Step |
Hyp |
Ref |
Expression |
1 |
|
selberg3lem1.1 |
|
2 |
|
selberg3lem1.2 |
|
3 |
|
1red |
|
4 |
|
ioossre |
|
5 |
1
|
rpcnd |
|
6 |
|
o1const |
|
7 |
4 5 6
|
sylancr |
|
8 |
|
fzfid |
|
9 |
|
elfznn |
|
10 |
9
|
adantl |
|
11 |
|
vmacl |
|
12 |
10 11
|
syl |
|
13 |
12 10
|
nndivred |
|
14 |
8 13
|
fsumrecl |
|
15 |
|
elioore |
|
16 |
|
eliooord |
|
17 |
16
|
simpld |
|
18 |
15 17
|
rplogcld |
|
19 |
|
rpdivcl |
|
20 |
1 18 19
|
syl2an |
|
21 |
20
|
rpred |
|
22 |
14 21
|
remulcld |
|
23 |
22
|
recnd |
|
24 |
5
|
adantr |
|
25 |
14
|
recnd |
|
26 |
18
|
adantl |
|
27 |
26
|
rpcnd |
|
28 |
20
|
rpcnd |
|
29 |
25 27 28
|
subdird |
|
30 |
26
|
rpne0d |
|
31 |
24 27 30
|
divcan2d |
|
32 |
31
|
oveq2d |
|
33 |
29 32
|
eqtrd |
|
34 |
33
|
mpteq2dva |
|
35 |
26
|
rpred |
|
36 |
14 35
|
resubcld |
|
37 |
15
|
adantl |
|
38 |
|
0red |
|
39 |
|
1red |
|
40 |
|
0lt1 |
|
41 |
40
|
a1i |
|
42 |
17
|
adantl |
|
43 |
38 39 37 41 42
|
lttrd |
|
44 |
37 43
|
elrpd |
|
45 |
44
|
ex |
|
46 |
45
|
ssrdv |
|
47 |
|
vmadivsum |
|
48 |
47
|
a1i |
|
49 |
46 48
|
o1res2 |
|
50 |
4
|
a1i |
|
51 |
|
ere |
|
52 |
51
|
a1i |
|
53 |
1
|
rpred |
|
54 |
20
|
adantrr |
|
55 |
54
|
rprege0d |
|
56 |
|
absid |
|
57 |
55 56
|
syl |
|
58 |
|
loge |
|
59 |
|
simprr |
|
60 |
|
epr |
|
61 |
44
|
adantrr |
|
62 |
|
logleb |
|
63 |
60 61 62
|
sylancr |
|
64 |
59 63
|
mpbid |
|
65 |
58 64
|
eqbrtrrid |
|
66 |
|
1rp |
|
67 |
|
rpregt0 |
|
68 |
66 67
|
mp1i |
|
69 |
26
|
adantrr |
|
70 |
69
|
rpregt0d |
|
71 |
1
|
adantr |
|
72 |
71
|
rpregt0d |
|
73 |
|
lediv2 |
|
74 |
68 70 72 73
|
syl3anc |
|
75 |
65 74
|
mpbid |
|
76 |
5
|
adantr |
|
77 |
76
|
div1d |
|
78 |
75 77
|
breqtrd |
|
79 |
57 78
|
eqbrtrd |
|
80 |
50 28 52 53 79
|
elo1d |
|
81 |
36 21 49 80
|
o1mul2 |
|
82 |
34 81
|
eqeltrrd |
|
83 |
23 24 82
|
o1dif |
|
84 |
7 83
|
mpbird |
|
85 |
|
2re |
|
86 |
|
rerpdivcl |
|
87 |
85 26 86
|
sylancr |
|
88 |
|
nndivre |
|
89 |
37 9 88
|
syl2an |
|
90 |
|
chpcl |
|
91 |
89 90
|
syl |
|
92 |
12 91
|
remulcld |
|
93 |
10
|
nnrpd |
|
94 |
93
|
relogcld |
|
95 |
92 94
|
remulcld |
|
96 |
8 95
|
fsumrecl |
|
97 |
87 96
|
remulcld |
|
98 |
8 92
|
fsumrecl |
|
99 |
97 98
|
resubcld |
|
100 |
99 44
|
rerpdivcld |
|
101 |
100
|
recnd |
|
102 |
101
|
abscld |
|
103 |
23
|
abscld |
|
104 |
|
2cnd |
|
105 |
96
|
recnd |
|
106 |
104 105
|
mulcld |
|
107 |
98
|
recnd |
|
108 |
107 27
|
mulcld |
|
109 |
106 108
|
subcld |
|
110 |
109
|
abscld |
|
111 |
43
|
gt0ne0d |
|
112 |
110 37 111
|
redivcld |
|
113 |
53
|
adantr |
|
114 |
14 113
|
remulcld |
|
115 |
12
|
recnd |
|
116 |
|
fzfid |
|
117 |
|
elfznn |
|
118 |
117
|
adantl |
|
119 |
|
vmacl |
|
120 |
118 119
|
syl |
|
121 |
118
|
nnrpd |
|
122 |
121
|
relogcld |
|
123 |
120 122
|
remulcld |
|
124 |
116 123
|
fsumrecl |
|
125 |
9
|
nnrpd |
|
126 |
|
rpdivcl |
|
127 |
44 125 126
|
syl2an |
|
128 |
127
|
relogcld |
|
129 |
91 128
|
remulcld |
|
130 |
124 129
|
resubcld |
|
131 |
130
|
recnd |
|
132 |
115 131
|
mulcld |
|
133 |
8 132
|
fsumcl |
|
134 |
133
|
abscld |
|
135 |
132
|
abscld |
|
136 |
8 135
|
fsumrecl |
|
137 |
113 37
|
remulcld |
|
138 |
14 137
|
remulcld |
|
139 |
8 132
|
fsumabs |
|
140 |
53
|
ad2antrr |
|
141 |
37
|
adantr |
|
142 |
140 141
|
remulcld |
|
143 |
13 142
|
remulcld |
|
144 |
131
|
abscld |
|
145 |
142 10
|
nndivred |
|
146 |
|
vmage0 |
|
147 |
10 146
|
syl |
|
148 |
89
|
recnd |
|
149 |
127
|
rpne0d |
|
150 |
131 148 149
|
absdivd |
|
151 |
127
|
rpge0d |
|
152 |
89 151
|
absidd |
|
153 |
152
|
oveq2d |
|
154 |
150 153
|
eqtrd |
|
155 |
|
fveq2 |
|
156 |
|
fveq2 |
|
157 |
155 156
|
oveq12d |
|
158 |
157
|
cbvsumv |
|
159 |
|
fveq2 |
|
160 |
159
|
oveq2d |
|
161 |
160
|
sumeq1d |
|
162 |
158 161
|
eqtrid |
|
163 |
|
fveq2 |
|
164 |
|
fveq2 |
|
165 |
163 164
|
oveq12d |
|
166 |
162 165
|
oveq12d |
|
167 |
|
id |
|
168 |
166 167
|
oveq12d |
|
169 |
168
|
fveq2d |
|
170 |
169
|
breq1d |
|
171 |
2
|
ad2antrr |
|
172 |
10
|
nncnd |
|
173 |
172
|
mulid2d |
|
174 |
|
fznnfl |
|
175 |
37 174
|
syl |
|
176 |
175
|
simplbda |
|
177 |
173 176
|
eqbrtrd |
|
178 |
|
1red |
|
179 |
178 141 93
|
lemuldivd |
|
180 |
177 179
|
mpbid |
|
181 |
|
1re |
|
182 |
|
elicopnf |
|
183 |
181 182
|
ax-mp |
|
184 |
89 180 183
|
sylanbrc |
|
185 |
170 171 184
|
rspcdva |
|
186 |
154 185
|
eqbrtrrd |
|
187 |
144 140 127
|
ledivmul2d |
|
188 |
186 187
|
mpbid |
|
189 |
24
|
adantr |
|
190 |
141
|
recnd |
|
191 |
10
|
nnne0d |
|
192 |
189 190 172 191
|
divassd |
|
193 |
188 192
|
breqtrrd |
|
194 |
144 145 12 147 193
|
lemul2ad |
|
195 |
115 131
|
absmuld |
|
196 |
12 147
|
absidd |
|
197 |
196
|
oveq1d |
|
198 |
195 197
|
eqtrd |
|
199 |
142
|
recnd |
|
200 |
115 172 199 191
|
div32d |
|
201 |
194 198 200
|
3brtr4d |
|
202 |
8 135 143 201
|
fsumle |
|
203 |
37
|
recnd |
|
204 |
24 203
|
mulcld |
|
205 |
115 172 191
|
divcld |
|
206 |
8 204 205
|
fsummulc1 |
|
207 |
202 206
|
breqtrrd |
|
208 |
134 136 138 139 207
|
letrd |
|
209 |
124
|
recnd |
|
210 |
91
|
recnd |
|
211 |
94
|
recnd |
|
212 |
210 211
|
mulcld |
|
213 |
209 212
|
addcld |
|
214 |
115 213
|
mulcld |
|
215 |
115 210
|
mulcld |
|
216 |
27
|
adantr |
|
217 |
215 216
|
mulcld |
|
218 |
8 214 217
|
fsumsub |
|
219 |
210 216
|
mulcld |
|
220 |
115 213 219
|
subdid |
|
221 |
44
|
adantr |
|
222 |
221 93
|
relogdivd |
|
223 |
222
|
oveq2d |
|
224 |
210 216 211
|
subdid |
|
225 |
223 224
|
eqtrd |
|
226 |
225
|
oveq2d |
|
227 |
209 219 212
|
subsub3d |
|
228 |
226 227
|
eqtrd |
|
229 |
228
|
oveq2d |
|
230 |
115 210 216
|
mulassd |
|
231 |
230
|
oveq2d |
|
232 |
220 229 231
|
3eqtr4d |
|
233 |
232
|
sumeq2dv |
|
234 |
|
fveq2 |
|
235 |
|
oveq2 |
|
236 |
235
|
fveq2d |
|
237 |
234 236
|
oveq12d |
|
238 |
|
fveq2 |
|
239 |
237 238
|
oveq12d |
|
240 |
239
|
cbvsumv |
|
241 |
|
elfznn |
|
242 |
241
|
adantl |
|
243 |
242 11
|
syl |
|
244 |
243
|
recnd |
|
245 |
244
|
anasss |
|
246 |
|
elfznn |
|
247 |
246
|
adantl |
|
248 |
247 119
|
syl |
|
249 |
248
|
recnd |
|
250 |
247
|
nnrpd |
|
251 |
250
|
relogcld |
|
252 |
251
|
recnd |
|
253 |
249 252
|
mulcld |
|
254 |
253
|
adantrr |
|
255 |
245 254
|
mulcld |
|
256 |
37 255
|
fsumfldivdiag |
|
257 |
37
|
adantr |
|
258 |
257 247
|
nndivred |
|
259 |
|
chpcl |
|
260 |
258 259
|
syl |
|
261 |
260
|
recnd |
|
262 |
249 261 252
|
mul32d |
|
263 |
248 251
|
remulcld |
|
264 |
263
|
recnd |
|
265 |
264 261
|
mulcomd |
|
266 |
|
chpval |
|
267 |
258 266
|
syl |
|
268 |
267
|
oveq1d |
|
269 |
|
fzfid |
|
270 |
269 264 244
|
fsummulc1 |
|
271 |
268 270
|
eqtrd |
|
272 |
262 265 271
|
3eqtrd |
|
273 |
272
|
sumeq2dv |
|
274 |
123
|
recnd |
|
275 |
116 115 274
|
fsummulc2 |
|
276 |
275
|
sumeq2dv |
|
277 |
256 273 276
|
3eqtr4d |
|
278 |
240 277
|
eqtrid |
|
279 |
115 210 211
|
mulassd |
|
280 |
279
|
sumeq2dv |
|
281 |
278 280
|
oveq12d |
|
282 |
105
|
2timesd |
|
283 |
115 209
|
mulcld |
|
284 |
115 212
|
mulcld |
|
285 |
8 283 284
|
fsumadd |
|
286 |
281 282 285
|
3eqtr4d |
|
287 |
115 209 212
|
adddid |
|
288 |
287
|
sumeq2dv |
|
289 |
286 288
|
eqtr4d |
|
290 |
92
|
recnd |
|
291 |
8 27 290
|
fsummulc1 |
|
292 |
289 291
|
oveq12d |
|
293 |
218 233 292
|
3eqtr4rd |
|
294 |
293
|
fveq2d |
|
295 |
25 24 203
|
mulassd |
|
296 |
208 294 295
|
3brtr4d |
|
297 |
110 114 44
|
ledivmul2d |
|
298 |
296 297
|
mpbird |
|
299 |
112 114 26 298
|
lediv1dd |
|
300 |
110
|
recnd |
|
301 |
300 203 27 111 30
|
divdiv1d |
|
302 |
109 27 203 30 111
|
divdiv32d |
|
303 |
106 108 27 30
|
divsubdird |
|
304 |
104 105 27 30
|
div23d |
|
305 |
107 27 30
|
divcan4d |
|
306 |
304 305
|
oveq12d |
|
307 |
303 306
|
eqtrd |
|
308 |
307
|
oveq1d |
|
309 |
109 203 27 111 30
|
divdiv1d |
|
310 |
302 308 309
|
3eqtr3d |
|
311 |
310
|
fveq2d |
|
312 |
44 26
|
rpmulcld |
|
313 |
312
|
rpcnd |
|
314 |
312
|
rpne0d |
|
315 |
109 313 314
|
absdivd |
|
316 |
312
|
rpred |
|
317 |
312
|
rpge0d |
|
318 |
316 317
|
absidd |
|
319 |
318
|
oveq2d |
|
320 |
311 315 319
|
3eqtrd |
|
321 |
301 320
|
eqtr4d |
|
322 |
25 24 27 30
|
divassd |
|
323 |
299 321 322
|
3brtr3d |
|
324 |
22
|
leabsd |
|
325 |
102 22 103 323 324
|
letrd |
|
326 |
325
|
adantrr |
|
327 |
3 84 22 101 326
|
o1le |
|