Metamath Proof Explorer


Theorem plydivlem4

Description: Lemma for plydivex . Induction step. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses plydiv.pl φxSySx+yS
plydiv.tm φxSySxyS
plydiv.rc φxSx01xS
plydiv.m1 φ1S
plydiv.f φFPolyS
plydiv.g φGPolyS
plydiv.z φG0𝑝
plydiv.r R=FfG×fq
plydiv.d φD0
plydiv.e φMN=D
plydiv.fz φF0𝑝
plydiv.u U=ffG×fp
plydiv.h H=zAMBNzD
plydiv.al φfPolySf=0𝑝degfN<DpPolySU=0𝑝degU<N
plydiv.a A=coeffF
plydiv.b B=coeffG
plydiv.m M=degF
plydiv.n N=degG
Assertion plydivlem4 φqPolySR=0𝑝degR<N

Proof

Step Hyp Ref Expression
1 plydiv.pl φxSySx+yS
2 plydiv.tm φxSySxyS
3 plydiv.rc φxSx01xS
4 plydiv.m1 φ1S
5 plydiv.f φFPolyS
6 plydiv.g φGPolyS
7 plydiv.z φG0𝑝
8 plydiv.r R=FfG×fq
9 plydiv.d φD0
10 plydiv.e φMN=D
11 plydiv.fz φF0𝑝
12 plydiv.u U=ffG×fp
13 plydiv.h H=zAMBNzD
14 plydiv.al φfPolySf=0𝑝degfN<DpPolySU=0𝑝degU<N
15 plydiv.a A=coeffF
16 plydiv.b B=coeffG
17 plydiv.m M=degF
18 plydiv.n N=degG
19 plybss FPolySS
20 5 19 syl φS
21 1 2 3 4 plydivlem1 φ0S
22 15 coef2 FPolyS0SA:0S
23 5 21 22 syl2anc φA:0S
24 dgrcl FPolySdegF0
25 5 24 syl φdegF0
26 17 25 eqeltrid φM0
27 23 26 ffvelcdmd φAMS
28 20 27 sseldd φAM
29 16 coef2 GPolyS0SB:0S
30 6 21 29 syl2anc φB:0S
31 dgrcl GPolySdegG0
32 6 31 syl φdegG0
33 18 32 eqeltrid φN0
34 30 33 ffvelcdmd φBNS
35 20 34 sseldd φBN
36 18 16 dgreq0 GPolySG=0𝑝BN=0
37 6 36 syl φG=0𝑝BN=0
38 37 necon3bid φG0𝑝BN0
39 7 38 mpbid φBN0
40 28 35 39 divrecd φAMBN=AM1BN
41 fvex BNV
42 eleq1 x=BNxSBNS
43 neeq1 x=BNx0BN0
44 42 43 anbi12d x=BNxSx0BNSBN0
45 44 anbi2d x=BNφxSx0φBNSBN0
46 oveq2 x=BN1x=1BN
47 46 eleq1d x=BN1xS1BNS
48 45 47 imbi12d x=BNφxSx01xSφBNSBN01BNS
49 41 48 3 vtocl φBNSBN01BNS
50 49 ex φBNSBN01BNS
51 34 39 50 mp2and φ1BNS
52 2 27 51 caovcld φAM1BNS
53 40 52 eqeltrd φAMBNS
54 13 ply1term SAMBNSD0HPolyS
55 20 53 9 54 syl3anc φHPolyS
56 55 adantr φpPolySHPolyS
57 simpr φpPolySpPolyS
58 1 adantlr φpPolySxSySx+yS
59 56 57 58 plyadd φpPolySH+fpPolyS
60 cnex V
61 60 a1i φpPolySV
62 5 adantr φpPolySFPolyS
63 plyf FPolySF:
64 62 63 syl φpPolySF:
65 mulcl xyxy
66 65 adantl φpPolySxyxy
67 plyf HPolySH:
68 56 67 syl φpPolySH:
69 6 adantr φpPolySGPolyS
70 plyf GPolySG:
71 69 70 syl φpPolySG:
72 inidm =
73 66 68 71 61 61 72 off φpPolySH×fG:
74 plyf pPolySp:
75 74 adantl φpPolySp:
76 66 71 75 61 61 72 off φpPolySG×fp:
77 subsub4 xyzx-y-z=xy+z
78 77 adantl φpPolySxyzx-y-z=xy+z
79 61 64 73 76 78 caofass φpPolySFfH×fGfG×fp=FfH×fG+fG×fp
80 mulcom xyxy=yx
81 80 adantl φpPolySxyxy=yx
82 61 68 71 81 caofcom φpPolySH×fG=G×fH
83 82 oveq1d φpPolySH×fG+fG×fp=G×fH+fG×fp
84 adddi xyzxy+z=xy+xz
85 84 adantl φpPolySxyzxy+z=xy+xz
86 61 71 68 75 85 caofdi φpPolySG×fH+fp=G×fH+fG×fp
87 83 86 eqtr4d φpPolySH×fG+fG×fp=G×fH+fp
88 87 oveq2d φpPolySFfH×fG+fG×fp=FfG×fH+fp
89 79 88 eqtrd φpPolySFfH×fGfG×fp=FfG×fH+fp
90 89 eqeq1d φpPolySFfH×fGfG×fp=0𝑝FfG×fH+fp=0𝑝
91 89 fveq2d φpPolySdegFfH×fGfG×fp=degFfG×fH+fp
92 91 breq1d φpPolySdegFfH×fGfG×fp<NdegFfG×fH+fp<N
93 90 92 orbi12d φpPolySFfH×fGfG×fp=0𝑝degFfH×fGfG×fp<NFfG×fH+fp=0𝑝degFfG×fH+fp<N
94 93 biimpa φpPolySFfH×fGfG×fp=0𝑝degFfH×fGfG×fp<NFfG×fH+fp=0𝑝degFfG×fH+fp<N
95 oveq2 q=H+fpG×fq=G×fH+fp
96 95 oveq2d q=H+fpFfG×fq=FfG×fH+fp
97 8 96 eqtrid q=H+fpR=FfG×fH+fp
98 97 eqeq1d q=H+fpR=0𝑝FfG×fH+fp=0𝑝
99 97 fveq2d q=H+fpdegR=degFfG×fH+fp
100 99 breq1d q=H+fpdegR<NdegFfG×fH+fp<N
101 98 100 orbi12d q=H+fpR=0𝑝degR<NFfG×fH+fp=0𝑝degFfG×fH+fp<N
102 101 rspcev H+fpPolySFfG×fH+fp=0𝑝degFfG×fH+fp<NqPolySR=0𝑝degR<N
103 59 94 102 syl2an2r φpPolySFfH×fGfG×fp=0𝑝degFfH×fGfG×fp<NqPolySR=0𝑝degR<N
104 55 6 1 2 plymul φH×fGPolyS
105 eqid degH×fG=degH×fG
106 17 105 dgrsub FPolySH×fGPolySdegFfH×fGifMdegH×fGdegH×fGM
107 5 104 106 syl2anc φdegFfH×fGifMdegH×fGdegH×fGM
108 17 15 dgreq0 FPolySF=0𝑝AM=0
109 5 108 syl φF=0𝑝AM=0
110 109 necon3bid φF0𝑝AM0
111 11 110 mpbid φAM0
112 28 35 111 39 divne0d φAMBN0
113 20 53 sseldd φAMBN
114 13 coe1term AMBND0D0coeffHD=ifD=DAMBN0
115 113 9 9 114 syl3anc φcoeffHD=ifD=DAMBN0
116 eqid D=D
117 116 iftruei ifD=DAMBN0=AMBN
118 115 117 eqtrdi φcoeffHD=AMBN
119 c0ex 0V
120 119 fvconst2 D00×0D=0
121 9 120 syl φ0×0D=0
122 112 118 121 3netr4d φcoeffHD0×0D
123 fveq2 H=0𝑝coeffH=coeff0𝑝
124 coe0 coeff0𝑝=0×0
125 123 124 eqtrdi H=0𝑝coeffH=0×0
126 125 fveq1d H=0𝑝coeffHD=0×0D
127 126 necon3i coeffHD0×0DH0𝑝
128 122 127 syl φH0𝑝
129 eqid degH=degH
130 129 18 dgrmul HPolySH0𝑝GPolySG0𝑝degH×fG=degH+N
131 55 128 6 7 130 syl22anc φdegH×fG=degH+N
132 13 dgr1term AMBNAMBN0D0degH=D
133 113 112 9 132 syl3anc φdegH=D
134 133 10 eqtr4d φdegH=MN
135 134 oveq1d φdegH+N=M-N+N
136 26 nn0cnd φM
137 33 nn0cnd φN
138 136 137 npcand φM-N+N=M
139 135 138 eqtrd φdegH+N=M
140 131 139 eqtrd φdegH×fG=M
141 140 ifeq1d φifMdegH×fGdegH×fGM=ifMdegH×fGMM
142 ifid ifMdegH×fGMM=M
143 141 142 eqtrdi φifMdegH×fGdegH×fGM=M
144 107 143 breqtrd φdegFfH×fGM
145 eqid coeffH×fG=coeffH×fG
146 15 145 coesub FPolySH×fGPolyScoeffFfH×fG=AfcoeffH×fG
147 5 104 146 syl2anc φcoeffFfH×fG=AfcoeffH×fG
148 147 fveq1d φcoeffFfH×fGM=AfcoeffH×fGM
149 15 coef3 FPolySA:0
150 ffn A:0AFn0
151 5 149 150 3syl φAFn0
152 145 coef3 H×fGPolyScoeffH×fG:0
153 ffn coeffH×fG:0coeffH×fGFn0
154 104 152 153 3syl φcoeffH×fGFn0
155 nn0ex 0V
156 155 a1i φ0V
157 inidm 00=0
158 eqidd φM0AM=AM
159 eqid coeffH=coeffH
160 159 16 129 18 coemulhi HPolySGPolyScoeffH×fGdegH+N=coeffHdegHBN
161 55 6 160 syl2anc φcoeffH×fGdegH+N=coeffHdegHBN
162 139 fveq2d φcoeffH×fGdegH+N=coeffH×fGM
163 133 fveq2d φcoeffHdegH=coeffHD
164 163 118 eqtrd φcoeffHdegH=AMBN
165 164 oveq1d φcoeffHdegHBN=AMBNBN
166 28 35 39 divcan1d φAMBNBN=AM
167 165 166 eqtrd φcoeffHdegHBN=AM
168 161 162 167 3eqtr3d φcoeffH×fGM=AM
169 168 adantr φM0coeffH×fGM=AM
170 151 154 156 156 157 158 169 ofval φM0AfcoeffH×fGM=AMAM
171 26 170 mpdan φAfcoeffH×fGM=AMAM
172 28 subidd φAMAM=0
173 148 171 172 3eqtrd φcoeffFfH×fGM=0
174 5 104 1 2 4 plysub φFfH×fGPolyS
175 dgrcl FfH×fGPolySdegFfH×fG0
176 174 175 syl φdegFfH×fG0
177 176 nn0red φdegFfH×fG
178 26 nn0red φM
179 33 nn0red φN
180 177 178 179 ltsub1d φdegFfH×fG<MdegFfH×fGN<MN
181 10 breq2d φdegFfH×fGN<MNdegFfH×fGN<D
182 180 181 bitrd φdegFfH×fG<MdegFfH×fGN<D
183 182 orbi2d φFfH×fG=0𝑝degFfH×fG<MFfH×fG=0𝑝degFfH×fGN<D
184 eqid degFfH×fG=degFfH×fG
185 eqid coeffFfH×fG=coeffFfH×fG
186 184 185 dgrlt FfH×fGPolySM0FfH×fG=0𝑝degFfH×fG<MdegFfH×fGMcoeffFfH×fGM=0
187 174 26 186 syl2anc φFfH×fG=0𝑝degFfH×fG<MdegFfH×fGMcoeffFfH×fGM=0
188 183 187 bitr3d φFfH×fG=0𝑝degFfH×fGN<DdegFfH×fGMcoeffFfH×fGM=0
189 144 173 188 mpbir2and φFfH×fG=0𝑝degFfH×fGN<D
190 eqeq1 f=FfH×fGf=0𝑝FfH×fG=0𝑝
191 fveq2 f=FfH×fGdegf=degFfH×fG
192 191 oveq1d f=FfH×fGdegfN=degFfH×fGN
193 192 breq1d f=FfH×fGdegfN<DdegFfH×fGN<D
194 190 193 orbi12d f=FfH×fGf=0𝑝degfN<DFfH×fG=0𝑝degFfH×fGN<D
195 oveq1 f=FfH×fGffG×fp=FfH×fGfG×fp
196 12 195 eqtrid f=FfH×fGU=FfH×fGfG×fp
197 196 eqeq1d f=FfH×fGU=0𝑝FfH×fGfG×fp=0𝑝
198 196 fveq2d f=FfH×fGdegU=degFfH×fGfG×fp
199 198 breq1d f=FfH×fGdegU<NdegFfH×fGfG×fp<N
200 197 199 orbi12d f=FfH×fGU=0𝑝degU<NFfH×fGfG×fp=0𝑝degFfH×fGfG×fp<N
201 200 rexbidv f=FfH×fGpPolySU=0𝑝degU<NpPolySFfH×fGfG×fp=0𝑝degFfH×fGfG×fp<N
202 194 201 imbi12d f=FfH×fGf=0𝑝degfN<DpPolySU=0𝑝degU<NFfH×fG=0𝑝degFfH×fGN<DpPolySFfH×fGfG×fp=0𝑝degFfH×fGfG×fp<N
203 202 14 174 rspcdva φFfH×fG=0𝑝degFfH×fGN<DpPolySFfH×fGfG×fp=0𝑝degFfH×fGfG×fp<N
204 189 203 mpd φpPolySFfH×fGfG×fp=0𝑝degFfH×fGfG×fp<N
205 103 204 r19.29a φqPolySR=0𝑝degR<N