Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Bit sequences
sadcaddlem
Next ⟩
sadcadd
Metamath Proof Explorer
Ascii
Unicode
Theorem
sadcaddlem
Description:
Lemma for
sadcadd
.
(Contributed by
Mario Carneiro
, 8-Sep-2016)
Ref
Expression
Hypotheses
sadval.a
⊢
φ
→
A
⊆
ℕ
0
sadval.b
⊢
φ
→
B
⊆
ℕ
0
sadval.c
⊢
C
=
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
m
∈
B
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
sadcp1.n
⊢
φ
→
N
∈
ℕ
0
sadcadd.k
⊢
K
=
bits
↾
ℕ
0
-1
sadcaddlem.1
⊢
φ
→
∅
∈
C
N
↔
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
Assertion
sadcaddlem
⊢
φ
→
∅
∈
C
N
+
1
↔
2
N
+
1
≤
K
A
∩
0
..^
N
+
1
+
K
B
∩
0
..^
N
+
1
Proof
Step
Hyp
Ref
Expression
1
sadval.a
⊢
φ
→
A
⊆
ℕ
0
2
sadval.b
⊢
φ
→
B
⊆
ℕ
0
3
sadval.c
⊢
C
=
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
m
∈
B
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
4
sadcp1.n
⊢
φ
→
N
∈
ℕ
0
5
sadcadd.k
⊢
K
=
bits
↾
ℕ
0
-1
6
sadcaddlem.1
⊢
φ
→
∅
∈
C
N
↔
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
7
cad1
⊢
∅
∈
C
N
→
cadd
N
∈
A
N
∈
B
∅
∈
C
N
↔
N
∈
A
∨
N
∈
B
8
7
adantl
⊢
φ
∧
∅
∈
C
N
→
cadd
N
∈
A
N
∈
B
∅
∈
C
N
↔
N
∈
A
∨
N
∈
B
9
2nn
⊢
2
∈
ℕ
10
9
a1i
⊢
φ
→
2
∈
ℕ
11
10
4
nnexpcld
⊢
φ
→
2
N
∈
ℕ
12
11
nnred
⊢
φ
→
2
N
∈
ℝ
13
12
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
N
∈
A
∨
N
∈
B
→
2
N
∈
ℝ
14
inss1
⊢
A
∩
0
..^
N
⊆
A
15
14
1
sstrid
⊢
φ
→
A
∩
0
..^
N
⊆
ℕ
0
16
fzofi
⊢
0
..^
N
∈
Fin
17
16
a1i
⊢
φ
→
0
..^
N
∈
Fin
18
inss2
⊢
A
∩
0
..^
N
⊆
0
..^
N
19
ssfi
⊢
0
..^
N
∈
Fin
∧
A
∩
0
..^
N
⊆
0
..^
N
→
A
∩
0
..^
N
∈
Fin
20
17
18
19
sylancl
⊢
φ
→
A
∩
0
..^
N
∈
Fin
21
elfpw
⊢
A
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
↔
A
∩
0
..^
N
⊆
ℕ
0
∧
A
∩
0
..^
N
∈
Fin
22
15
20
21
sylanbrc
⊢
φ
→
A
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
23
bitsf1o
⊢
bits
↾
ℕ
0
:
ℕ
0
⟶
1-1 onto
𝒫
ℕ
0
∩
Fin
24
f1ocnv
⊢
bits
↾
ℕ
0
:
ℕ
0
⟶
1-1 onto
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
25
23
24
ax-mp
⊢
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
26
f1oeq1
⊢
K
=
bits
↾
ℕ
0
-1
→
K
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
↔
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
27
5
26
ax-mp
⊢
K
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
↔
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
28
25
27
mpbir
⊢
K
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
29
f1of
⊢
K
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
→
K
:
𝒫
ℕ
0
∩
Fin
⟶
ℕ
0
30
28
29
ax-mp
⊢
K
:
𝒫
ℕ
0
∩
Fin
⟶
ℕ
0
31
30
ffvelcdmi
⊢
A
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
K
A
∩
0
..^
N
∈
ℕ
0
32
22
31
syl
⊢
φ
→
K
A
∩
0
..^
N
∈
ℕ
0
33
inss1
⊢
B
∩
0
..^
N
⊆
B
34
33
2
sstrid
⊢
φ
→
B
∩
0
..^
N
⊆
ℕ
0
35
inss2
⊢
B
∩
0
..^
N
⊆
0
..^
N
36
ssfi
⊢
0
..^
N
∈
Fin
∧
B
∩
0
..^
N
⊆
0
..^
N
→
B
∩
0
..^
N
∈
Fin
37
17
35
36
sylancl
⊢
φ
→
B
∩
0
..^
N
∈
Fin
38
elfpw
⊢
B
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
↔
B
∩
0
..^
N
⊆
ℕ
0
∧
B
∩
0
..^
N
∈
Fin
39
34
37
38
sylanbrc
⊢
φ
→
B
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
40
30
ffvelcdmi
⊢
B
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
K
B
∩
0
..^
N
∈
ℕ
0
41
39
40
syl
⊢
φ
→
K
B
∩
0
..^
N
∈
ℕ
0
42
32
41
nn0addcld
⊢
φ
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
∈
ℕ
0
43
42
nn0red
⊢
φ
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
∈
ℝ
44
43
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
N
∈
A
∨
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
∈
ℝ
45
2nn0
⊢
2
∈
ℕ
0
46
45
a1i
⊢
φ
∧
N
∈
A
→
2
∈
ℕ
0
47
4
adantr
⊢
φ
∧
N
∈
A
→
N
∈
ℕ
0
48
46
47
nn0expcld
⊢
φ
∧
N
∈
A
→
2
N
∈
ℕ
0
49
0nn0
⊢
0
∈
ℕ
0
50
49
a1i
⊢
φ
∧
¬
N
∈
A
→
0
∈
ℕ
0
51
48
50
ifclda
⊢
φ
→
if
N
∈
A
2
N
0
∈
ℕ
0
52
45
a1i
⊢
φ
∧
N
∈
B
→
2
∈
ℕ
0
53
4
adantr
⊢
φ
∧
N
∈
B
→
N
∈
ℕ
0
54
52
53
nn0expcld
⊢
φ
∧
N
∈
B
→
2
N
∈
ℕ
0
55
49
a1i
⊢
φ
∧
¬
N
∈
B
→
0
∈
ℕ
0
56
54
55
ifclda
⊢
φ
→
if
N
∈
B
2
N
0
∈
ℕ
0
57
51
56
nn0addcld
⊢
φ
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
∈
ℕ
0
58
57
nn0red
⊢
φ
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
∈
ℝ
59
58
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
N
∈
A
∨
N
∈
B
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
∈
ℝ
60
6
biimpa
⊢
φ
∧
∅
∈
C
N
→
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
61
60
adantr
⊢
φ
∧
∅
∈
C
N
∧
N
∈
A
∨
N
∈
B
→
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
62
11
nnnn0d
⊢
φ
→
2
N
∈
ℕ
0
63
ifcl
⊢
2
N
∈
ℕ
0
∧
0
∈
ℕ
0
→
if
N
∈
B
2
N
0
∈
ℕ
0
64
62
49
63
sylancl
⊢
φ
→
if
N
∈
B
2
N
0
∈
ℕ
0
65
64
nn0ge0d
⊢
φ
→
0
≤
if
N
∈
B
2
N
0
66
12
adantr
⊢
φ
∧
N
∈
B
→
2
N
∈
ℝ
67
0red
⊢
φ
∧
¬
N
∈
B
→
0
∈
ℝ
68
66
67
ifclda
⊢
φ
→
if
N
∈
B
2
N
0
∈
ℝ
69
12
68
addge01d
⊢
φ
→
0
≤
if
N
∈
B
2
N
0
↔
2
N
≤
2
N
+
if
N
∈
B
2
N
0
70
65
69
mpbid
⊢
φ
→
2
N
≤
2
N
+
if
N
∈
B
2
N
0
71
70
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
N
∈
A
→
2
N
≤
2
N
+
if
N
∈
B
2
N
0
72
iftrue
⊢
N
∈
A
→
if
N
∈
A
2
N
0
=
2
N
73
72
adantl
⊢
φ
∧
∅
∈
C
N
∧
N
∈
A
→
if
N
∈
A
2
N
0
=
2
N
74
73
oveq1d
⊢
φ
∧
∅
∈
C
N
∧
N
∈
A
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
2
N
+
if
N
∈
B
2
N
0
75
71
74
breqtrrd
⊢
φ
∧
∅
∈
C
N
∧
N
∈
A
→
2
N
≤
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
76
ifcl
⊢
2
N
∈
ℕ
0
∧
0
∈
ℕ
0
→
if
N
∈
A
2
N
0
∈
ℕ
0
77
62
49
76
sylancl
⊢
φ
→
if
N
∈
A
2
N
0
∈
ℕ
0
78
77
nn0ge0d
⊢
φ
→
0
≤
if
N
∈
A
2
N
0
79
12
adantr
⊢
φ
∧
N
∈
A
→
2
N
∈
ℝ
80
0red
⊢
φ
∧
¬
N
∈
A
→
0
∈
ℝ
81
79
80
ifclda
⊢
φ
→
if
N
∈
A
2
N
0
∈
ℝ
82
12
81
addge02d
⊢
φ
→
0
≤
if
N
∈
A
2
N
0
↔
2
N
≤
if
N
∈
A
2
N
0
+
2
N
83
78
82
mpbid
⊢
φ
→
2
N
≤
if
N
∈
A
2
N
0
+
2
N
84
83
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
N
∈
B
→
2
N
≤
if
N
∈
A
2
N
0
+
2
N
85
iftrue
⊢
N
∈
B
→
if
N
∈
B
2
N
0
=
2
N
86
85
adantl
⊢
φ
∧
∅
∈
C
N
∧
N
∈
B
→
if
N
∈
B
2
N
0
=
2
N
87
86
oveq2d
⊢
φ
∧
∅
∈
C
N
∧
N
∈
B
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
if
N
∈
A
2
N
0
+
2
N
88
84
87
breqtrrd
⊢
φ
∧
∅
∈
C
N
∧
N
∈
B
→
2
N
≤
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
89
75
88
jaodan
⊢
φ
∧
∅
∈
C
N
∧
N
∈
A
∨
N
∈
B
→
2
N
≤
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
90
13
13
44
59
61
89
le2addd
⊢
φ
∧
∅
∈
C
N
∧
N
∈
A
∨
N
∈
B
→
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
91
90
ex
⊢
φ
∧
∅
∈
C
N
→
N
∈
A
∨
N
∈
B
→
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
92
ioran
⊢
¬
N
∈
A
∨
N
∈
B
↔
¬
N
∈
A
∧
¬
N
∈
B
93
iffalse
⊢
¬
N
∈
A
→
if
N
∈
A
2
N
0
=
0
94
93
ad2antrl
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
if
N
∈
A
2
N
0
=
0
95
iffalse
⊢
¬
N
∈
B
→
if
N
∈
B
2
N
0
=
0
96
95
ad2antll
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
if
N
∈
B
2
N
0
=
0
97
94
96
oveq12d
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
0
+
0
98
00id
⊢
0
+
0
=
0
99
97
98
eqtrdi
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
0
100
99
oveq2d
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
0
101
32
nn0red
⊢
φ
→
K
A
∩
0
..^
N
∈
ℝ
102
101
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
A
∩
0
..^
N
∈
ℝ
103
41
nn0red
⊢
φ
→
K
B
∩
0
..^
N
∈
ℝ
104
103
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
B
∩
0
..^
N
∈
ℝ
105
102
104
readdcld
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
∈
ℝ
106
105
recnd
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
∈
ℂ
107
106
addridd
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
0
=
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
108
100
107
eqtrd
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
109
5
fveq1i
⊢
K
A
∩
0
..^
N
=
bits
↾
ℕ
0
-1
A
∩
0
..^
N
110
109
fveq2i
⊢
bits
↾
ℕ
0
K
A
∩
0
..^
N
=
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
A
∩
0
..^
N
111
32
fvresd
⊢
φ
→
bits
↾
ℕ
0
K
A
∩
0
..^
N
=
bits
K
A
∩
0
..^
N
112
f1ocnvfv2
⊢
bits
↾
ℕ
0
:
ℕ
0
⟶
1-1 onto
𝒫
ℕ
0
∩
Fin
∧
A
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
A
∩
0
..^
N
=
A
∩
0
..^
N
113
23
22
112
sylancr
⊢
φ
→
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
A
∩
0
..^
N
=
A
∩
0
..^
N
114
110
111
113
3eqtr3a
⊢
φ
→
bits
K
A
∩
0
..^
N
=
A
∩
0
..^
N
115
114
18
eqsstrdi
⊢
φ
→
bits
K
A
∩
0
..^
N
⊆
0
..^
N
116
32
nn0zd
⊢
φ
→
K
A
∩
0
..^
N
∈
ℤ
117
bitsfzo
⊢
K
A
∩
0
..^
N
∈
ℤ
∧
N
∈
ℕ
0
→
K
A
∩
0
..^
N
∈
0
..^
2
N
↔
bits
K
A
∩
0
..^
N
⊆
0
..^
N
118
116
4
117
syl2anc
⊢
φ
→
K
A
∩
0
..^
N
∈
0
..^
2
N
↔
bits
K
A
∩
0
..^
N
⊆
0
..^
N
119
115
118
mpbird
⊢
φ
→
K
A
∩
0
..^
N
∈
0
..^
2
N
120
elfzolt2
⊢
K
A
∩
0
..^
N
∈
0
..^
2
N
→
K
A
∩
0
..^
N
<
2
N
121
119
120
syl
⊢
φ
→
K
A
∩
0
..^
N
<
2
N
122
5
fveq1i
⊢
K
B
∩
0
..^
N
=
bits
↾
ℕ
0
-1
B
∩
0
..^
N
123
122
fveq2i
⊢
bits
↾
ℕ
0
K
B
∩
0
..^
N
=
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
B
∩
0
..^
N
124
41
fvresd
⊢
φ
→
bits
↾
ℕ
0
K
B
∩
0
..^
N
=
bits
K
B
∩
0
..^
N
125
f1ocnvfv2
⊢
bits
↾
ℕ
0
:
ℕ
0
⟶
1-1 onto
𝒫
ℕ
0
∩
Fin
∧
B
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
B
∩
0
..^
N
=
B
∩
0
..^
N
126
23
39
125
sylancr
⊢
φ
→
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
B
∩
0
..^
N
=
B
∩
0
..^
N
127
123
124
126
3eqtr3a
⊢
φ
→
bits
K
B
∩
0
..^
N
=
B
∩
0
..^
N
128
127
35
eqsstrdi
⊢
φ
→
bits
K
B
∩
0
..^
N
⊆
0
..^
N
129
41
nn0zd
⊢
φ
→
K
B
∩
0
..^
N
∈
ℤ
130
bitsfzo
⊢
K
B
∩
0
..^
N
∈
ℤ
∧
N
∈
ℕ
0
→
K
B
∩
0
..^
N
∈
0
..^
2
N
↔
bits
K
B
∩
0
..^
N
⊆
0
..^
N
131
129
4
130
syl2anc
⊢
φ
→
K
B
∩
0
..^
N
∈
0
..^
2
N
↔
bits
K
B
∩
0
..^
N
⊆
0
..^
N
132
128
131
mpbird
⊢
φ
→
K
B
∩
0
..^
N
∈
0
..^
2
N
133
elfzolt2
⊢
K
B
∩
0
..^
N
∈
0
..^
2
N
→
K
B
∩
0
..^
N
<
2
N
134
132
133
syl
⊢
φ
→
K
B
∩
0
..^
N
<
2
N
135
101
103
12
12
121
134
lt2addd
⊢
φ
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
<
2
N
+
2
N
136
135
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
<
2
N
+
2
N
137
108
136
eqbrtrd
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
<
2
N
+
2
N
138
81
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
if
N
∈
A
2
N
0
∈
ℝ
139
68
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
if
N
∈
B
2
N
0
∈
ℝ
140
138
139
readdcld
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
∈
ℝ
141
105
140
readdcld
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
∈
ℝ
142
12
ad2antrr
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
2
N
∈
ℝ
143
142
142
readdcld
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
2
N
+
2
N
∈
ℝ
144
141
143
ltnled
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
<
2
N
+
2
N
↔
¬
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
145
137
144
mpbid
⊢
φ
∧
∅
∈
C
N
∧
¬
N
∈
A
∧
¬
N
∈
B
→
¬
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
146
145
ex
⊢
φ
∧
∅
∈
C
N
→
¬
N
∈
A
∧
¬
N
∈
B
→
¬
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
147
92
146
biimtrid
⊢
φ
∧
∅
∈
C
N
→
¬
N
∈
A
∨
N
∈
B
→
¬
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
148
91
147
impcon4bid
⊢
φ
∧
∅
∈
C
N
→
N
∈
A
∨
N
∈
B
↔
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
149
8
148
bitrd
⊢
φ
∧
∅
∈
C
N
→
cadd
N
∈
A
N
∈
B
∅
∈
C
N
↔
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
150
cad0
⊢
¬
∅
∈
C
N
→
cadd
N
∈
A
N
∈
B
∅
∈
C
N
↔
N
∈
A
∧
N
∈
B
151
150
adantl
⊢
φ
∧
¬
∅
∈
C
N
→
cadd
N
∈
A
N
∈
B
∅
∈
C
N
↔
N
∈
A
∧
N
∈
B
152
42
nn0ge0d
⊢
φ
→
0
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
153
12
12
readdcld
⊢
φ
→
2
N
+
2
N
∈
ℝ
154
153
43
addge02d
⊢
φ
→
0
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
↔
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
+
2
N
155
152
154
mpbid
⊢
φ
→
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
+
2
N
156
155
ad2antrr
⊢
φ
∧
¬
∅
∈
C
N
∧
N
∈
A
∧
N
∈
B
→
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
+
2
N
157
72
85
oveqan12d
⊢
N
∈
A
∧
N
∈
B
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
2
N
+
2
N
158
157
adantl
⊢
φ
∧
¬
∅
∈
C
N
∧
N
∈
A
∧
N
∈
B
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
2
N
+
2
N
159
158
oveq2d
⊢
φ
∧
¬
∅
∈
C
N
∧
N
∈
A
∧
N
∈
B
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
+
2
N
160
156
159
breqtrrd
⊢
φ
∧
¬
∅
∈
C
N
∧
N
∈
A
∧
N
∈
B
→
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
161
160
ex
⊢
φ
∧
¬
∅
∈
C
N
→
N
∈
A
∧
N
∈
B
→
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
162
101
adantr
⊢
φ
∧
¬
∅
∈
C
N
→
K
A
∩
0
..^
N
∈
ℝ
163
103
adantr
⊢
φ
∧
¬
∅
∈
C
N
→
K
B
∩
0
..^
N
∈
ℝ
164
162
163
readdcld
⊢
φ
∧
¬
∅
∈
C
N
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
∈
ℝ
165
12
adantr
⊢
φ
∧
¬
∅
∈
C
N
→
2
N
∈
ℝ
166
12
43
lenltd
⊢
φ
→
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
↔
¬
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
<
2
N
167
6
166
bitrd
⊢
φ
→
∅
∈
C
N
↔
¬
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
<
2
N
168
167
con2bid
⊢
φ
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
<
2
N
↔
¬
∅
∈
C
N
169
168
biimpar
⊢
φ
∧
¬
∅
∈
C
N
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
<
2
N
170
164
165
165
169
ltadd1dd
⊢
φ
∧
¬
∅
∈
C
N
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
<
2
N
+
2
N
171
164
165
readdcld
⊢
φ
∧
¬
∅
∈
C
N
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
∈
ℝ
172
153
adantr
⊢
φ
∧
¬
∅
∈
C
N
→
2
N
+
2
N
∈
ℝ
173
43
58
readdcld
⊢
φ
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
∈
ℝ
174
173
adantr
⊢
φ
∧
¬
∅
∈
C
N
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
∈
ℝ
175
ltletr
⊢
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
∈
ℝ
∧
2
N
+
2
N
∈
ℝ
∧
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
∈
ℝ
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
<
2
N
+
2
N
∧
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
<
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
176
171
172
174
175
syl3anc
⊢
φ
∧
¬
∅
∈
C
N
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
<
2
N
+
2
N
∧
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
<
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
177
170
176
mpand
⊢
φ
∧
¬
∅
∈
C
N
→
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
<
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
178
58
adantr
⊢
φ
∧
¬
∅
∈
C
N
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
∈
ℝ
179
43
adantr
⊢
φ
∧
¬
∅
∈
C
N
→
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
∈
ℝ
180
165
178
179
ltadd2d
⊢
φ
∧
¬
∅
∈
C
N
→
2
N
<
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
↔
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
2
N
<
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
181
177
180
sylibrd
⊢
φ
∧
¬
∅
∈
C
N
→
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
→
2
N
<
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
182
12
58
ltnled
⊢
φ
→
2
N
<
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
↔
¬
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
≤
2
N
183
64
nn0cnd
⊢
φ
→
if
N
∈
B
2
N
0
∈
ℂ
184
183
addlidd
⊢
φ
→
0
+
if
N
∈
B
2
N
0
=
if
N
∈
B
2
N
0
185
12
leidd
⊢
φ
→
2
N
≤
2
N
186
62
nn0ge0d
⊢
φ
→
0
≤
2
N
187
breq1
⊢
2
N
=
if
N
∈
B
2
N
0
→
2
N
≤
2
N
↔
if
N
∈
B
2
N
0
≤
2
N
188
breq1
⊢
0
=
if
N
∈
B
2
N
0
→
0
≤
2
N
↔
if
N
∈
B
2
N
0
≤
2
N
189
187
188
ifboth
⊢
2
N
≤
2
N
∧
0
≤
2
N
→
if
N
∈
B
2
N
0
≤
2
N
190
185
186
189
syl2anc
⊢
φ
→
if
N
∈
B
2
N
0
≤
2
N
191
184
190
eqbrtrd
⊢
φ
→
0
+
if
N
∈
B
2
N
0
≤
2
N
192
93
oveq1d
⊢
¬
N
∈
A
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
0
+
if
N
∈
B
2
N
0
193
192
breq1d
⊢
¬
N
∈
A
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
≤
2
N
↔
0
+
if
N
∈
B
2
N
0
≤
2
N
194
191
193
syl5ibrcom
⊢
φ
→
¬
N
∈
A
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
≤
2
N
195
194
con1d
⊢
φ
→
¬
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
≤
2
N
→
N
∈
A
196
77
nn0cnd
⊢
φ
→
if
N
∈
A
2
N
0
∈
ℂ
197
196
addridd
⊢
φ
→
if
N
∈
A
2
N
0
+
0
=
if
N
∈
A
2
N
0
198
breq1
⊢
2
N
=
if
N
∈
A
2
N
0
→
2
N
≤
2
N
↔
if
N
∈
A
2
N
0
≤
2
N
199
breq1
⊢
0
=
if
N
∈
A
2
N
0
→
0
≤
2
N
↔
if
N
∈
A
2
N
0
≤
2
N
200
198
199
ifboth
⊢
2
N
≤
2
N
∧
0
≤
2
N
→
if
N
∈
A
2
N
0
≤
2
N
201
185
186
200
syl2anc
⊢
φ
→
if
N
∈
A
2
N
0
≤
2
N
202
197
201
eqbrtrd
⊢
φ
→
if
N
∈
A
2
N
0
+
0
≤
2
N
203
95
oveq2d
⊢
¬
N
∈
B
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
=
if
N
∈
A
2
N
0
+
0
204
203
breq1d
⊢
¬
N
∈
B
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
≤
2
N
↔
if
N
∈
A
2
N
0
+
0
≤
2
N
205
202
204
syl5ibrcom
⊢
φ
→
¬
N
∈
B
→
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
≤
2
N
206
205
con1d
⊢
φ
→
¬
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
≤
2
N
→
N
∈
B
207
195
206
jcad
⊢
φ
→
¬
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
≤
2
N
→
N
∈
A
∧
N
∈
B
208
182
207
sylbid
⊢
φ
→
2
N
<
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
→
N
∈
A
∧
N
∈
B
209
208
adantr
⊢
φ
∧
¬
∅
∈
C
N
→
2
N
<
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
→
N
∈
A
∧
N
∈
B
210
181
209
syld
⊢
φ
∧
¬
∅
∈
C
N
→
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
→
N
∈
A
∧
N
∈
B
211
161
210
impbid
⊢
φ
∧
¬
∅
∈
C
N
→
N
∈
A
∧
N
∈
B
↔
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
212
151
211
bitrd
⊢
φ
∧
¬
∅
∈
C
N
→
cadd
N
∈
A
N
∈
B
∅
∈
C
N
↔
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
213
149
212
pm2.61dan
⊢
φ
→
cadd
N
∈
A
N
∈
B
∅
∈
C
N
↔
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
214
1
2
3
4
sadcp1
⊢
φ
→
∅
∈
C
N
+
1
↔
cadd
N
∈
A
N
∈
B
∅
∈
C
N
215
2cnd
⊢
φ
→
2
∈
ℂ
216
215
4
expp1d
⊢
φ
→
2
N
+
1
=
2
N
⋅
2
217
11
nncnd
⊢
φ
→
2
N
∈
ℂ
218
217
times2d
⊢
φ
→
2
N
⋅
2
=
2
N
+
2
N
219
216
218
eqtrd
⊢
φ
→
2
N
+
1
=
2
N
+
2
N
220
5
bitsinvp1
⊢
A
⊆
ℕ
0
∧
N
∈
ℕ
0
→
K
A
∩
0
..^
N
+
1
=
K
A
∩
0
..^
N
+
if
N
∈
A
2
N
0
221
1
4
220
syl2anc
⊢
φ
→
K
A
∩
0
..^
N
+
1
=
K
A
∩
0
..^
N
+
if
N
∈
A
2
N
0
222
5
bitsinvp1
⊢
B
⊆
ℕ
0
∧
N
∈
ℕ
0
→
K
B
∩
0
..^
N
+
1
=
K
B
∩
0
..^
N
+
if
N
∈
B
2
N
0
223
2
4
222
syl2anc
⊢
φ
→
K
B
∩
0
..^
N
+
1
=
K
B
∩
0
..^
N
+
if
N
∈
B
2
N
0
224
221
223
oveq12d
⊢
φ
→
K
A
∩
0
..^
N
+
1
+
K
B
∩
0
..^
N
+
1
=
K
A
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
K
B
∩
0
..^
N
+
if
N
∈
B
2
N
0
225
32
nn0cnd
⊢
φ
→
K
A
∩
0
..^
N
∈
ℂ
226
41
nn0cnd
⊢
φ
→
K
B
∩
0
..^
N
∈
ℂ
227
225
196
226
183
add4d
⊢
φ
→
K
A
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
K
B
∩
0
..^
N
+
if
N
∈
B
2
N
0
=
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
228
224
227
eqtrd
⊢
φ
→
K
A
∩
0
..^
N
+
1
+
K
B
∩
0
..^
N
+
1
=
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
229
219
228
breq12d
⊢
φ
→
2
N
+
1
≤
K
A
∩
0
..^
N
+
1
+
K
B
∩
0
..^
N
+
1
↔
2
N
+
2
N
≤
K
A
∩
0
..^
N
+
K
B
∩
0
..^
N
+
if
N
∈
A
2
N
0
+
if
N
∈
B
2
N
0
230
213
214
229
3bitr4d
⊢
φ
→
∅
∈
C
N
+
1
↔
2
N
+
1
≤
K
A
∩
0
..^
N
+
1
+
K
B
∩
0
..^
N
+
1