Metamath Proof Explorer


Theorem smflimlem2

Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem2.1 Z = M
smflimlem2.2 φ S SAlg
smflimlem2.3 φ F : Z SMblFn S
smflimlem2.4 D = x n Z m n dom F m | m Z F m x dom
smflimlem2.5 G = x D m Z F m x
smflimlem2.6 φ A
smflimlem2.7 P = m Z , k s S | x dom F m | F m x < A + 1 k = s dom F m
smflimlem2.8 H = m Z , k C m P k
smflimlem2.9 I = k n Z m n m H k
smflimlem2.10 φ r ran P C r r
Assertion smflimlem2 φ x D | G x A D I

Proof

Step Hyp Ref Expression
1 smflimlem2.1 Z = M
2 smflimlem2.2 φ S SAlg
3 smflimlem2.3 φ F : Z SMblFn S
4 smflimlem2.4 D = x n Z m n dom F m | m Z F m x dom
5 smflimlem2.5 G = x D m Z F m x
6 smflimlem2.6 φ A
7 smflimlem2.7 P = m Z , k s S | x dom F m | F m x < A + 1 k = s dom F m
8 smflimlem2.8 H = m Z , k C m P k
9 smflimlem2.9 I = k n Z m n m H k
10 smflimlem2.10 φ r ran P C r r
11 nfrab1 _ x x n Z m n dom F m | m Z F m x dom
12 4 11 nfcxfr _ x D
13 12 ssrab2f x D | G x A D
14 13 a1i φ x D | G x A D
15 simpllr φ x D G x A k x D
16 ssrab2 x n Z m n dom F m | m Z F m x dom n Z m n dom F m
17 4 16 eqsstri D n Z m n dom F m
18 17 sseli x D x n Z m n dom F m
19 fveq2 n = i n = i
20 19 iineq1d n = i m n dom F m = m i dom F m
21 20 cbviunv n Z m n dom F m = i Z m i dom F m
22 21 eleq2i x n Z m n dom F m x i Z m i dom F m
23 eliun x i Z m i dom F m i Z x m i dom F m
24 22 23 bitri x n Z m n dom F m i Z x m i dom F m
25 18 24 sylib x D i Z x m i dom F m
26 15 25 syl φ x D G x A k i Z x m i dom F m
27 nfv m φ x D G x A
28 nfv m k
29 27 28 nfan m φ x D G x A k
30 nfv m i Z
31 29 30 nfan m φ x D G x A k i Z
32 nfcv _ m x
33 nfii1 _ m m i dom F m
34 32 33 nfel m x m i dom F m
35 31 34 nfan m φ x D G x A k i Z x m i dom F m
36 nfmpt1 _ m m Z F m x
37 eqid i = i
38 uzssz M
39 1 eleq2i i Z i M
40 39 biimpi i Z i M
41 38 40 sselid i Z i
42 uzid i i i
43 41 42 syl i Z i i
44 43 ad2antlr φ x D G x A k i Z x m i dom F m i i
45 simplll φ x D i Z x m i dom F m m i φ x D
46 45 simpld φ x D i Z x m i dom F m m i φ
47 uzss i M i M
48 40 47 syl i Z i M
49 48 1 sseqtrrdi i Z i Z
50 49 sselda i Z m i m Z
51 50 ad4ant24 φ x D i Z x m i dom F m m i m Z
52 eliinid x m i dom F m m i x dom F m
53 52 adantll φ x D i Z x m i dom F m m i x dom F m
54 eqidd φ m Z F m x = m Z F m x
55 fvexd φ m Z F m x V
56 54 55 fvmpt2d φ m Z m Z F m x m = F m x
57 56 3adant3 φ m Z x dom F m m Z F m x m = F m x
58 2 adantr φ m Z S SAlg
59 3 ffvelrnda φ m Z F m SMblFn S
60 eqid dom F m = dom F m
61 58 59 60 smff φ m Z F m : dom F m
62 61 3adant3 φ m Z x dom F m F m : dom F m
63 simp3 φ m Z x dom F m x dom F m
64 62 63 ffvelrnd φ m Z x dom F m F m x
65 57 64 eqeltrd φ m Z x dom F m m Z F m x m
66 46 51 53 65 syl3anc φ x D i Z x m i dom F m m i m Z F m x m
67 66 adantl3r φ x D G x A i Z x m i dom F m m i m Z F m x m
68 67 adantl3r φ x D G x A k i Z x m i dom F m m i m Z F m x m
69 4 eleq2i x D x x n Z m n dom F m | m Z F m x dom
70 69 biimpi x D x x n Z m n dom F m | m Z F m x dom
71 rabidim2 x x n Z m n dom F m | m Z F m x dom m Z F m x dom
72 70 71 syl x D m Z F m x dom
73 climdm m Z F m x dom m Z F m x m Z F m x
74 72 73 sylib x D m Z F m x m Z F m x
75 74 adantl φ x D m Z F m x m Z F m x
76 75 73 sylibr φ x D m Z F m x dom
77 76 73 sylib φ x D m Z F m x m Z F m x
78 nfcv _ x F
79 simpr φ x D x D
80 12 78 5 79 fnlimfv φ x D G x = m Z F m x
81 80 eqcomd φ x D m Z F m x = G x
82 77 81 breqtrd φ x D m Z F m x G x
83 82 ad4antr φ x D G x A k i Z x m i dom F m m Z F m x G x
84 6 ad5antr φ x D G x A k i Z x m i dom F m A
85 simp-4r φ x D G x A k i Z x m i dom F m G x A
86 simpllr φ x D G x A k i Z x m i dom F m k
87 nnrecrp k 1 k +
88 86 87 syl φ x D G x A k i Z x m i dom F m 1 k +
89 35 36 37 44 68 83 84 85 88 climleltrp φ x D G x A k i Z x m i dom F m n i m n m Z F m x m m Z F m x m < A + 1 k
90 simp-6l φ x D G x A k i Z x m i dom F m n i φ
91 simplr φ x D G x A k i Z x m i dom F m i Z
92 91 adantr φ x D G x A k i Z x m i dom F m n i i Z
93 simplr φ x D G x A k i Z x m i dom F m n i x m i dom F m
94 simpr φ x D G x A k i Z x m i dom F m n i n i
95 nfv m φ
96 95 30 34 nf3an m φ i Z x m i dom F m
97 nfv m n i
98 96 97 nfan m φ i Z x m i dom F m n i
99 simpll φ i Z x m i dom F m n i m n φ i Z x m i dom F m
100 37 uztrn2 n i m n m i
101 100 adantll φ i Z x m i dom F m n i m n m i
102 simpll2 φ i Z x m i dom F m m i m Z F m x m < A + 1 k i Z
103 simplr φ i Z x m i dom F m m i m Z F m x m < A + 1 k m i
104 102 103 50 syl2anc φ i Z x m i dom F m m i m Z F m x m < A + 1 k m Z
105 simpr φ i Z x m i dom F m m i m Z F m x m < A + 1 k m Z F m x m < A + 1 k
106 id m Z m Z
107 fvexd m Z F m x V
108 eqid m Z F m x = m Z F m x
109 108 fvmpt2 m Z F m x V m Z F m x m = F m x
110 106 107 109 syl2anc m Z m Z F m x m = F m x
111 110 eqcomd m Z F m x = m Z F m x m
112 111 adantr m Z m Z F m x m < A + 1 k F m x = m Z F m x m
113 simpr m Z m Z F m x m < A + 1 k m Z F m x m < A + 1 k
114 112 113 eqbrtrd m Z m Z F m x m < A + 1 k F m x < A + 1 k
115 104 105 114 syl2anc φ i Z x m i dom F m m i m Z F m x m < A + 1 k F m x < A + 1 k
116 52 3ad2antl3 φ i Z x m i dom F m m i x dom F m
117 116 adantr φ i Z x m i dom F m m i F m x < A + 1 k x dom F m
118 simpr φ i Z x m i dom F m m i F m x < A + 1 k F m x < A + 1 k
119 117 118 jca φ i Z x m i dom F m m i F m x < A + 1 k x dom F m F m x < A + 1 k
120 rabid x x dom F m | F m x < A + 1 k x dom F m F m x < A + 1 k
121 119 120 sylibr φ i Z x m i dom F m m i F m x < A + 1 k x x dom F m | F m x < A + 1 k
122 115 121 syldan φ i Z x m i dom F m m i m Z F m x m < A + 1 k x x dom F m | F m x < A + 1 k
123 122 adantrl φ i Z x m i dom F m m i m Z F m x m m Z F m x m < A + 1 k x x dom F m | F m x < A + 1 k
124 123 ex φ i Z x m i dom F m m i m Z F m x m m Z F m x m < A + 1 k x x dom F m | F m x < A + 1 k
125 99 101 124 syl2anc φ i Z x m i dom F m n i m n m Z F m x m m Z F m x m < A + 1 k x x dom F m | F m x < A + 1 k
126 98 125 ralimdaa φ i Z x m i dom F m n i m n m Z F m x m m Z F m x m < A + 1 k m n x x dom F m | F m x < A + 1 k
127 90 92 93 94 126 syl31anc φ x D G x A k i Z x m i dom F m n i m n m Z F m x m m Z F m x m < A + 1 k m n x x dom F m | F m x < A + 1 k
128 127 reximdva φ x D G x A k i Z x m i dom F m n i m n m Z F m x m m Z F m x m < A + 1 k n i m n x x dom F m | F m x < A + 1 k
129 89 128 mpd φ x D G x A k i Z x m i dom F m n i m n x x dom F m | F m x < A + 1 k
130 ssrexv i Z n i m n x x dom F m | F m x < A + 1 k n Z m n x x dom F m | F m x < A + 1 k
131 49 130 syl i Z n i m n x x dom F m | F m x < A + 1 k n Z m n x x dom F m | F m x < A + 1 k
132 131 ad2antlr φ x D G x A k i Z x m i dom F m n i m n x x dom F m | F m x < A + 1 k n Z m n x x dom F m | F m x < A + 1 k
133 129 132 mpd φ x D G x A k i Z x m i dom F m n Z m n x x dom F m | F m x < A + 1 k
134 133 rexlimdva2 φ x D G x A k i Z x m i dom F m n Z m n x x dom F m | F m x < A + 1 k
135 26 134 mpd φ x D G x A k n Z m n x x dom F m | F m x < A + 1 k
136 nfv m φ k n Z
137 nfra1 m m n x x dom F m | F m x < A + 1 k
138 136 137 nfan m φ k n Z m n x x dom F m | F m x < A + 1 k
139 simpll1 φ k n Z m n x x dom F m | F m x < A + 1 k m n φ
140 simpll2 φ k n Z m n x x dom F m | F m x < A + 1 k m n k
141 1 uztrn2 n Z j n j Z
142 141 ssd n Z n Z
143 142 sselda n Z m n m Z
144 143 adantll k n Z m n m Z
145 144 3adantl1 φ k n Z m n m Z
146 145 adantlr φ k n Z m n x x dom F m | F m x < A + 1 k m n m Z
147 rspa m n x x dom F m | F m x < A + 1 k m n x x dom F m | F m x < A + 1 k
148 147 adantll φ k n Z m n x x dom F m | F m x < A + 1 k m n x x dom F m | F m x < A + 1 k
149 simp1 φ k m Z φ
150 simp3 φ k m Z m Z
151 simp2 φ k m Z k
152 eqid s S | x dom F m | F m x < A + 1 k = s dom F m = s S | x dom F m | F m x < A + 1 k = s dom F m
153 152 2 rabexd φ s S | x dom F m | F m x < A + 1 k = s dom F m V
154 153 ralrimivw φ k s S | x dom F m | F m x < A + 1 k = s dom F m V
155 154 ralrimivw φ m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V
156 155 3ad2ant1 φ k m Z m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V
157 7 elrnmpoid m Z k m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V m P k ran P
158 150 151 156 157 syl3anc φ k m Z m P k ran P
159 ovex m P k V
160 eleq1 r = m P k r ran P m P k ran P
161 160 anbi2d r = m P k φ r ran P φ m P k ran P
162 fveq2 r = m P k C r = C m P k
163 id r = m P k r = m P k
164 162 163 eleq12d r = m P k C r r C m P k m P k
165 161 164 imbi12d r = m P k φ r ran P C r r φ m P k ran P C m P k m P k
166 159 165 10 vtocl φ m P k ran P C m P k m P k
167 149 158 166 syl2anc φ k m Z C m P k m P k
168 fvexd φ k m Z C m P k V
169 8 ovmpt4g m Z k C m P k V m H k = C m P k
170 150 151 168 169 syl3anc φ k m Z m H k = C m P k
171 170 eqcomd φ k m Z C m P k = m H k
172 149 153 syl φ k m Z s S | x dom F m | F m x < A + 1 k = s dom F m V
173 7 ovmpt4g m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V m P k = s S | x dom F m | F m x < A + 1 k = s dom F m
174 150 151 172 173 syl3anc φ k m Z m P k = s S | x dom F m | F m x < A + 1 k = s dom F m
175 171 174 eleq12d φ k m Z C m P k m P k m H k s S | x dom F m | F m x < A + 1 k = s dom F m
176 167 175 mpbid φ k m Z m H k s S | x dom F m | F m x < A + 1 k = s dom F m
177 ineq1 s = m H k s dom F m = m H k dom F m
178 177 eqeq2d s = m H k x dom F m | F m x < A + 1 k = s dom F m x dom F m | F m x < A + 1 k = m H k dom F m
179 178 elrab m H k s S | x dom F m | F m x < A + 1 k = s dom F m m H k S x dom F m | F m x < A + 1 k = m H k dom F m
180 176 179 sylib φ k m Z m H k S x dom F m | F m x < A + 1 k = m H k dom F m
181 180 simprd φ k m Z x dom F m | F m x < A + 1 k = m H k dom F m
182 inss1 m H k dom F m m H k
183 181 182 eqsstrdi φ k m Z x dom F m | F m x < A + 1 k m H k
184 183 adantr φ k m Z x x dom F m | F m x < A + 1 k x dom F m | F m x < A + 1 k m H k
185 simpr φ k m Z x x dom F m | F m x < A + 1 k x x dom F m | F m x < A + 1 k
186 184 185 sseldd φ k m Z x x dom F m | F m x < A + 1 k x m H k
187 139 140 146 148 186 syl31anc φ k n Z m n x x dom F m | F m x < A + 1 k m n x m H k
188 187 ex φ k n Z m n x x dom F m | F m x < A + 1 k m n x m H k
189 138 188 ralrimi φ k n Z m n x x dom F m | F m x < A + 1 k m n x m H k
190 vex x V
191 eliin x V x m n m H k m n x m H k
192 190 191 ax-mp x m n m H k m n x m H k
193 189 192 sylibr φ k n Z m n x x dom F m | F m x < A + 1 k x m n m H k
194 193 ex φ k n Z m n x x dom F m | F m x < A + 1 k x m n m H k
195 194 ad5ant145 φ x D G x A k n Z m n x x dom F m | F m x < A + 1 k x m n m H k
196 195 reximdva φ x D G x A k n Z m n x x dom F m | F m x < A + 1 k n Z x m n m H k
197 135 196 mpd φ x D G x A k n Z x m n m H k
198 eliun x n Z m n m H k n Z x m n m H k
199 197 198 sylibr φ x D G x A k x n Z m n m H k
200 199 ralrimiva φ x D G x A k x n Z m n m H k
201 eliin x V x k n Z m n m H k k x n Z m n m H k
202 190 201 ax-mp x k n Z m n m H k k x n Z m n m H k
203 200 202 sylibr φ x D G x A x k n Z m n m H k
204 203 9 eleqtrrdi φ x D G x A x I
205 204 ex φ x D G x A x I
206 205 ralrimiva φ x D G x A x I
207 rabss x D | G x A I x D G x A x I
208 206 207 sylibr φ x D | G x A I
209 14 208 ssind φ x D | G x A D I