Metamath Proof Explorer


Theorem poimirlem12

Description: Lemma for poimir connecting walks that could yield from a given cube a given face opposite the final vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem22.s S = t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
poimirlem22.1 φ F : 0 N 1 0 K 1 N
poimirlem12.2 φ T S
poimirlem12.3 φ 2 nd T = N
poimirlem12.4 φ U S
poimirlem12.5 φ 2 nd U = N
poimirlem12.6 φ M 0 N 1
Assertion poimirlem12 φ 2 nd 1 st T 1 M 2 nd 1 st U 1 M

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem22.s S = t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
3 poimirlem22.1 φ F : 0 N 1 0 K 1 N
4 poimirlem12.2 φ T S
5 poimirlem12.3 φ 2 nd T = N
6 poimirlem12.4 φ U S
7 poimirlem12.5 φ 2 nd U = N
8 poimirlem12.6 φ M 0 N 1
9 eldif y 2 nd 1 st T 1 M 2 nd 1 st U 1 M y 2 nd 1 st T 1 M ¬ y 2 nd 1 st U 1 M
10 imassrn 2 nd 1 st T 1 M ran 2 nd 1 st T
11 elrabi T t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
12 11 2 eleq2s T S T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
13 xp1st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
14 4 12 13 3syl φ 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
15 xp2nd 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd 1 st T f | f : 1 N 1-1 onto 1 N
16 14 15 syl φ 2 nd 1 st T f | f : 1 N 1-1 onto 1 N
17 fvex 2 nd 1 st T V
18 f1oeq1 f = 2 nd 1 st T f : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 onto 1 N
19 17 18 elab 2 nd 1 st T f | f : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 onto 1 N
20 16 19 sylib φ 2 nd 1 st T : 1 N 1-1 onto 1 N
21 f1of 2 nd 1 st T : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1 N
22 frn 2 nd 1 st T : 1 N 1 N ran 2 nd 1 st T 1 N
23 20 21 22 3syl φ ran 2 nd 1 st T 1 N
24 10 23 sstrid φ 2 nd 1 st T 1 M 1 N
25 elrabi U t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
26 25 2 eleq2s U S U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
27 xp1st U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
28 6 26 27 3syl φ 1 st U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
29 xp2nd 1 st U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd 1 st U f | f : 1 N 1-1 onto 1 N
30 28 29 syl φ 2 nd 1 st U f | f : 1 N 1-1 onto 1 N
31 fvex 2 nd 1 st U V
32 f1oeq1 f = 2 nd 1 st U f : 1 N 1-1 onto 1 N 2 nd 1 st U : 1 N 1-1 onto 1 N
33 31 32 elab 2 nd 1 st U f | f : 1 N 1-1 onto 1 N 2 nd 1 st U : 1 N 1-1 onto 1 N
34 30 33 sylib φ 2 nd 1 st U : 1 N 1-1 onto 1 N
35 f1ofo 2 nd 1 st U : 1 N 1-1 onto 1 N 2 nd 1 st U : 1 N onto 1 N
36 foima 2 nd 1 st U : 1 N onto 1 N 2 nd 1 st U 1 N = 1 N
37 34 35 36 3syl φ 2 nd 1 st U 1 N = 1 N
38 24 37 sseqtrrd φ 2 nd 1 st T 1 M 2 nd 1 st U 1 N
39 38 ssdifd φ 2 nd 1 st T 1 M 2 nd 1 st U 1 M 2 nd 1 st U 1 N 2 nd 1 st U 1 M
40 dff1o3 2 nd 1 st U : 1 N 1-1 onto 1 N 2 nd 1 st U : 1 N onto 1 N Fun 2 nd 1 st U -1
41 40 simprbi 2 nd 1 st U : 1 N 1-1 onto 1 N Fun 2 nd 1 st U -1
42 imadif Fun 2 nd 1 st U -1 2 nd 1 st U 1 N 1 M = 2 nd 1 st U 1 N 2 nd 1 st U 1 M
43 34 41 42 3syl φ 2 nd 1 st U 1 N 1 M = 2 nd 1 st U 1 N 2 nd 1 st U 1 M
44 difun2 M + 1 N 1 M 1 M = M + 1 N 1 M
45 elfznn0 M 0 N 1 M 0
46 nn0p1nn M 0 M + 1
47 8 45 46 3syl φ M + 1
48 nnuz = 1
49 47 48 eleqtrdi φ M + 1 1
50 1 nncnd φ N
51 npcan1 N N - 1 + 1 = N
52 50 51 syl φ N - 1 + 1 = N
53 elfzuz3 M 0 N 1 N 1 M
54 peano2uz N 1 M N - 1 + 1 M
55 8 53 54 3syl φ N - 1 + 1 M
56 52 55 eqeltrrd φ N M
57 fzsplit2 M + 1 1 N M 1 N = 1 M M + 1 N
58 49 56 57 syl2anc φ 1 N = 1 M M + 1 N
59 uncom 1 M M + 1 N = M + 1 N 1 M
60 58 59 eqtrdi φ 1 N = M + 1 N 1 M
61 60 difeq1d φ 1 N 1 M = M + 1 N 1 M 1 M
62 incom M + 1 N 1 M = 1 M M + 1 N
63 8 45 syl φ M 0
64 63 nn0red φ M
65 64 ltp1d φ M < M + 1
66 fzdisj M < M + 1 1 M M + 1 N =
67 65 66 syl φ 1 M M + 1 N =
68 62 67 eqtrid φ M + 1 N 1 M =
69 disj3 M + 1 N 1 M = M + 1 N = M + 1 N 1 M
70 68 69 sylib φ M + 1 N = M + 1 N 1 M
71 44 61 70 3eqtr4a φ 1 N 1 M = M + 1 N
72 71 imaeq2d φ 2 nd 1 st U 1 N 1 M = 2 nd 1 st U M + 1 N
73 43 72 eqtr3d φ 2 nd 1 st U 1 N 2 nd 1 st U 1 M = 2 nd 1 st U M + 1 N
74 39 73 sseqtrd φ 2 nd 1 st T 1 M 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N
75 74 sselda φ y 2 nd 1 st T 1 M 2 nd 1 st U 1 M y 2 nd 1 st U M + 1 N
76 9 75 sylan2br φ y 2 nd 1 st T 1 M ¬ y 2 nd 1 st U 1 M y 2 nd 1 st U M + 1 N
77 fveq2 t = U 2 nd t = 2 nd U
78 77 breq2d t = U y < 2 nd t y < 2 nd U
79 78 ifbid t = U if y < 2 nd t y y + 1 = if y < 2 nd U y y + 1
80 79 csbeq1d t = U if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd U y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
81 2fveq3 t = U 1 st 1 st t = 1 st 1 st U
82 2fveq3 t = U 2 nd 1 st t = 2 nd 1 st U
83 82 imaeq1d t = U 2 nd 1 st t 1 j = 2 nd 1 st U 1 j
84 83 xpeq1d t = U 2 nd 1 st t 1 j × 1 = 2 nd 1 st U 1 j × 1
85 82 imaeq1d t = U 2 nd 1 st t j + 1 N = 2 nd 1 st U j + 1 N
86 85 xpeq1d t = U 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st U j + 1 N × 0
87 84 86 uneq12d t = U 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0
88 81 87 oveq12d t = U 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0
89 88 csbeq2dv t = U if y < 2 nd U y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd U y y + 1 / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0
90 80 89 eqtrd t = U if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd U y y + 1 / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0
91 90 mpteq2dv t = U y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = y 0 N 1 if y < 2 nd U y y + 1 / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0
92 91 eqeq2d t = U F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 F = y 0 N 1 if y < 2 nd U y y + 1 / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0
93 92 2 elrab2 U S U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N F = y 0 N 1 if y < 2 nd U y y + 1 / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0
94 93 simprbi U S F = y 0 N 1 if y < 2 nd U y y + 1 / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0
95 6 94 syl φ F = y 0 N 1 if y < 2 nd U y y + 1 / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0
96 breq1 y = M y < 2 nd U M < 2 nd U
97 id y = M y = M
98 96 97 ifbieq1d y = M if y < 2 nd U y y + 1 = if M < 2 nd U M y + 1
99 1 nnred φ N
100 peano2rem N N 1
101 99 100 syl φ N 1
102 elfzle2 M 0 N 1 M N 1
103 8 102 syl φ M N 1
104 99 ltm1d φ N 1 < N
105 64 101 99 103 104 lelttrd φ M < N
106 105 7 breqtrrd φ M < 2 nd U
107 106 iftrued φ if M < 2 nd U M y + 1 = M
108 98 107 sylan9eqr φ y = M if y < 2 nd U y y + 1 = M
109 108 csbeq1d φ y = M if y < 2 nd U y y + 1 / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0 = M / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0
110 oveq2 j = M 1 j = 1 M
111 110 imaeq2d j = M 2 nd 1 st U 1 j = 2 nd 1 st U 1 M
112 111 xpeq1d j = M 2 nd 1 st U 1 j × 1 = 2 nd 1 st U 1 M × 1
113 oveq1 j = M j + 1 = M + 1
114 113 oveq1d j = M j + 1 N = M + 1 N
115 114 imaeq2d j = M 2 nd 1 st U j + 1 N = 2 nd 1 st U M + 1 N
116 115 xpeq1d j = M 2 nd 1 st U j + 1 N × 0 = 2 nd 1 st U M + 1 N × 0
117 112 116 uneq12d j = M 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0 = 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0
118 117 oveq2d j = M 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0 = 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0
119 118 adantl φ j = M 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0 = 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0
120 8 119 csbied φ M / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0 = 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0
121 120 adantr φ y = M M / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0 = 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0
122 109 121 eqtrd φ y = M if y < 2 nd U y y + 1 / j 1 st 1 st U + f 2 nd 1 st U 1 j × 1 2 nd 1 st U j + 1 N × 0 = 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0
123 ovexd φ 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 V
124 95 122 8 123 fvmptd φ F M = 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0
125 124 fveq1d φ F M y = 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 y
126 125 adantr φ y 2 nd 1 st U M + 1 N F M y = 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 y
127 imassrn 2 nd 1 st U M + 1 N ran 2 nd 1 st U
128 f1of 2 nd 1 st U : 1 N 1-1 onto 1 N 2 nd 1 st U : 1 N 1 N
129 frn 2 nd 1 st U : 1 N 1 N ran 2 nd 1 st U 1 N
130 34 128 129 3syl φ ran 2 nd 1 st U 1 N
131 127 130 sstrid φ 2 nd 1 st U M + 1 N 1 N
132 131 sselda φ y 2 nd 1 st U M + 1 N y 1 N
133 xp1st 1 st U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st 1 st U 0 ..^ K 1 N
134 elmapfn 1 st 1 st U 0 ..^ K 1 N 1 st 1 st U Fn 1 N
135 28 133 134 3syl φ 1 st 1 st U Fn 1 N
136 135 adantr φ y 2 nd 1 st U M + 1 N 1 st 1 st U Fn 1 N
137 1ex 1 V
138 fnconstg 1 V 2 nd 1 st U 1 M × 1 Fn 2 nd 1 st U 1 M
139 137 138 ax-mp 2 nd 1 st U 1 M × 1 Fn 2 nd 1 st U 1 M
140 c0ex 0 V
141 fnconstg 0 V 2 nd 1 st U M + 1 N × 0 Fn 2 nd 1 st U M + 1 N
142 140 141 ax-mp 2 nd 1 st U M + 1 N × 0 Fn 2 nd 1 st U M + 1 N
143 139 142 pm3.2i 2 nd 1 st U 1 M × 1 Fn 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N × 0 Fn 2 nd 1 st U M + 1 N
144 imain Fun 2 nd 1 st U -1 2 nd 1 st U 1 M M + 1 N = 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N
145 34 41 144 3syl φ 2 nd 1 st U 1 M M + 1 N = 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N
146 67 imaeq2d φ 2 nd 1 st U 1 M M + 1 N = 2 nd 1 st U
147 ima0 2 nd 1 st U =
148 146 147 eqtrdi φ 2 nd 1 st U 1 M M + 1 N =
149 145 148 eqtr3d φ 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N =
150 fnun 2 nd 1 st U 1 M × 1 Fn 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N × 0 Fn 2 nd 1 st U M + 1 N 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N = 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 Fn 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N
151 143 149 150 sylancr φ 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 Fn 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N
152 imaundi 2 nd 1 st U 1 M M + 1 N = 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N
153 58 imaeq2d φ 2 nd 1 st U 1 N = 2 nd 1 st U 1 M M + 1 N
154 153 37 eqtr3d φ 2 nd 1 st U 1 M M + 1 N = 1 N
155 152 154 eqtr3id φ 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N = 1 N
156 155 fneq2d φ 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 Fn 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 Fn 1 N
157 151 156 mpbid φ 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 Fn 1 N
158 157 adantr φ y 2 nd 1 st U M + 1 N 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 Fn 1 N
159 ovexd φ y 2 nd 1 st U M + 1 N 1 N V
160 inidm 1 N 1 N = 1 N
161 eqidd φ y 2 nd 1 st U M + 1 N y 1 N 1 st 1 st U y = 1 st 1 st U y
162 fvun2 2 nd 1 st U 1 M × 1 Fn 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N × 0 Fn 2 nd 1 st U M + 1 N 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N = y 2 nd 1 st U M + 1 N 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 y = 2 nd 1 st U M + 1 N × 0 y
163 139 142 162 mp3an12 2 nd 1 st U 1 M 2 nd 1 st U M + 1 N = y 2 nd 1 st U M + 1 N 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 y = 2 nd 1 st U M + 1 N × 0 y
164 149 163 sylan φ y 2 nd 1 st U M + 1 N 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 y = 2 nd 1 st U M + 1 N × 0 y
165 140 fvconst2 y 2 nd 1 st U M + 1 N 2 nd 1 st U M + 1 N × 0 y = 0
166 165 adantl φ y 2 nd 1 st U M + 1 N 2 nd 1 st U M + 1 N × 0 y = 0
167 164 166 eqtrd φ y 2 nd 1 st U M + 1 N 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 y = 0
168 167 adantr φ y 2 nd 1 st U M + 1 N y 1 N 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 y = 0
169 136 158 159 159 160 161 168 ofval φ y 2 nd 1 st U M + 1 N y 1 N 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 y = 1 st 1 st U y + 0
170 132 169 mpdan φ y 2 nd 1 st U M + 1 N 1 st 1 st U + f 2 nd 1 st U 1 M × 1 2 nd 1 st U M + 1 N × 0 y = 1 st 1 st U y + 0
171 elmapi 1 st 1 st U 0 ..^ K 1 N 1 st 1 st U : 1 N 0 ..^ K
172 28 133 171 3syl φ 1 st 1 st U : 1 N 0 ..^ K
173 172 ffvelrnda φ y 1 N 1 st 1 st U y 0 ..^ K
174 elfzonn0 1 st 1 st U y 0 ..^ K 1 st 1 st U y 0
175 173 174 syl φ y 1 N 1 st 1 st U y 0
176 175 nn0cnd φ y 1 N 1 st 1 st U y
177 176 addid1d φ y 1 N 1 st 1 st U y + 0 = 1 st 1 st U y
178 132 177 syldan φ y 2 nd 1 st U M + 1 N 1 st 1 st U y + 0 = 1 st 1 st U y
179 126 170 178 3eqtrd φ y 2 nd 1 st U M + 1 N F M y = 1 st 1 st U y
180 76 179 syldan φ y 2 nd 1 st T 1 M ¬ y 2 nd 1 st U 1 M F M y = 1 st 1 st U y
181 fveq2 t = T 2 nd t = 2 nd T
182 181 breq2d t = T y < 2 nd t y < 2 nd T
183 182 ifbid t = T if y < 2 nd t y y + 1 = if y < 2 nd T y y + 1
184 183 csbeq1d t = T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
185 2fveq3 t = T 1 st 1 st t = 1 st 1 st T
186 2fveq3 t = T 2 nd 1 st t = 2 nd 1 st T
187 186 imaeq1d t = T 2 nd 1 st t 1 j = 2 nd 1 st T 1 j
188 187 xpeq1d t = T 2 nd 1 st t 1 j × 1 = 2 nd 1 st T 1 j × 1
189 186 imaeq1d t = T 2 nd 1 st t j + 1 N = 2 nd 1 st T j + 1 N
190 189 xpeq1d t = T 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T j + 1 N × 0
191 188 190 uneq12d t = T 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
192 185 191 oveq12d t = T 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
193 192 csbeq2dv t = T if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
194 184 193 eqtrd t = T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
195 194 mpteq2dv t = T y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
196 195 eqeq2d t = T F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
197 196 2 elrab2 T S T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
198 197 simprbi T S F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
199 4 198 syl φ F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
200 breq1 y = M y < 2 nd T M < 2 nd T
201 200 97 ifbieq1d y = M if y < 2 nd T y y + 1 = if M < 2 nd T M y + 1
202 105 5 breqtrrd φ M < 2 nd T
203 202 iftrued φ if M < 2 nd T M y + 1 = M
204 201 203 sylan9eqr φ y = M if y < 2 nd T y y + 1 = M
205 204 csbeq1d φ y = M if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = M / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
206 110 imaeq2d j = M 2 nd 1 st T 1 j = 2 nd 1 st T 1 M
207 206 xpeq1d j = M 2 nd 1 st T 1 j × 1 = 2 nd 1 st T 1 M × 1
208 114 imaeq2d j = M 2 nd 1 st T j + 1 N = 2 nd 1 st T M + 1 N
209 208 xpeq1d j = M 2 nd 1 st T j + 1 N × 0 = 2 nd 1 st T M + 1 N × 0
210 207 209 uneq12d j = M 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
211 210 oveq2d j = M 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
212 211 adantl φ j = M 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
213 8 212 csbied φ M / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
214 213 adantr φ y = M M / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
215 205 214 eqtrd φ y = M if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
216 ovexd φ 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 V
217 199 215 8 216 fvmptd φ F M = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
218 217 fveq1d φ F M y = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 y
219 218 adantr φ y 2 nd 1 st T 1 M F M y = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 y
220 24 sselda φ y 2 nd 1 st T 1 M y 1 N
221 xp1st 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st 1 st T 0 ..^ K 1 N
222 elmapfn 1 st 1 st T 0 ..^ K 1 N 1 st 1 st T Fn 1 N
223 14 221 222 3syl φ 1 st 1 st T Fn 1 N
224 223 adantr φ y 2 nd 1 st T 1 M 1 st 1 st T Fn 1 N
225 fnconstg 1 V 2 nd 1 st T 1 M × 1 Fn 2 nd 1 st T 1 M
226 137 225 ax-mp 2 nd 1 st T 1 M × 1 Fn 2 nd 1 st T 1 M
227 fnconstg 0 V 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N
228 140 227 ax-mp 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N
229 226 228 pm3.2i 2 nd 1 st T 1 M × 1 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N
230 dff1o3 2 nd 1 st T : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N onto 1 N Fun 2 nd 1 st T -1
231 230 simprbi 2 nd 1 st T : 1 N 1-1 onto 1 N Fun 2 nd 1 st T -1
232 imain Fun 2 nd 1 st T -1 2 nd 1 st T 1 M M + 1 N = 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
233 20 231 232 3syl φ 2 nd 1 st T 1 M M + 1 N = 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
234 67 imaeq2d φ 2 nd 1 st T 1 M M + 1 N = 2 nd 1 st T
235 ima0 2 nd 1 st T =
236 234 235 eqtrdi φ 2 nd 1 st T 1 M M + 1 N =
237 233 236 eqtr3d φ 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N =
238 fnun 2 nd 1 st T 1 M × 1 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N = 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
239 229 237 238 sylancr φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
240 imaundi 2 nd 1 st T 1 M M + 1 N = 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
241 58 imaeq2d φ 2 nd 1 st T 1 N = 2 nd 1 st T 1 M M + 1 N
242 f1ofo 2 nd 1 st T : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N onto 1 N
243 foima 2 nd 1 st T : 1 N onto 1 N 2 nd 1 st T 1 N = 1 N
244 20 242 243 3syl φ 2 nd 1 st T 1 N = 1 N
245 241 244 eqtr3d φ 2 nd 1 st T 1 M M + 1 N = 1 N
246 240 245 eqtr3id φ 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N = 1 N
247 246 fneq2d φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N
248 239 247 mpbid φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N
249 248 adantr φ y 2 nd 1 st T 1 M 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N
250 ovexd φ y 2 nd 1 st T 1 M 1 N V
251 eqidd φ y 2 nd 1 st T 1 M y 1 N 1 st 1 st T y = 1 st 1 st T y
252 fvun1 2 nd 1 st T 1 M × 1 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N = y 2 nd 1 st T 1 M 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 y = 2 nd 1 st T 1 M × 1 y
253 226 228 252 mp3an12 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N = y 2 nd 1 st T 1 M 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 y = 2 nd 1 st T 1 M × 1 y
254 237 253 sylan φ y 2 nd 1 st T 1 M 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 y = 2 nd 1 st T 1 M × 1 y
255 137 fvconst2 y 2 nd 1 st T 1 M 2 nd 1 st T 1 M × 1 y = 1
256 255 adantl φ y 2 nd 1 st T 1 M 2 nd 1 st T 1 M × 1 y = 1
257 254 256 eqtrd φ y 2 nd 1 st T 1 M 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 y = 1
258 257 adantr φ y 2 nd 1 st T 1 M y 1 N 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 y = 1
259 224 249 250 250 160 251 258 ofval φ y 2 nd 1 st T 1 M y 1 N 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 y = 1 st 1 st T y + 1
260 220 259 mpdan φ y 2 nd 1 st T 1 M 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 y = 1 st 1 st T y + 1
261 219 260 eqtrd φ y 2 nd 1 st T 1 M F M y = 1 st 1 st T y + 1
262 261 adantrr φ y 2 nd 1 st T 1 M ¬ y 2 nd 1 st U 1 M F M y = 1 st 1 st T y + 1
263 1 nngt0d φ 0 < N
264 263 7 breqtrrd φ 0 < 2 nd U
265 1 2 6 264 poimirlem5 φ F 0 = 1 st 1 st U
266 263 5 breqtrrd φ 0 < 2 nd T
267 1 2 4 266 poimirlem5 φ F 0 = 1 st 1 st T
268 265 267 eqtr3d φ 1 st 1 st U = 1 st 1 st T
269 268 fveq1d φ 1 st 1 st U y = 1 st 1 st T y
270 269 adantr φ y 2 nd 1 st T 1 M ¬ y 2 nd 1 st U 1 M 1 st 1 st U y = 1 st 1 st T y
271 180 262 270 3eqtr3d φ y 2 nd 1 st T 1 M ¬ y 2 nd 1 st U 1 M 1 st 1 st T y + 1 = 1 st 1 st T y
272 elmapi 1 st 1 st T 0 ..^ K 1 N 1 st 1 st T : 1 N 0 ..^ K
273 14 221 272 3syl φ 1 st 1 st T : 1 N 0 ..^ K
274 273 ffvelrnda φ y 1 N 1 st 1 st T y 0 ..^ K
275 elfzonn0 1 st 1 st T y 0 ..^ K 1 st 1 st T y 0
276 274 275 syl φ y 1 N 1 st 1 st T y 0
277 276 nn0red φ y 1 N 1 st 1 st T y
278 277 ltp1d φ y 1 N 1 st 1 st T y < 1 st 1 st T y + 1
279 277 278 gtned φ y 1 N 1 st 1 st T y + 1 1 st 1 st T y
280 220 279 syldan φ y 2 nd 1 st T 1 M 1 st 1 st T y + 1 1 st 1 st T y
281 280 neneqd φ y 2 nd 1 st T 1 M ¬ 1 st 1 st T y + 1 = 1 st 1 st T y
282 281 adantrr φ y 2 nd 1 st T 1 M ¬ y 2 nd 1 st U 1 M ¬ 1 st 1 st T y + 1 = 1 st 1 st T y
283 271 282 pm2.65da φ ¬ y 2 nd 1 st T 1 M ¬ y 2 nd 1 st U 1 M
284 iman y 2 nd 1 st T 1 M y 2 nd 1 st U 1 M ¬ y 2 nd 1 st T 1 M ¬ y 2 nd 1 st U 1 M
285 283 284 sylibr φ y 2 nd 1 st T 1 M y 2 nd 1 st U 1 M
286 285 ssrdv φ 2 nd 1 st T 1 M 2 nd 1 st U 1 M