vtocl |
|
50 |
49
|
ex |
|
51 |
34 39 50
|
mp2and |
|
52 |
2 27 51
|
caovcld |
|
53 |
40 52
|
eqeltrd |
|
54 |
13
|
ply1term |
|
55 |
20 53 9 54
|
syl3anc |
|
56 |
55
|
adantr |
|
57 |
|
simpr |
|
58 |
1
|
adantlr |
|
59 |
56 57 58
|
plyadd |
|
60 |
|
cnex |
|
61 |
60
|
a1i |
|
62 |
5
|
adantr |
|
63 |
|
plyf |
|
64 |
62 63
|
syl |
|
65 |
|
mulcl |
|
66 |
65
|
adantl |
|
67 |
|
plyf |
|
68 |
56 67
|
syl |
|
69 |
6
|
adantr |
|
70 |
|
plyf |
|
71 |
69 70
|
syl |
|
72 |
|
inidm |
|
73 |
66 68 71 61 61 72
|
off |
|
74 |
|
plyf |
|
75 |
74
|
adantl |
|
76 |
66 71 75 61 61 72
|
off |
|
77 |
|
subsub4 |
|
78 |
77
|
adantl |
|
79 |
61 64 73 76 78
|
caofass |
|
80 |
|
mulcom |
|
81 |
80
|
adantl |
|
82 |
61 68 71 81
|
caofcom |
|
83 |
82
|
oveq1d |
|
84 |
|
adddi |
|
85 |
84
|
adantl |
|
86 |
61 71 68 75 85
|
caofdi |
|
87 |
83 86
|
eqtr4d |
|
88 |
87
|
oveq2d |
|
89 |
79 88
|
eqtrd |
|
90 |
89
|
eqeq1d |
|
91 |
89
|
fveq2d |
|
92 |
91
|
breq1d |
|
93 |
90 92
|
orbi12d |
|
94 |
93
|
biimpa |
|
95 |
|
oveq2 |
|
96 |
95
|
oveq2d |
|
97 |
8 96
|
eqtrid |
|
98 |
97
|
eqeq1d |
|
99 |
97
|
fveq2d |
|
100 |
99
|
breq1d |
|
101 |
98 100
|
orbi12d |
|
102 |
101
|
rspcev |
|
103 |
59 94 102
|
syl2an2r |
|
104 |
55 6 1 2
|
plymul |
|
105 |
|
eqid |
|
106 |
17 105
|
dgrsub |
|
107 |
5 104 106
|
syl2anc |
|
108 |
17 15
|
dgreq0 |
|
109 |
5 108
|
syl |
|
110 |
109
|
necon3bid |
|
111 |
11 110
|
mpbid |
|
112 |
28 35 111 39
|
divne0d |
|
113 |
20 53
|
sseldd |
|
114 |
13
|
coe1term |
|
115 |
113 9 9 114
|
syl3anc |
|
116 |
|
eqid |
|
117 |
116
|
iftruei |
|
118 |
115 117
|
eqtrdi |
|
119 |
|
c0ex |
|
120 |
119
|
fvconst2 |
|
121 |
9 120
|
syl |
|
122 |
112 118 121
|
3netr4d |
|
123 |
|
fveq2 |
|
124 |
|
coe0 |
|
125 |
123 124
|
eqtrdi |
|
126 |
125
|
fveq1d |
|
127 |
126
|
necon3i |
|
128 |
122 127
|
syl |
|
129 |
|
eqid |
|
130 |
129 18
|
dgrmul |
|
131 |
55 128 6 7 130
|
syl22anc |
|
132 |
13
|
dgr1term |
|
133 |
113 112 9 132
|
syl3anc |
|
134 |
133 10
|
eqtr4d |
|
135 |
134
|
oveq1d |
|
136 |
26
|
nn0cnd |
|
137 |
33
|
nn0cnd |
|
138 |
136 137
|
npcand |
|
139 |
135 138
|
eqtrd |
|
140 |
131 139
|
eqtrd |
|
141 |
140
|
ifeq1d |
|
142 |
|
ifid |
|
143 |
141 142
|
eqtrdi |
|
144 |
107 143
|
breqtrd |
|
145 |
|
eqid |
|
146 |
15 145
|
coesub |
|
147 |
5 104 146
|
syl2anc |
|
148 |
147
|
fveq1d |
|
149 |
15
|
coef3 |
|
150 |
|
ffn |
|
151 |
5 149 150
|
3syl |
|
152 |
145
|
coef3 |
|
153 |
|
ffn |
|
154 |
104 152 153
|
3syl |
|
155 |
|
nn0ex |
|
156 |
155
|
a1i |
|
157 |
|
inidm |
|
158 |
|
eqidd |
|
159 |
|
eqid |
|
160 |
159 16 129 18
|
coemulhi |
|
161 |
55 6 160
|
syl2anc |
|
162 |
139
|
fveq2d |
|
163 |
133
|
fveq2d |
|
164 |
163 118
|
eqtrd |
|
165 |
164
|
oveq1d |
|
166 |
28 35 39
|
divcan1d |
|
167 |
165 166
|
eqtrd |
|
168 |
161 162 167
|
3eqtr3d |
|
169 |
168
|
adantr |
|
170 |
151 154 156 156 157 158 169
|
ofval |
|
171 |
26 170
|
mpdan |
|
172 |
28
|
subidd |
|
173 |
148 171 172
|
3eqtrd |
|
174 |
5 104 1 2 4
|
plysub |
|
175 |
|
dgrcl |
|
176 |
174 175
|
syl |
|
177 |
176
|
nn0red |
|
178 |
26
|
nn0red |
|
179 |
33
|
nn0red |
|
180 |
177 178 179
|
ltsub1d |
|
181 |
10
|
breq2d |
|
182 |
180 181
|
bitrd |
|
183 |
182
|
orbi2d |
|
184 |
|
eqid |
|
185 |
|
eqid |
|
186 |
184 185
|
dgrlt |
|
187 |
174 26 186
|
syl2anc |
|
188 |
183 187
|
bitr3d |
|
189 |
144 173 188
|
mpbir2and |
|
190 |
|
eqeq1 |
|
191 |
|
fveq2 |
|
192 |
191
|
oveq1d |
|
193 |
192
|
breq1d |
|
194 |
190 193
|
orbi12d |
|
195 |
|
oveq1 |
|
196 |
12 195
|
eqtrid |
|
197 |
196
|
eqeq1d |
|
198 |
196
|
fveq2d |
|
199 |
198
|
breq1d |
|
200 |
197 199
|
orbi12d |
|
201 |
200
|
rexbidv |
|
202 |
194 201
|
imbi12d |
|
203 |
202 14 174
|
rspcdva |
|
204 |
189 203
|
mpd |
|
205 |
103 204
|
r19.29a |
|