Step |
Hyp |
Ref |
Expression |
1 |
|
smflimlem2.1 |
|
2 |
|
smflimlem2.2 |
|
3 |
|
smflimlem2.3 |
|
4 |
|
smflimlem2.4 |
|
5 |
|
smflimlem2.5 |
|
6 |
|
smflimlem2.6 |
|
7 |
|
smflimlem2.7 |
|
8 |
|
smflimlem2.8 |
|
9 |
|
smflimlem2.9 |
|
10 |
|
smflimlem2.10 |
|
11 |
|
nfrab1 |
|
12 |
4 11
|
nfcxfr |
|
13 |
12
|
ssrab2f |
|
14 |
13
|
a1i |
|
15 |
|
simpllr |
|
16 |
|
ssrab2 |
|
17 |
4 16
|
eqsstri |
|
18 |
17
|
sseli |
|
19 |
|
fveq2 |
|
20 |
19
|
iineq1d |
|
21 |
20
|
cbviunv |
|
22 |
21
|
eleq2i |
|
23 |
|
eliun |
|
24 |
22 23
|
bitri |
|
25 |
18 24
|
sylib |
|
26 |
15 25
|
syl |
|
27 |
|
nfv |
|
28 |
|
nfv |
|
29 |
27 28
|
nfan |
|
30 |
|
nfv |
|
31 |
29 30
|
nfan |
|
32 |
|
nfcv |
|
33 |
|
nfii1 |
|
34 |
32 33
|
nfel |
|
35 |
31 34
|
nfan |
|
36 |
|
nfmpt1 |
|
37 |
|
eqid |
|
38 |
|
uzssz |
|
39 |
1
|
eleq2i |
|
40 |
39
|
biimpi |
|
41 |
38 40
|
sselid |
|
42 |
|
uzid |
|
43 |
41 42
|
syl |
|
44 |
43
|
ad2antlr |
|
45 |
|
simplll |
|
46 |
45
|
simpld |
|
47 |
|
uzss |
|
48 |
40 47
|
syl |
|
49 |
48 1
|
sseqtrrdi |
|
50 |
49
|
sselda |
|
51 |
50
|
ad4ant24 |
|
52 |
|
eliinid |
|
53 |
52
|
adantll |
|
54 |
|
eqidd |
|
55 |
|
fvexd |
|
56 |
54 55
|
fvmpt2d |
|
57 |
56
|
3adant3 |
|
58 |
2
|
adantr |
|
59 |
3
|
ffvelrnda |
|
60 |
|
eqid |
|
61 |
58 59 60
|
smff |
|
62 |
61
|
3adant3 |
|
63 |
|
simp3 |
|
64 |
62 63
|
ffvelrnd |
|
65 |
57 64
|
eqeltrd |
|
66 |
46 51 53 65
|
syl3anc |
|
67 |
66
|
adantl3r |
|
68 |
67
|
adantl3r |
|
69 |
4
|
eleq2i |
|
70 |
69
|
biimpi |
|
71 |
|
rabidim2 |
|
72 |
70 71
|
syl |
|
73 |
|
climdm |
|
74 |
72 73
|
sylib |
|
75 |
74
|
adantl |
|
76 |
75 73
|
sylibr |
|
77 |
76 73
|
sylib |
|
78 |
|
nfcv |
|
79 |
|
simpr |
|
80 |
12 78 5 79
|
fnlimfv |
|
81 |
80
|
eqcomd |
|
82 |
77 81
|
breqtrd |
|
83 |
82
|
ad4antr |
|
84 |
6
|
ad5antr |
|
85 |
|
simp-4r |
|
86 |
|
simpllr |
|
87 |
|
nnrecrp |
|
88 |
86 87
|
syl |
|
89 |
35 36 37 44 68 83 84 85 88
|
climleltrp |
|
90 |
|
simp-6l |
|
91 |
|
simplr |
|
92 |
91
|
adantr |
|
93 |
|
simplr |
|
94 |
|
simpr |
|
95 |
|
nfv |
|
96 |
95 30 34
|
nf3an |
|
97 |
|
nfv |
|
98 |
96 97
|
nfan |
|
99 |
|
simpll |
|
100 |
37
|
uztrn2 |
|
101 |
100
|
adantll |
|
102 |
|
simpll2 |
|
103 |
|
simplr |
|
104 |
102 103 50
|
syl2anc |
|
105 |
|
simpr |
|
106 |
|
id |
|
107 |
|
fvexd |
|
108 |
|
eqid |
|
109 |
108
|
fvmpt2 |
|
110 |
106 107 109
|
syl2anc |
|
111 |
110
|
eqcomd |
|
112 |
111
|
adantr |
|
113 |
|
simpr |
|
114 |
112 113
|
eqbrtrd |
|
115 |
104 105 114
|
syl2anc |
|
116 |
52
|
3ad2antl3 |
|
117 |
116
|
adantr |
|
118 |
|
simpr |
|
119 |
117 118
|
jca |
|
120 |
|
rabid |
|
121 |
119 120
|
sylibr |
|
122 |
115 121
|
syldan |
|
123 |
122
|
adantrl |
|
124 |
123
|
ex |
|
125 |
99 101 124
|
syl2anc |
|
126 |
98 125
|
ralimdaa |
|
127 |
90 92 93 94 126
|
syl31anc |
|
128 |
127
|
reximdva |
|
129 |
89 128
|
mpd |
|
130 |
|
ssrexv |
|
131 |
49 130
|
syl |
|
132 |
131
|
ad2antlr |
|
133 |
129 132
|
mpd |
|
134 |
133
|
rexlimdva2 |
|
135 |
26 134
|
mpd |
|
136 |
|
nfv |
|
137 |
|
nfra1 |
|
138 |
136 137
|
nfan |
|
139 |
|
simpll1 |
|
140 |
|
simpll2 |
|
141 |
1
|
uztrn2 |
|
142 |
141
|
ssd |
|
143 |
142
|
sselda |
|
144 |
143
|
adantll |
|
145 |
144
|
3adantl1 |
|
146 |
145
|
adantlr |
|
147 |
|
rspa |
|
148 |
147
|
adantll |
|
149 |
|
simp1 |
|
150 |
|
simp3 |
|
151 |
|
simp2 |
|
152 |
|
eqid |
|
153 |
152 2
|
rabexd |
|
154 |
153
|
ralrimivw |
|
155 |
154
|
ralrimivw |
|
156 |
155
|
3ad2ant1 |
|
157 |
7
|
elrnmpoid |
|
158 |
150 151 156 157
|
syl3anc |
|
159 |
|
ovex |
|
160 |
|
eleq1 |
|
161 |
160
|
anbi2d |
|
162 |
|
fveq2 |
|
163 |
|
id |
|
164 |
162 163
|
eleq12d |
|
165 |
161 164
|
imbi12d |
|
166 |
159 165 10
|
vtocl |
|
167 |
149 158 166
|
syl2anc |
|
168 |
|
fvexd |
|
169 |
8
|
ovmpt4g |
|
170 |
150 151 168 169
|
syl3anc |
|
171 |
170
|
eqcomd |
|
172 |
149 153
|
syl |
|
173 |
7
|
ovmpt4g |
|
174 |
150 151 172 173
|
syl3anc |
|
175 |
171 174
|
eleq12d |
|
176 |
167 175
|
mpbid |
|
177 |
|
ineq1 |
|
178 |
177
|
eqeq2d |
|
179 |
178
|
elrab |
|
180 |
176 179
|
sylib |
|
181 |
180
|
simprd |
|
182 |
|
inss1 |
|
183 |
181 182
|
eqsstrdi |
|
184 |
183
|
adantr |
|
185 |
|
simpr |
|
186 |
184 185
|
sseldd |
|
187 |
139 140 146 148 186
|
syl31anc |
|
188 |
187
|
ex |
|
189 |
138 188
|
ralrimi |
|
190 |
|
vex |
|
191 |
|
eliin |
|
192 |
190 191
|
ax-mp |
|
193 |
189 192
|
sylibr |
|
194 |
193
|
ex |
|
195 |
194
|
ad5ant145 |
|
196 |
195
|
reximdva |
|
197 |
135 196
|
mpd |
|
198 |
|
eliun |
|
199 |
197 198
|
sylibr |
|
200 |
199
|
ralrimiva |
|
201 |
|
eliin |
|
202 |
190 201
|
ax-mp |
|
203 |
200 202
|
sylibr |
|
204 |
203 9
|
eleqtrrdi |
|
205 |
204
|
ex |
|
206 |
205
|
ralrimiva |
|
207 |
|
rabss |
|
208 |
206 207
|
sylibr |
|
209 |
14 208
|
ssind |
|