Metamath Proof Explorer


Theorem poimirlem14

Description: Lemma for poimir - for at most one simplex associated with a shared face is the opposite vertex last on the walk. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
poimirlem22.1 φF:0N10K1N
Assertion poimirlem14 φ*zS2ndz=N

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
3 poimirlem22.1 φF:0N10K1N
4 1 ad2antrr φzSkS2ndz=N2ndk=NN
5 simplrl φzSkS2ndz=N2ndk=NzS
6 1 nngt0d φ0<N
7 breq2 2ndz=N0<2ndz0<N
8 7 biimparc 0<N2ndz=N0<2ndz
9 6 8 sylan φ2ndz=N0<2ndz
10 9 ad2ant2r φzSkS2ndz=N2ndk=N0<2ndz
11 4 2 5 10 poimirlem5 φzSkS2ndz=N2ndk=NF0=1st1stz
12 simplrr φzSkS2ndz=N2ndk=NkS
13 breq2 2ndk=N0<2ndk0<N
14 13 biimparc 0<N2ndk=N0<2ndk
15 6 14 sylan φ2ndk=N0<2ndk
16 15 ad2ant2rl φzSkS2ndz=N2ndk=N0<2ndk
17 4 2 12 16 poimirlem5 φzSkS2ndz=N2ndk=NF0=1st1stk
18 11 17 eqtr3d φzSkS2ndz=N2ndk=N1st1stz=1st1stk
19 elrabi zt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0z0..^K1N×f|f:1N1-1 onto1N×0N
20 19 2 eleq2s zSz0..^K1N×f|f:1N1-1 onto1N×0N
21 xp1st z0..^K1N×f|f:1N1-1 onto1N×0N1stz0..^K1N×f|f:1N1-1 onto1N
22 xp2nd 1stz0..^K1N×f|f:1N1-1 onto1N2nd1stzf|f:1N1-1 onto1N
23 20 21 22 3syl zS2nd1stzf|f:1N1-1 onto1N
24 fvex 2nd1stzV
25 f1oeq1 f=2nd1stzf:1N1-1 onto1N2nd1stz:1N1-1 onto1N
26 24 25 elab 2nd1stzf|f:1N1-1 onto1N2nd1stz:1N1-1 onto1N
27 23 26 sylib zS2nd1stz:1N1-1 onto1N
28 f1ofn 2nd1stz:1N1-1 onto1N2nd1stzFn1N
29 27 28 syl zS2nd1stzFn1N
30 29 adantr zSkS2nd1stzFn1N
31 30 ad2antlr φzSkS2ndz=N2ndk=N2nd1stzFn1N
32 elrabi kt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0k0..^K1N×f|f:1N1-1 onto1N×0N
33 32 2 eleq2s kSk0..^K1N×f|f:1N1-1 onto1N×0N
34 xp1st k0..^K1N×f|f:1N1-1 onto1N×0N1stk0..^K1N×f|f:1N1-1 onto1N
35 xp2nd 1stk0..^K1N×f|f:1N1-1 onto1N2nd1stkf|f:1N1-1 onto1N
36 33 34 35 3syl kS2nd1stkf|f:1N1-1 onto1N
37 fvex 2nd1stkV
38 f1oeq1 f=2nd1stkf:1N1-1 onto1N2nd1stk:1N1-1 onto1N
39 37 38 elab 2nd1stkf|f:1N1-1 onto1N2nd1stk:1N1-1 onto1N
40 36 39 sylib kS2nd1stk:1N1-1 onto1N
41 f1ofn 2nd1stk:1N1-1 onto1N2nd1stkFn1N
42 40 41 syl kS2nd1stkFn1N
43 42 adantl zSkS2nd1stkFn1N
44 43 ad2antlr φzSkS2ndz=N2ndk=N2nd1stkFn1N
45 simpllr φzSkS2ndz=N2ndk=Nn1NzSkS
46 oveq2 n=N1n=1N
47 46 imaeq2d n=N2nd1stz1n=2nd1stz1N
48 f1ofo 2nd1stz:1N1-1 onto1N2nd1stz:1Nonto1N
49 foima 2nd1stz:1Nonto1N2nd1stz1N=1N
50 27 48 49 3syl zS2nd1stz1N=1N
51 47 50 sylan9eqr zSn=N2nd1stz1n=1N
52 51 adantlr zSkSn=N2nd1stz1n=1N
53 46 imaeq2d n=N2nd1stk1n=2nd1stk1N
54 f1ofo 2nd1stk:1N1-1 onto1N2nd1stk:1Nonto1N
55 foima 2nd1stk:1Nonto1N2nd1stk1N=1N
56 40 54 55 3syl kS2nd1stk1N=1N
57 53 56 sylan9eqr kSn=N2nd1stk1n=1N
58 57 adantll zSkSn=N2nd1stk1n=1N
59 52 58 eqtr4d zSkSn=N2nd1stz1n=2nd1stk1n
60 45 59 sylan φzSkS2ndz=N2ndk=Nn1Nn=N2nd1stz1n=2nd1stk1n
61 simpll φzSkS2ndz=N2ndk=Nφ
62 elnnuz NN1
63 1 62 sylib φN1
64 fzm1 N1n1Nn1N1n=N
65 63 64 syl φn1Nn1N1n=N
66 65 anbi1d φn1NnNn1N1n=NnN
67 66 biimpa φn1NnNn1N1n=NnN
68 df-ne nN¬n=N
69 68 anbi2i n1N1n=NnNn1N1n=N¬n=N
70 pm5.61 n1N1n=N¬n=Nn1N1¬n=N
71 69 70 bitri n1N1n=NnNn1N1¬n=N
72 67 71 sylib φn1NnNn1N1¬n=N
73 fz1ssfz0 1N10N1
74 73 sseli n1N1n0N1
75 74 adantr n1N1¬n=Nn0N1
76 72 75 syl φn1NnNn0N1
77 61 76 sylan φzSkS2ndz=N2ndk=Nn1NnNn0N1
78 eleq1 m=nm0N1n0N1
79 78 anbi2d m=nφzSkS2ndz=N2ndk=Nm0N1φzSkS2ndz=N2ndk=Nn0N1
80 oveq2 m=n1m=1n
81 80 imaeq2d m=n2nd1stz1m=2nd1stz1n
82 80 imaeq2d m=n2nd1stk1m=2nd1stk1n
83 81 82 eqeq12d m=n2nd1stz1m=2nd1stk1m2nd1stz1n=2nd1stk1n
84 79 83 imbi12d m=nφzSkS2ndz=N2ndk=Nm0N12nd1stz1m=2nd1stk1mφzSkS2ndz=N2ndk=Nn0N12nd1stz1n=2nd1stk1n
85 1 ad3antrrr φzSkS2ndz=N2ndk=Nm0N1N
86 3 ad3antrrr φzSkS2ndz=N2ndk=Nm0N1F:0N10K1N
87 simpl zSkSzS
88 87 ad3antlr φzSkS2ndz=N2ndk=Nm0N1zS
89 simplrl φzSkS2ndz=N2ndk=Nm0N12ndz=N
90 simpr zSkSkS
91 90 ad3antlr φzSkS2ndz=N2ndk=Nm0N1kS
92 simplrr φzSkS2ndz=N2ndk=Nm0N12ndk=N
93 simpr φzSkS2ndz=N2ndk=Nm0N1m0N1
94 85 2 86 88 89 91 92 93 poimirlem12 φzSkS2ndz=N2ndk=Nm0N12nd1stz1m2nd1stk1m
95 85 2 86 91 92 88 89 93 poimirlem12 φzSkS2ndz=N2ndk=Nm0N12nd1stk1m2nd1stz1m
96 94 95 eqssd φzSkS2ndz=N2ndk=Nm0N12nd1stz1m=2nd1stk1m
97 84 96 chvarvv φzSkS2ndz=N2ndk=Nn0N12nd1stz1n=2nd1stk1n
98 77 97 syldan φzSkS2ndz=N2ndk=Nn1NnN2nd1stz1n=2nd1stk1n
99 98 anassrs φzSkS2ndz=N2ndk=Nn1NnN2nd1stz1n=2nd1stk1n
100 60 99 pm2.61dane φzSkS2ndz=N2ndk=Nn1N2nd1stz1n=2nd1stk1n
101 simpr φn1Nn1N
102 elfzelz n1Nn
103 1 nnzd φN
104 elfzm1b nNn1Nn10N1
105 102 103 104 syl2anr φn1Nn1Nn10N1
106 101 105 mpbid φn1Nn10N1
107 61 106 sylan φzSkS2ndz=N2ndk=Nn1Nn10N1
108 ovex n1V
109 eleq1 m=n1m0N1n10N1
110 109 anbi2d m=n1φzSkS2ndz=N2ndk=Nm0N1φzSkS2ndz=N2ndk=Nn10N1
111 oveq2 m=n11m=1n1
112 111 imaeq2d m=n12nd1stz1m=2nd1stz1n1
113 111 imaeq2d m=n12nd1stk1m=2nd1stk1n1
114 112 113 eqeq12d m=n12nd1stz1m=2nd1stk1m2nd1stz1n1=2nd1stk1n1
115 110 114 imbi12d m=n1φzSkS2ndz=N2ndk=Nm0N12nd1stz1m=2nd1stk1mφzSkS2ndz=N2ndk=Nn10N12nd1stz1n1=2nd1stk1n1
116 108 115 96 vtocl φzSkS2ndz=N2ndk=Nn10N12nd1stz1n1=2nd1stk1n1
117 107 116 syldan φzSkS2ndz=N2ndk=Nn1N2nd1stz1n1=2nd1stk1n1
118 100 117 difeq12d φzSkS2ndz=N2ndk=Nn1N2nd1stz1n2nd1stz1n1=2nd1stk1n2nd1stk1n1
119 fnsnfv 2nd1stzFn1Nn1N2nd1stzn=2nd1stzn
120 29 119 sylan zSn1N2nd1stzn=2nd1stzn
121 elfznn n1Nn
122 uncom 1n1n=n1n1
123 122 difeq1i 1n1n1n1=n1n11n1
124 difun2 n1n11n1=n1n1
125 123 124 eqtri 1n1n1n1=n1n1
126 nncn nn
127 npcan1 nn-1+1=n
128 126 127 syl nn-1+1=n
129 elnnuz nn1
130 129 biimpi nn1
131 128 130 eqeltrd nn-1+11
132 nnm1nn0 nn10
133 132 nn0zd nn1
134 uzid n1n1n1
135 peano2uz n1n1n-1+1n1
136 133 134 135 3syl nn-1+1n1
137 128 136 eqeltrrd nnn1
138 fzsplit2 n-1+11nn11n=1n1n-1+1n
139 131 137 138 syl2anc n1n=1n1n-1+1n
140 128 oveq1d nn-1+1n=nn
141 nnz nn
142 fzsn nnn=n
143 141 142 syl nnn=n
144 140 143 eqtrd nn-1+1n=n
145 144 uneq2d n1n1n-1+1n=1n1n
146 139 145 eqtrd n1n=1n1n
147 146 difeq1d n1n1n1=1n1n1n1
148 nnre nn
149 ltm1 nn1<n
150 peano2rem nn1
151 ltnle n1nn1<n¬nn1
152 150 151 mpancom nn1<n¬nn1
153 149 152 mpbid n¬nn1
154 elfzle2 n1n1nn1
155 153 154 nsyl n¬n1n1
156 148 155 syl n¬n1n1
157 incom 1n1n=n1n1
158 157 eqeq1i 1n1n=n1n1=
159 disjsn 1n1n=¬n1n1
160 disj3 n1n1=n=n1n1
161 158 159 160 3bitr3i ¬n1n1n=n1n1
162 156 161 sylib nn=n1n1
163 125 147 162 3eqtr4a n1n1n1=n
164 121 163 syl n1N1n1n1=n
165 164 imaeq2d n1N2nd1stz1n1n1=2nd1stzn
166 165 adantl zSn1N2nd1stz1n1n1=2nd1stzn
167 dff1o3 2nd1stz:1N1-1 onto1N2nd1stz:1Nonto1NFun2nd1stz-1
168 167 simprbi 2nd1stz:1N1-1 onto1NFun2nd1stz-1
169 imadif Fun2nd1stz-12nd1stz1n1n1=2nd1stz1n2nd1stz1n1
170 27 168 169 3syl zS2nd1stz1n1n1=2nd1stz1n2nd1stz1n1
171 170 adantr zSn1N2nd1stz1n1n1=2nd1stz1n2nd1stz1n1
172 120 166 171 3eqtr2d zSn1N2nd1stzn=2nd1stz1n2nd1stz1n1
173 5 172 sylan φzSkS2ndz=N2ndk=Nn1N2nd1stzn=2nd1stz1n2nd1stz1n1
174 eleq1 z=kzSkS
175 174 anbi1d z=kzSn1NkSn1N
176 2fveq3 z=k2nd1stz=2nd1stk
177 176 fveq1d z=k2nd1stzn=2nd1stkn
178 177 sneqd z=k2nd1stzn=2nd1stkn
179 176 imaeq1d z=k2nd1stz1n=2nd1stk1n
180 176 imaeq1d z=k2nd1stz1n1=2nd1stk1n1
181 179 180 difeq12d z=k2nd1stz1n2nd1stz1n1=2nd1stk1n2nd1stk1n1
182 178 181 eqeq12d z=k2nd1stzn=2nd1stz1n2nd1stz1n12nd1stkn=2nd1stk1n2nd1stk1n1
183 175 182 imbi12d z=kzSn1N2nd1stzn=2nd1stz1n2nd1stz1n1kSn1N2nd1stkn=2nd1stk1n2nd1stk1n1
184 183 172 chvarvv kSn1N2nd1stkn=2nd1stk1n2nd1stk1n1
185 12 184 sylan φzSkS2ndz=N2ndk=Nn1N2nd1stkn=2nd1stk1n2nd1stk1n1
186 118 173 185 3eqtr4d φzSkS2ndz=N2ndk=Nn1N2nd1stzn=2nd1stkn
187 fvex 2nd1stznV
188 187 sneqr 2nd1stzn=2nd1stkn2nd1stzn=2nd1stkn
189 186 188 syl φzSkS2ndz=N2ndk=Nn1N2nd1stzn=2nd1stkn
190 31 44 189 eqfnfvd φzSkS2ndz=N2ndk=N2nd1stz=2nd1stk
191 20 21 syl zS1stz0..^K1N×f|f:1N1-1 onto1N
192 33 34 syl kS1stk0..^K1N×f|f:1N1-1 onto1N
193 xpopth 1stz0..^K1N×f|f:1N1-1 onto1N1stk0..^K1N×f|f:1N1-1 onto1N1st1stz=1st1stk2nd1stz=2nd1stk1stz=1stk
194 191 192 193 syl2an zSkS1st1stz=1st1stk2nd1stz=2nd1stk1stz=1stk
195 194 ad2antlr φzSkS2ndz=N2ndk=N1st1stz=1st1stk2nd1stz=2nd1stk1stz=1stk
196 18 190 195 mpbi2and φzSkS2ndz=N2ndk=N1stz=1stk
197 eqtr3 2ndz=N2ndk=N2ndz=2ndk
198 197 adantl φzSkS2ndz=N2ndk=N2ndz=2ndk
199 xpopth z0..^K1N×f|f:1N1-1 onto1N×0Nk0..^K1N×f|f:1N1-1 onto1N×0N1stz=1stk2ndz=2ndkz=k
200 20 33 199 syl2an zSkS1stz=1stk2ndz=2ndkz=k
201 200 ad2antlr φzSkS2ndz=N2ndk=N1stz=1stk2ndz=2ndkz=k
202 196 198 201 mpbi2and φzSkS2ndz=N2ndk=Nz=k
203 202 ex φzSkS2ndz=N2ndk=Nz=k
204 203 ralrimivva φzSkS2ndz=N2ndk=Nz=k
205 fveqeq2 z=k2ndz=N2ndk=N
206 205 rmo4 *zS2ndz=NzSkS2ndz=N2ndk=Nz=k
207 204 206 sylibr φ*zS2ndz=N