Metamath Proof Explorer


Theorem selberg3lem1

Description: Introduce a log weighting on the summands of sum_ m x. n <_ x , Lam ( m ) Lam ( n ) , the core of selberg2 (written here as sum_ n <_ x , Lam ( n ) psi ( x / n ) ). Equation 10.4.21 of Shapiro, p. 422. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses selberg3lem1.1 φ A +
selberg3lem1.2 φ y 1 +∞ k = 1 y Λ k log k ψ y log y y A
Assertion selberg3lem1 φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x 𝑂1

Proof

Step Hyp Ref Expression
1 selberg3lem1.1 φ A +
2 selberg3lem1.2 φ y 1 +∞ k = 1 y Λ k log k ψ y log y y A
3 1red φ 1
4 ioossre 1 +∞
5 1 rpcnd φ A
6 o1const 1 +∞ A x 1 +∞ A 𝑂1
7 4 5 6 sylancr φ x 1 +∞ A 𝑂1
8 fzfid φ x 1 +∞ 1 x Fin
9 elfznn n 1 x n
10 9 adantl φ x 1 +∞ n 1 x n
11 vmacl n Λ n
12 10 11 syl φ x 1 +∞ n 1 x Λ n
13 12 10 nndivred φ x 1 +∞ n 1 x Λ n n
14 8 13 fsumrecl φ x 1 +∞ n = 1 x Λ n n
15 elioore x 1 +∞ x
16 eliooord x 1 +∞ 1 < x x < +∞
17 16 simpld x 1 +∞ 1 < x
18 15 17 rplogcld x 1 +∞ log x +
19 rpdivcl A + log x + A log x +
20 1 18 19 syl2an φ x 1 +∞ A log x +
21 20 rpred φ x 1 +∞ A log x
22 14 21 remulcld φ x 1 +∞ n = 1 x Λ n n A log x
23 22 recnd φ x 1 +∞ n = 1 x Λ n n A log x
24 5 adantr φ x 1 +∞ A
25 14 recnd φ x 1 +∞ n = 1 x Λ n n
26 18 adantl φ x 1 +∞ log x +
27 26 rpcnd φ x 1 +∞ log x
28 20 rpcnd φ x 1 +∞ A log x
29 25 27 28 subdird φ x 1 +∞ n = 1 x Λ n n log x A log x = n = 1 x Λ n n A log x log x A log x
30 26 rpne0d φ x 1 +∞ log x 0
31 24 27 30 divcan2d φ x 1 +∞ log x A log x = A
32 31 oveq2d φ x 1 +∞ n = 1 x Λ n n A log x log x A log x = n = 1 x Λ n n A log x A
33 29 32 eqtrd φ x 1 +∞ n = 1 x Λ n n log x A log x = n = 1 x Λ n n A log x A
34 33 mpteq2dva φ x 1 +∞ n = 1 x Λ n n log x A log x = x 1 +∞ n = 1 x Λ n n A log x A
35 26 rpred φ x 1 +∞ log x
36 14 35 resubcld φ x 1 +∞ n = 1 x Λ n n log x
37 15 adantl φ x 1 +∞ x
38 0red φ x 1 +∞ 0
39 1red φ x 1 +∞ 1
40 0lt1 0 < 1
41 40 a1i φ x 1 +∞ 0 < 1
42 17 adantl φ x 1 +∞ 1 < x
43 38 39 37 41 42 lttrd φ x 1 +∞ 0 < x
44 37 43 elrpd φ x 1 +∞ x +
45 44 ex φ x 1 +∞ x +
46 45 ssrdv φ 1 +∞ +
47 vmadivsum x + n = 1 x Λ n n log x 𝑂1
48 47 a1i φ x + n = 1 x Λ n n log x 𝑂1
49 46 48 o1res2 φ x 1 +∞ n = 1 x Λ n n log x 𝑂1
50 4 a1i φ 1 +∞
51 ere e
52 51 a1i φ e
53 1 rpred φ A
54 20 adantrr φ x 1 +∞ e x A log x +
55 54 rprege0d φ x 1 +∞ e x A log x 0 A log x
56 absid A log x 0 A log x A log x = A log x
57 55 56 syl φ x 1 +∞ e x A log x = A log x
58 loge log e = 1
59 simprr φ x 1 +∞ e x e x
60 epr e +
61 44 adantrr φ x 1 +∞ e x x +
62 logleb e + x + e x log e log x
63 60 61 62 sylancr φ x 1 +∞ e x e x log e log x
64 59 63 mpbid φ x 1 +∞ e x log e log x
65 58 64 eqbrtrrid φ x 1 +∞ e x 1 log x
66 1rp 1 +
67 rpregt0 1 + 1 0 < 1
68 66 67 mp1i φ x 1 +∞ e x 1 0 < 1
69 26 adantrr φ x 1 +∞ e x log x +
70 69 rpregt0d φ x 1 +∞ e x log x 0 < log x
71 1 adantr φ x 1 +∞ e x A +
72 71 rpregt0d φ x 1 +∞ e x A 0 < A
73 lediv2 1 0 < 1 log x 0 < log x A 0 < A 1 log x A log x A 1
74 68 70 72 73 syl3anc φ x 1 +∞ e x 1 log x A log x A 1
75 65 74 mpbid φ x 1 +∞ e x A log x A 1
76 5 adantr φ x 1 +∞ e x A
77 76 div1d φ x 1 +∞ e x A 1 = A
78 75 77 breqtrd φ x 1 +∞ e x A log x A
79 57 78 eqbrtrd φ x 1 +∞ e x A log x A
80 50 28 52 53 79 elo1d φ x 1 +∞ A log x 𝑂1
81 36 21 49 80 o1mul2 φ x 1 +∞ n = 1 x Λ n n log x A log x 𝑂1
82 34 81 eqeltrrd φ x 1 +∞ n = 1 x Λ n n A log x A 𝑂1
83 23 24 82 o1dif φ x 1 +∞ n = 1 x Λ n n A log x 𝑂1 x 1 +∞ A 𝑂1
84 7 83 mpbird φ x 1 +∞ n = 1 x Λ n n A log x 𝑂1
85 2re 2
86 rerpdivcl 2 log x + 2 log x
87 85 26 86 sylancr φ x 1 +∞ 2 log x
88 nndivre x n x n
89 37 9 88 syl2an φ x 1 +∞ n 1 x x n
90 chpcl x n ψ x n
91 89 90 syl φ x 1 +∞ n 1 x ψ x n
92 12 91 remulcld φ x 1 +∞ n 1 x Λ n ψ x n
93 10 nnrpd φ x 1 +∞ n 1 x n +
94 93 relogcld φ x 1 +∞ n 1 x log n
95 92 94 remulcld φ x 1 +∞ n 1 x Λ n ψ x n log n
96 8 95 fsumrecl φ x 1 +∞ n = 1 x Λ n ψ x n log n
97 87 96 remulcld φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n
98 8 92 fsumrecl φ x 1 +∞ n = 1 x Λ n ψ x n
99 97 98 resubcld φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n
100 99 44 rerpdivcld φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
101 100 recnd φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
102 101 abscld φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
103 23 abscld φ x 1 +∞ n = 1 x Λ n n A log x
104 2cnd φ x 1 +∞ 2
105 96 recnd φ x 1 +∞ n = 1 x Λ n ψ x n log n
106 104 105 mulcld φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n
107 98 recnd φ x 1 +∞ n = 1 x Λ n ψ x n
108 107 27 mulcld φ x 1 +∞ n = 1 x Λ n ψ x n log x
109 106 108 subcld φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x
110 109 abscld φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x
111 43 gt0ne0d φ x 1 +∞ x 0
112 110 37 111 redivcld φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x
113 53 adantr φ x 1 +∞ A
114 14 113 remulcld φ x 1 +∞ n = 1 x Λ n n A
115 12 recnd φ x 1 +∞ n 1 x Λ n
116 fzfid φ x 1 +∞ n 1 x 1 x n Fin
117 elfznn m 1 x n m
118 117 adantl φ x 1 +∞ n 1 x m 1 x n m
119 vmacl m Λ m
120 118 119 syl φ x 1 +∞ n 1 x m 1 x n Λ m
121 118 nnrpd φ x 1 +∞ n 1 x m 1 x n m +
122 121 relogcld φ x 1 +∞ n 1 x m 1 x n log m
123 120 122 remulcld φ x 1 +∞ n 1 x m 1 x n Λ m log m
124 116 123 fsumrecl φ x 1 +∞ n 1 x m = 1 x n Λ m log m
125 9 nnrpd n 1 x n +
126 rpdivcl x + n + x n +
127 44 125 126 syl2an φ x 1 +∞ n 1 x x n +
128 127 relogcld φ x 1 +∞ n 1 x log x n
129 91 128 remulcld φ x 1 +∞ n 1 x ψ x n log x n
130 124 129 resubcld φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n
131 130 recnd φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n
132 115 131 mulcld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m ψ x n log x n
133 8 132 fsumcl φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n
134 133 abscld φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n
135 132 abscld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m ψ x n log x n
136 8 135 fsumrecl φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n
137 113 37 remulcld φ x 1 +∞ A x
138 14 137 remulcld φ x 1 +∞ n = 1 x Λ n n A x
139 8 132 fsumabs φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n
140 53 ad2antrr φ x 1 +∞ n 1 x A
141 37 adantr φ x 1 +∞ n 1 x x
142 140 141 remulcld φ x 1 +∞ n 1 x A x
143 13 142 remulcld φ x 1 +∞ n 1 x Λ n n A x
144 131 abscld φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n
145 142 10 nndivred φ x 1 +∞ n 1 x A x n
146 vmage0 n 0 Λ n
147 10 146 syl φ x 1 +∞ n 1 x 0 Λ n
148 89 recnd φ x 1 +∞ n 1 x x n
149 127 rpne0d φ x 1 +∞ n 1 x x n 0
150 131 148 149 absdivd φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n x n = m = 1 x n Λ m log m ψ x n log x n x n
151 127 rpge0d φ x 1 +∞ n 1 x 0 x n
152 89 151 absidd φ x 1 +∞ n 1 x x n = x n
153 152 oveq2d φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n x n = m = 1 x n Λ m log m ψ x n log x n x n
154 150 153 eqtrd φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n x n = m = 1 x n Λ m log m ψ x n log x n x n
155 fveq2 k = m Λ k = Λ m
156 fveq2 k = m log k = log m
157 155 156 oveq12d k = m Λ k log k = Λ m log m
158 157 cbvsumv k = 1 y Λ k log k = m = 1 y Λ m log m
159 fveq2 y = x n y = x n
160 159 oveq2d y = x n 1 y = 1 x n
161 160 sumeq1d y = x n m = 1 y Λ m log m = m = 1 x n Λ m log m
162 158 161 eqtrid y = x n k = 1 y Λ k log k = m = 1 x n Λ m log m
163 fveq2 y = x n ψ y = ψ x n
164 fveq2 y = x n log y = log x n
165 163 164 oveq12d y = x n ψ y log y = ψ x n log x n
166 162 165 oveq12d y = x n k = 1 y Λ k log k ψ y log y = m = 1 x n Λ m log m ψ x n log x n
167 id y = x n y = x n
168 166 167 oveq12d y = x n k = 1 y Λ k log k ψ y log y y = m = 1 x n Λ m log m ψ x n log x n x n
169 168 fveq2d y = x n k = 1 y Λ k log k ψ y log y y = m = 1 x n Λ m log m ψ x n log x n x n
170 169 breq1d y = x n k = 1 y Λ k log k ψ y log y y A m = 1 x n Λ m log m ψ x n log x n x n A
171 2 ad2antrr φ x 1 +∞ n 1 x y 1 +∞ k = 1 y Λ k log k ψ y log y y A
172 10 nncnd φ x 1 +∞ n 1 x n
173 172 mulid2d φ x 1 +∞ n 1 x 1 n = n
174 fznnfl x n 1 x n n x
175 37 174 syl φ x 1 +∞ n 1 x n n x
176 175 simplbda φ x 1 +∞ n 1 x n x
177 173 176 eqbrtrd φ x 1 +∞ n 1 x 1 n x
178 1red φ x 1 +∞ n 1 x 1
179 178 141 93 lemuldivd φ x 1 +∞ n 1 x 1 n x 1 x n
180 177 179 mpbid φ x 1 +∞ n 1 x 1 x n
181 1re 1
182 elicopnf 1 x n 1 +∞ x n 1 x n
183 181 182 ax-mp x n 1 +∞ x n 1 x n
184 89 180 183 sylanbrc φ x 1 +∞ n 1 x x n 1 +∞
185 170 171 184 rspcdva φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n x n A
186 154 185 eqbrtrrd φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n x n A
187 144 140 127 ledivmul2d φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n x n A m = 1 x n Λ m log m ψ x n log x n A x n
188 186 187 mpbid φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n A x n
189 24 adantr φ x 1 +∞ n 1 x A
190 141 recnd φ x 1 +∞ n 1 x x
191 10 nnne0d φ x 1 +∞ n 1 x n 0
192 189 190 172 191 divassd φ x 1 +∞ n 1 x A x n = A x n
193 188 192 breqtrrd φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n A x n
194 144 145 12 147 193 lemul2ad φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m ψ x n log x n Λ n A x n
195 115 131 absmuld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m ψ x n log x n = Λ n m = 1 x n Λ m log m ψ x n log x n
196 12 147 absidd φ x 1 +∞ n 1 x Λ n = Λ n
197 196 oveq1d φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m ψ x n log x n = Λ n m = 1 x n Λ m log m ψ x n log x n
198 195 197 eqtrd φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m ψ x n log x n = Λ n m = 1 x n Λ m log m ψ x n log x n
199 142 recnd φ x 1 +∞ n 1 x A x
200 115 172 199 191 div32d φ x 1 +∞ n 1 x Λ n n A x = Λ n A x n
201 194 198 200 3brtr4d φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m ψ x n log x n Λ n n A x
202 8 135 143 201 fsumle φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n n = 1 x Λ n n A x
203 37 recnd φ x 1 +∞ x
204 24 203 mulcld φ x 1 +∞ A x
205 115 172 191 divcld φ x 1 +∞ n 1 x Λ n n
206 8 204 205 fsummulc1 φ x 1 +∞ n = 1 x Λ n n A x = n = 1 x Λ n n A x
207 202 206 breqtrrd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n n = 1 x Λ n n A x
208 134 136 138 139 207 letrd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n n = 1 x Λ n n A x
209 124 recnd φ x 1 +∞ n 1 x m = 1 x n Λ m log m
210 91 recnd φ x 1 +∞ n 1 x ψ x n
211 94 recnd φ x 1 +∞ n 1 x log n
212 210 211 mulcld φ x 1 +∞ n 1 x ψ x n log n
213 209 212 addcld φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n log n
214 115 213 mulcld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n log n
215 115 210 mulcld φ x 1 +∞ n 1 x Λ n ψ x n
216 27 adantr φ x 1 +∞ n 1 x log x
217 215 216 mulcld φ x 1 +∞ n 1 x Λ n ψ x n log x
218 8 214 217 fsumsub φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n log n Λ n ψ x n log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n log n n = 1 x Λ n ψ x n log x
219 210 216 mulcld φ x 1 +∞ n 1 x ψ x n log x
220 115 213 219 subdid φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n log n - ψ x n log x = Λ n m = 1 x n Λ m log m + ψ x n log n Λ n ψ x n log x
221 44 adantr φ x 1 +∞ n 1 x x +
222 221 93 relogdivd φ x 1 +∞ n 1 x log x n = log x log n
223 222 oveq2d φ x 1 +∞ n 1 x ψ x n log x n = ψ x n log x log n
224 210 216 211 subdid φ x 1 +∞ n 1 x ψ x n log x log n = ψ x n log x ψ x n log n
225 223 224 eqtrd φ x 1 +∞ n 1 x ψ x n log x n = ψ x n log x ψ x n log n
226 225 oveq2d φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n = m = 1 x n Λ m log m ψ x n log x ψ x n log n
227 209 219 212 subsub3d φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x ψ x n log n = m = 1 x n Λ m log m + ψ x n log n - ψ x n log x
228 226 227 eqtrd φ x 1 +∞ n 1 x m = 1 x n Λ m log m ψ x n log x n = m = 1 x n Λ m log m + ψ x n log n - ψ x n log x
229 228 oveq2d φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m ψ x n log x n = Λ n m = 1 x n Λ m log m + ψ x n log n - ψ x n log x
230 115 210 216 mulassd φ x 1 +∞ n 1 x Λ n ψ x n log x = Λ n ψ x n log x
231 230 oveq2d φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n log n Λ n ψ x n log x = Λ n m = 1 x n Λ m log m + ψ x n log n Λ n ψ x n log x
232 220 229 231 3eqtr4d φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m ψ x n log x n = Λ n m = 1 x n Λ m log m + ψ x n log n Λ n ψ x n log x
233 232 sumeq2dv φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n log n Λ n ψ x n log x
234 fveq2 n = m Λ n = Λ m
235 oveq2 n = m x n = x m
236 235 fveq2d n = m ψ x n = ψ x m
237 234 236 oveq12d n = m Λ n ψ x n = Λ m ψ x m
238 fveq2 n = m log n = log m
239 237 238 oveq12d n = m Λ n ψ x n log n = Λ m ψ x m log m
240 239 cbvsumv n = 1 x Λ n ψ x n log n = m = 1 x Λ m ψ x m log m
241 elfznn n 1 x m n
242 241 adantl φ x 1 +∞ m 1 x n 1 x m n
243 242 11 syl φ x 1 +∞ m 1 x n 1 x m Λ n
244 243 recnd φ x 1 +∞ m 1 x n 1 x m Λ n
245 244 anasss φ x 1 +∞ m 1 x n 1 x m Λ n
246 elfznn m 1 x m
247 246 adantl φ x 1 +∞ m 1 x m
248 247 119 syl φ x 1 +∞ m 1 x Λ m
249 248 recnd φ x 1 +∞ m 1 x Λ m
250 247 nnrpd φ x 1 +∞ m 1 x m +
251 250 relogcld φ x 1 +∞ m 1 x log m
252 251 recnd φ x 1 +∞ m 1 x log m
253 249 252 mulcld φ x 1 +∞ m 1 x Λ m log m
254 253 adantrr φ x 1 +∞ m 1 x n 1 x m Λ m log m
255 245 254 mulcld φ x 1 +∞ m 1 x n 1 x m Λ n Λ m log m
256 37 255 fsumfldivdiag φ x 1 +∞ m = 1 x n = 1 x m Λ n Λ m log m = n = 1 x m = 1 x n Λ n Λ m log m
257 37 adantr φ x 1 +∞ m 1 x x
258 257 247 nndivred φ x 1 +∞ m 1 x x m
259 chpcl x m ψ x m
260 258 259 syl φ x 1 +∞ m 1 x ψ x m
261 260 recnd φ x 1 +∞ m 1 x ψ x m
262 249 261 252 mul32d φ x 1 +∞ m 1 x Λ m ψ x m log m = Λ m log m ψ x m
263 248 251 remulcld φ x 1 +∞ m 1 x Λ m log m
264 263 recnd φ x 1 +∞ m 1 x Λ m log m
265 264 261 mulcomd φ x 1 +∞ m 1 x Λ m log m ψ x m = ψ x m Λ m log m
266 chpval x m ψ x m = n = 1 x m Λ n
267 258 266 syl φ x 1 +∞ m 1 x ψ x m = n = 1 x m Λ n
268 267 oveq1d φ x 1 +∞ m 1 x ψ x m Λ m log m = n = 1 x m Λ n Λ m log m
269 fzfid φ x 1 +∞ m 1 x 1 x m Fin
270 269 264 244 fsummulc1 φ x 1 +∞ m 1 x n = 1 x m Λ n Λ m log m = n = 1 x m Λ n Λ m log m
271 268 270 eqtrd φ x 1 +∞ m 1 x ψ x m Λ m log m = n = 1 x m Λ n Λ m log m
272 262 265 271 3eqtrd φ x 1 +∞ m 1 x Λ m ψ x m log m = n = 1 x m Λ n Λ m log m
273 272 sumeq2dv φ x 1 +∞ m = 1 x Λ m ψ x m log m = m = 1 x n = 1 x m Λ n Λ m log m
274 123 recnd φ x 1 +∞ n 1 x m 1 x n Λ m log m
275 116 115 274 fsummulc2 φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m = m = 1 x n Λ n Λ m log m
276 275 sumeq2dv φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m = n = 1 x m = 1 x n Λ n Λ m log m
277 256 273 276 3eqtr4d φ x 1 +∞ m = 1 x Λ m ψ x m log m = n = 1 x Λ n m = 1 x n Λ m log m
278 240 277 eqtrid φ x 1 +∞ n = 1 x Λ n ψ x n log n = n = 1 x Λ n m = 1 x n Λ m log m
279 115 210 211 mulassd φ x 1 +∞ n 1 x Λ n ψ x n log n = Λ n ψ x n log n
280 279 sumeq2dv φ x 1 +∞ n = 1 x Λ n ψ x n log n = n = 1 x Λ n ψ x n log n
281 278 280 oveq12d φ x 1 +∞ n = 1 x Λ n ψ x n log n + n = 1 x Λ n ψ x n log n = n = 1 x Λ n m = 1 x n Λ m log m + n = 1 x Λ n ψ x n log n
282 105 2timesd φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n = n = 1 x Λ n ψ x n log n + n = 1 x Λ n ψ x n log n
283 115 209 mulcld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m
284 115 212 mulcld φ x 1 +∞ n 1 x Λ n ψ x n log n
285 8 283 284 fsumadd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + Λ n ψ x n log n = n = 1 x Λ n m = 1 x n Λ m log m + n = 1 x Λ n ψ x n log n
286 281 282 285 3eqtr4d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n = n = 1 x Λ n m = 1 x n Λ m log m + Λ n ψ x n log n
287 115 209 212 adddid φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n log n = Λ n m = 1 x n Λ m log m + Λ n ψ x n log n
288 287 sumeq2dv φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n log n = n = 1 x Λ n m = 1 x n Λ m log m + Λ n ψ x n log n
289 286 288 eqtr4d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n log n
290 92 recnd φ x 1 +∞ n 1 x Λ n ψ x n
291 8 27 290 fsummulc1 φ x 1 +∞ n = 1 x Λ n ψ x n log x = n = 1 x Λ n ψ x n log x
292 289 291 oveq12d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n log n n = 1 x Λ n ψ x n log x
293 218 233 292 3eqtr4rd φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x = n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n
294 293 fveq2d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x = n = 1 x Λ n m = 1 x n Λ m log m ψ x n log x n
295 25 24 203 mulassd φ x 1 +∞ n = 1 x Λ n n A x = n = 1 x Λ n n A x
296 208 294 295 3brtr4d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x n = 1 x Λ n n A x
297 110 114 44 ledivmul2d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x n = 1 x Λ n n A 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x n = 1 x Λ n n A x
298 296 297 mpbird φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x n = 1 x Λ n n A
299 112 114 26 298 lediv1dd φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x n = 1 x Λ n n A log x
300 110 recnd φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x
301 300 203 27 111 30 divdiv1d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x = 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x
302 109 27 203 30 111 divdiv32d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x log x x = 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x
303 106 108 27 30 divsubdird φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x log x = 2 n = 1 x Λ n ψ x n log n log x n = 1 x Λ n ψ x n log x log x
304 104 105 27 30 div23d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n log x = 2 log x n = 1 x Λ n ψ x n log n
305 107 27 30 divcan4d φ x 1 +∞ n = 1 x Λ n ψ x n log x log x = n = 1 x Λ n ψ x n
306 304 305 oveq12d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n log x n = 1 x Λ n ψ x n log x log x = 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n
307 303 306 eqtrd φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x log x = 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n
308 307 oveq1d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x log x x = 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
309 109 203 27 111 30 divdiv1d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x = 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x
310 302 308 309 3eqtr3d φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x = 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x
311 310 fveq2d φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x = 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x
312 44 26 rpmulcld φ x 1 +∞ x log x +
313 312 rpcnd φ x 1 +∞ x log x
314 312 rpne0d φ x 1 +∞ x log x 0
315 109 313 314 absdivd φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x = 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x
316 312 rpred φ x 1 +∞ x log x
317 312 rpge0d φ x 1 +∞ 0 x log x
318 316 317 absidd φ x 1 +∞ x log x = x log x
319 318 oveq2d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x = 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x
320 311 315 319 3eqtrd φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x = 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x
321 301 320 eqtr4d φ x 1 +∞ 2 n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n log x x log x = 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
322 25 24 27 30 divassd φ x 1 +∞ n = 1 x Λ n n A log x = n = 1 x Λ n n A log x
323 299 321 322 3brtr3d φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x n = 1 x Λ n n A log x
324 22 leabsd φ x 1 +∞ n = 1 x Λ n n A log x n = 1 x Λ n n A log x
325 102 22 103 323 324 letrd φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x n = 1 x Λ n n A log x
326 325 adantrr φ x 1 +∞ 1 x 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x n = 1 x Λ n n A log x
327 3 84 22 101 326 o1le φ x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x 𝑂1