Metamath Proof Explorer


Theorem plydivlem4

Description: Lemma for plydivex . Induction step. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses plydiv.pl φ x S y S x + y S
plydiv.tm φ x S y S x y S
plydiv.rc φ x S x 0 1 x S
plydiv.m1 φ 1 S
plydiv.f φ F Poly S
plydiv.g φ G Poly S
plydiv.z φ G 0 𝑝
plydiv.r R = F f G × f q
plydiv.d φ D 0
plydiv.e φ M N = D
plydiv.fz φ F 0 𝑝
plydiv.u U = f f G × f p
plydiv.h H = z A M B N z D
plydiv.al φ f Poly S f = 0 𝑝 deg f N < D p Poly S U = 0 𝑝 deg U < N
plydiv.a A = coeff F
plydiv.b B = coeff G
plydiv.m M = deg F
plydiv.n N = deg G
Assertion plydivlem4 φ q Poly S R = 0 𝑝 deg R < N

Proof

Step Hyp Ref Expression
1 plydiv.pl φ x S y S x + y S
2 plydiv.tm φ x S y S x y S
3 plydiv.rc φ x S x 0 1 x S
4 plydiv.m1 φ 1 S
5 plydiv.f φ F Poly S
6 plydiv.g φ G Poly S
7 plydiv.z φ G 0 𝑝
8 plydiv.r R = F f G × f q
9 plydiv.d φ D 0
10 plydiv.e φ M N = D
11 plydiv.fz φ F 0 𝑝
12 plydiv.u U = f f G × f p
13 plydiv.h H = z A M B N z D
14 plydiv.al φ f Poly S f = 0 𝑝 deg f N < D p Poly S U = 0 𝑝 deg U < N
15 plydiv.a A = coeff F
16 plydiv.b B = coeff G
17 plydiv.m M = deg F
18 plydiv.n N = deg G
19 plybss F Poly S S
20 5 19 syl φ S
21 1 2 3 4 plydivlem1 φ 0 S
22 15 coef2 F Poly S 0 S A : 0 S
23 5 21 22 syl2anc φ A : 0 S
24 dgrcl F Poly S deg F 0
25 5 24 syl φ deg F 0
26 17 25 eqeltrid φ M 0
27 23 26 ffvelrnd φ A M S
28 20 27 sseldd φ A M
29 16 coef2 G Poly S 0 S B : 0 S
30 6 21 29 syl2anc φ B : 0 S
31 dgrcl G Poly S deg G 0
32 6 31 syl φ deg G 0
33 18 32 eqeltrid φ N 0
34 30 33 ffvelrnd φ B N S
35 20 34 sseldd φ B N
36 18 16 dgreq0 G Poly S G = 0 𝑝 B N = 0
37 6 36 syl φ G = 0 𝑝 B N = 0
38 37 necon3bid φ G 0 𝑝 B N 0
39 7 38 mpbid φ B N 0
40 28 35 39 divrecd φ A M B N = A M 1 B N
41 fvex B N V
42 eleq1 x = B N x S B N S
43 neeq1 x = B N x 0 B N 0
44 42 43 anbi12d x = B N x S x 0 B N S B N 0
45 44 anbi2d x = B N φ x S x 0 φ B N S B N 0
46 oveq2 x = B N 1 x = 1 B N
47 46 eleq1d x = B N 1 x S 1 B N S
48 45 47 imbi12d x = B N φ x S x 0 1 x S φ B N S B N 0 1 B N S
49 41 48 3 vtocl φ B N S B N 0 1 B N S
50 49 ex φ B N S B N 0 1 B N S
51 34 39 50 mp2and φ 1 B N S
52 2 27 51 caovcld φ A M 1 B N S
53 40 52 eqeltrd φ A M B N S
54 13 ply1term S A M B N S D 0 H Poly S
55 20 53 9 54 syl3anc φ H Poly S
56 55 adantr φ p Poly S H Poly S
57 simpr φ p Poly S p Poly S
58 1 adantlr φ p Poly S x S y S x + y S
59 56 57 58 plyadd φ p Poly S H + f p Poly S
60 cnex V
61 60 a1i φ p Poly S V
62 5 adantr φ p Poly S F Poly S
63 plyf F Poly S F :
64 62 63 syl φ p Poly S F :
65 mulcl x y x y
66 65 adantl φ p Poly S x y x y
67 plyf H Poly S H :
68 56 67 syl φ p Poly S H :
69 6 adantr φ p Poly S G Poly S
70 plyf G Poly S G :
71 69 70 syl φ p Poly S G :
72 inidm =
73 66 68 71 61 61 72 off φ p Poly S H × f G :
74 plyf p Poly S p :
75 74 adantl φ p Poly S p :
76 66 71 75 61 61 72 off φ p Poly S G × f p :
77 subsub4 x y z x - y - z = x y + z
78 77 adantl φ p Poly S x y z x - y - z = x y + z
79 61 64 73 76 78 caofass φ p Poly S F f H × f G f G × f p = F f H × f G + f G × f p
80 mulcom x y x y = y x
81 80 adantl φ p Poly S x y x y = y x
82 61 68 71 81 caofcom φ p Poly S H × f G = G × f H
83 82 oveq1d φ p Poly S H × f G + f G × f p = G × f H + f G × f p
84 adddi x y z x y + z = x y + x z
85 84 adantl φ p Poly S x y z x y + z = x y + x z
86 61 71 68 75 85 caofdi φ p Poly S G × f H + f p = G × f H + f G × f p
87 83 86 eqtr4d φ p Poly S H × f G + f G × f p = G × f H + f p
88 87 oveq2d φ p Poly S F f H × f G + f G × f p = F f G × f H + f p
89 79 88 eqtrd φ p Poly S F f H × f G f G × f p = F f G × f H + f p
90 89 eqeq1d φ p Poly S F f H × f G f G × f p = 0 𝑝 F f G × f H + f p = 0 𝑝
91 89 fveq2d φ p Poly S deg F f H × f G f G × f p = deg F f G × f H + f p
92 91 breq1d φ p Poly S deg F f H × f G f G × f p < N deg F f G × f H + f p < N
93 90 92 orbi12d φ p Poly S F f H × f G f G × f p = 0 𝑝 deg F f H × f G f G × f p < N F f G × f H + f p = 0 𝑝 deg F f G × f H + f p < N
94 93 biimpa φ p Poly S F f H × f G f G × f p = 0 𝑝 deg F f H × f G f G × f p < N F f G × f H + f p = 0 𝑝 deg F f G × f H + f p < N
95 oveq2 q = H + f p G × f q = G × f H + f p
96 95 oveq2d q = H + f p F f G × f q = F f G × f H + f p
97 8 96 eqtrid q = H + f p R = F f G × f H + f p
98 97 eqeq1d q = H + f p R = 0 𝑝 F f G × f H + f p = 0 𝑝
99 97 fveq2d q = H + f p deg R = deg F f G × f H + f p
100 99 breq1d q = H + f p deg R < N deg F f G × f H + f p < N
101 98 100 orbi12d q = H + f p R = 0 𝑝 deg R < N F f G × f H + f p = 0 𝑝 deg F f G × f H + f p < N
102 101 rspcev H + f p Poly S F f G × f H + f p = 0 𝑝 deg F f G × f H + f p < N q Poly S R = 0 𝑝 deg R < N
103 59 94 102 syl2an2r φ p Poly S F f H × f G f G × f p = 0 𝑝 deg F f H × f G f G × f p < N q Poly S R = 0 𝑝 deg R < N
104 55 6 1 2 plymul φ H × f G Poly S
105 eqid deg H × f G = deg H × f G
106 17 105 dgrsub F Poly S H × f G Poly S deg F f H × f G if M deg H × f G deg H × f G M
107 5 104 106 syl2anc φ deg F f H × f G if M deg H × f G deg H × f G M
108 17 15 dgreq0 F Poly S F = 0 𝑝 A M = 0
109 5 108 syl φ F = 0 𝑝 A M = 0
110 109 necon3bid φ F 0 𝑝 A M 0
111 11 110 mpbid φ A M 0
112 28 35 111 39 divne0d φ A M B N 0
113 20 53 sseldd φ A M B N
114 13 coe1term A M B N D 0 D 0 coeff H D = if D = D A M B N 0
115 113 9 9 114 syl3anc φ coeff H D = if D = D A M B N 0
116 eqid D = D
117 116 iftruei if D = D A M B N 0 = A M B N
118 115 117 eqtrdi φ coeff H D = A M B N
119 c0ex 0 V
120 119 fvconst2 D 0 0 × 0 D = 0
121 9 120 syl φ 0 × 0 D = 0
122 112 118 121 3netr4d φ coeff H D 0 × 0 D
123 fveq2 H = 0 𝑝 coeff H = coeff 0 𝑝
124 coe0 coeff 0 𝑝 = 0 × 0
125 123 124 eqtrdi H = 0 𝑝 coeff H = 0 × 0
126 125 fveq1d H = 0 𝑝 coeff H D = 0 × 0 D
127 126 necon3i coeff H D 0 × 0 D H 0 𝑝
128 122 127 syl φ H 0 𝑝
129 eqid deg H = deg H
130 129 18 dgrmul H Poly S H 0 𝑝 G Poly S G 0 𝑝 deg H × f G = deg H + N
131 55 128 6 7 130 syl22anc φ deg H × f G = deg H + N
132 13 dgr1term A M B N A M B N 0 D 0 deg H = D
133 113 112 9 132 syl3anc φ deg H = D
134 133 10 eqtr4d φ deg H = M N
135 134 oveq1d φ deg H + N = M - N + N
136 26 nn0cnd φ M
137 33 nn0cnd φ N
138 136 137 npcand φ M - N + N = M
139 135 138 eqtrd φ deg H + N = M
140 131 139 eqtrd φ deg H × f G = M
141 140 ifeq1d φ if M deg H × f G deg H × f G M = if M deg H × f G M M
142 ifid if M deg H × f G M M = M
143 141 142 eqtrdi φ if M deg H × f G deg H × f G M = M
144 107 143 breqtrd φ deg F f H × f G M
145 eqid coeff H × f G = coeff H × f G
146 15 145 coesub F Poly S H × f G Poly S coeff F f H × f G = A f coeff H × f G
147 5 104 146 syl2anc φ coeff F f H × f G = A f coeff H × f G
148 147 fveq1d φ coeff F f H × f G M = A f coeff H × f G M
149 15 coef3 F Poly S A : 0
150 ffn A : 0 A Fn 0
151 5 149 150 3syl φ A Fn 0
152 145 coef3 H × f G Poly S coeff H × f G : 0
153 ffn coeff H × f G : 0 coeff H × f G Fn 0
154 104 152 153 3syl φ coeff H × f G Fn 0
155 nn0ex 0 V
156 155 a1i φ 0 V
157 inidm 0 0 = 0
158 eqidd φ M 0 A M = A M
159 eqid coeff H = coeff H
160 159 16 129 18 coemulhi H Poly S G Poly S coeff H × f G deg H + N = coeff H deg H B N
161 55 6 160 syl2anc φ coeff H × f G deg H + N = coeff H deg H B N
162 139 fveq2d φ coeff H × f G deg H + N = coeff H × f G M
163 133 fveq2d φ coeff H deg H = coeff H D
164 163 118 eqtrd φ coeff H deg H = A M B N
165 164 oveq1d φ coeff H deg H B N = A M B N B N
166 28 35 39 divcan1d φ A M B N B N = A M
167 165 166 eqtrd φ coeff H deg H B N = A M
168 161 162 167 3eqtr3d φ coeff H × f G M = A M
169 168 adantr φ M 0 coeff H × f G M = A M
170 151 154 156 156 157 158 169 ofval φ M 0 A f coeff H × f G M = A M A M
171 26 170 mpdan φ A f coeff H × f G M = A M A M
172 28 subidd φ A M A M = 0
173 148 171 172 3eqtrd φ coeff F f H × f G M = 0
174 5 104 1 2 4 plysub φ F f H × f G Poly S
175 dgrcl F f H × f G Poly S deg F f H × f G 0
176 174 175 syl φ deg F f H × f G 0
177 176 nn0red φ deg F f H × f G
178 26 nn0red φ M
179 33 nn0red φ N
180 177 178 179 ltsub1d φ deg F f H × f G < M deg F f H × f G N < M N
181 10 breq2d φ deg F f H × f G N < M N deg F f H × f G N < D
182 180 181 bitrd φ deg F f H × f G < M deg F f H × f G N < D
183 182 orbi2d φ F f H × f G = 0 𝑝 deg F f H × f G < M F f H × f G = 0 𝑝 deg F f H × f G N < D
184 eqid deg F f H × f G = deg F f H × f G
185 eqid coeff F f H × f G = coeff F f H × f G
186 184 185 dgrlt F f H × f G Poly S M 0 F f H × f G = 0 𝑝 deg F f H × f G < M deg F f H × f G M coeff F f H × f G M = 0
187 174 26 186 syl2anc φ F f H × f G = 0 𝑝 deg F f H × f G < M deg F f H × f G M coeff F f H × f G M = 0
188 183 187 bitr3d φ F f H × f G = 0 𝑝 deg F f H × f G N < D deg F f H × f G M coeff F f H × f G M = 0
189 144 173 188 mpbir2and φ F f H × f G = 0 𝑝 deg F f H × f G N < D
190 eqeq1 f = F f H × f G f = 0 𝑝 F f H × f G = 0 𝑝
191 fveq2 f = F f H × f G deg f = deg F f H × f G
192 191 oveq1d f = F f H × f G deg f N = deg F f H × f G N
193 192 breq1d f = F f H × f G deg f N < D deg F f H × f G N < D
194 190 193 orbi12d f = F f H × f G f = 0 𝑝 deg f N < D F f H × f G = 0 𝑝 deg F f H × f G N < D
195 oveq1 f = F f H × f G f f G × f p = F f H × f G f G × f p
196 12 195 eqtrid f = F f H × f G U = F f H × f G f G × f p
197 196 eqeq1d f = F f H × f G U = 0 𝑝 F f H × f G f G × f p = 0 𝑝
198 196 fveq2d f = F f H × f G deg U = deg F f H × f G f G × f p
199 198 breq1d f = F f H × f G deg U < N deg F f H × f G f G × f p < N
200 197 199 orbi12d f = F f H × f G U = 0 𝑝 deg U < N F f H × f G f G × f p = 0 𝑝 deg F f H × f G f G × f p < N
201 200 rexbidv f = F f H × f G p Poly S U = 0 𝑝 deg U < N p Poly S F f H × f G f G × f p = 0 𝑝 deg F f H × f G f G × f p < N
202 194 201 imbi12d f = F f H × f G f = 0 𝑝 deg f N < D p Poly S U = 0 𝑝 deg U < N F f H × f G = 0 𝑝 deg F f H × f G N < D p Poly S F f H × f G f G × f p = 0 𝑝 deg F f H × f G f G × f p < N
203 202 14 174 rspcdva φ F f H × f G = 0 𝑝 deg F f H × f G N < D p Poly S F f H × f G f G × f p = 0 𝑝 deg F f H × f G f G × f p < N
204 189 203 mpd φ p Poly S F f H × f G f G × f p = 0 𝑝 deg F f H × f G f G × f p < N
205 103 204 r19.29a φ q Poly S R = 0 𝑝 deg R < N