Metamath Proof Explorer


Theorem sticksstones12

Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024)

Ref Expression
Hypotheses sticksstones12.1 φN0
sticksstones12.2 φK
sticksstones12.3 F=aAj1Kj+l=1jal
sticksstones12.4 G=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
sticksstones12.5 A=g|g:1K+10i=1K+1gi=N
sticksstones12.6 B=f|f:1K1N+Kx1Ky1Kx<yfx<fy
Assertion sticksstones12 φF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 sticksstones12.1 φN0
2 sticksstones12.2 φK
3 sticksstones12.3 F=aAj1Kj+l=1jal
4 sticksstones12.4 G=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
5 sticksstones12.5 A=g|g:1K+10i=1K+1gi=N
6 sticksstones12.6 B=f|f:1K1N+Kx1Ky1Kx<yfx<fy
7 2 nnnn0d φK0
8 1 7 3 5 6 sticksstones8 φF:AB
9 1 2 4 5 6 sticksstones10 φG:BA
10 4 a1i φG=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
11 0red φ0
12 2 nngt0d φ0<K
13 11 12 ltned φ0K
14 13 necomd φK0
15 14 neneqd φ¬K=0
16 15 iffalsed φifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
17 16 adantr φbBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
18 17 mpteq2dva φbBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=bBk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
19 10 18 eqtrd φG=bBk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
20 19 adantr φcAG=bBk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
21 fveq1 b=FcbK=FcK
22 21 oveq2d b=FcN+K-bK=N+K-FcK
23 fveq1 b=Fcb1=Fc1
24 23 oveq1d b=Fcb11=Fc11
25 fveq1 b=Fcbk=Fck
26 fveq1 b=Fcbk1=Fck1
27 25 26 oveq12d b=Fcbkbk1=FckFck1
28 27 oveq1d b=Fcbk-bk1-1=Fck-Fck1-1
29 24 28 ifeq12d b=Fcifk=1b11bk-bk1-1=ifk=1Fc11Fck-Fck1-1
30 22 29 ifeq12d b=Fcifk=K+1N+K-bKifk=1b11bk-bk1-1=ifk=K+1N+K-FcKifk=1Fc11Fck-Fck1-1
31 30 adantr b=Fck1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=ifk=K+1N+K-FcKifk=1Fc11Fck-Fck1-1
32 31 mpteq2dva b=Fck1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=k1K+1ifk=K+1N+K-FcKifk=1Fc11Fck-Fck1-1
33 32 adantl φcAb=Fck1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=k1K+1ifk=K+1N+K-FcKifk=1Fc11Fck-Fck1-1
34 8 ffvelcdmda φcAFcB
35 fzfid φcA1K+1Fin
36 35 mptexd φcAk1K+1ifk=K+1N+K-FcKifk=1Fc11Fck-Fck1-1V
37 20 33 34 36 fvmptd φcAGFc=k1K+1ifk=K+1N+K-FcKifk=1Fc11Fck-Fck1-1
38 3 a1i φcAF=aAj1Kj+l=1jal
39 simpllr φcAa=cj1Kl1ja=c
40 39 fveq1d φcAa=cj1Kl1jal=cl
41 40 sumeq2dv φcAa=cj1Kl=1jal=l=1jcl
42 41 oveq2d φcAa=cj1Kj+l=1jal=j+l=1jcl
43 42 mpteq2dva φcAa=cj1Kj+l=1jal=j1Kj+l=1jcl
44 simpr φcAcA
45 fzfid φcA1KFin
46 45 mptexd φcAj1Kj+l=1jclV
47 38 43 44 46 fvmptd φcAFc=j1Kj+l=1jcl
48 simpr φcAj=Kj=K
49 48 oveq2d φcAj=K1j=1K
50 49 sumeq1d φcAj=Kl=1jcl=l=1Kcl
51 48 50 oveq12d φcAj=Kj+l=1jcl=K+l=1Kcl
52 1zzd φ1
53 7 nn0zd φK
54 2 nnge1d φ1K
55 2 nnred φK
56 55 leidd φKK
57 52 53 53 54 56 elfzd φK1K
58 57 adantr φcAK1K
59 ovexd φcAK+l=1KclV
60 47 51 58 59 fvmptd φcAFcK=K+l=1Kcl
61 60 oveq2d φcAN+K-FcK=N+K-K+l=1Kcl
62 1 nn0cnd φN
63 62 adantr φcAN
64 55 recnd φK
65 64 adantr φcAK
66 63 65 addcomd φcAN+K=K+N
67 66 oveq1d φcAN+K-K+l=1Kcl=K+N-K+l=1Kcl
68 1zzd φcAl1K1
69 53 ad2antrr φcAl1KK
70 69 peano2zd φcAl1KK+1
71 elfzelz l1Kl
72 71 adantl φcAl1Kl
73 elfzle1 l1K1l
74 73 adantl φcAl1K1l
75 72 zred φcAl1Kl
76 55 ad2antrr φcAl1KK
77 70 zred φcAl1KK+1
78 elfzle2 l1KlK
79 78 adantl φcAl1KlK
80 76 lep1d φcAl1KKK+1
81 75 76 77 79 80 letrd φcAl1KlK+1
82 68 70 72 74 81 elfzd φcAl1Kl1K+1
83 5 eleq2i cAcg|g:1K+10i=1K+1gi=N
84 83 biimpi cAcg|g:1K+10i=1K+1gi=N
85 84 adantl φcAcg|g:1K+10i=1K+1gi=N
86 vex cV
87 feq1 g=cg:1K+10c:1K+10
88 simpl g=ci1K+1g=c
89 88 fveq1d g=ci1K+1gi=ci
90 89 sumeq2dv g=ci=1K+1gi=i=1K+1ci
91 90 eqeq1d g=ci=1K+1gi=Ni=1K+1ci=N
92 87 91 anbi12d g=cg:1K+10i=1K+1gi=Nc:1K+10i=1K+1ci=N
93 86 92 elab cg|g:1K+10i=1K+1gi=Nc:1K+10i=1K+1ci=N
94 93 a1i φcAcg|g:1K+10i=1K+1gi=Nc:1K+10i=1K+1ci=N
95 94 biimpd φcAcg|g:1K+10i=1K+1gi=Nc:1K+10i=1K+1ci=N
96 85 95 mpd φcAc:1K+10i=1K+1ci=N
97 96 simpld φcAc:1K+10
98 97 adantr φcAl1Kc:1K+10
99 98 ffvelcdmda φcAl1Kl1K+1cl0
100 82 99 mpdan φcAl1Kcl0
101 45 100 fsumnn0cl φcAl=1Kcl0
102 101 nn0cnd φcAl=1Kcl
103 65 63 102 pnpcand φcAK+N-K+l=1Kcl=Nl=1Kcl
104 eqid 1=1
105 1p0e1 1+0=1
106 104 105 eqtr4i 1=1+0
107 106 a1i φ1=1+0
108 1red φ1
109 0le1 01
110 109 a1i φ01
111 108 11 55 108 54 110 le2addd φ1+0K+1
112 107 111 eqbrtrd φ1K+1
113 53 peano2zd φK+1
114 eluz 1K+1K+111K+1
115 52 113 114 syl2anc φK+111K+1
116 112 115 mpbird φK+11
117 116 adantr φcAK+11
118 97 ffvelcdmda φcAl1K+1cl0
119 118 nn0cnd φcAl1K+1cl
120 fveq2 l=K+1cl=cK+1
121 117 119 120 fsumm1 φcAl=1K+1cl=l=1K+1-1cl+cK+1
122 1cnd φcA1
123 65 122 pncand φcAK+1-1=K
124 123 oveq2d φcA1K+1-1=1K
125 124 sumeq1d φcAl=1K+1-1cl=l=1Kcl
126 125 oveq1d φcAl=1K+1-1cl+cK+1=l=1Kcl+cK+1
127 121 126 eqtrd φcAl=1K+1cl=l=1Kcl+cK+1
128 127 eqcomd φcAl=1Kcl+cK+1=l=1K+1cl
129 fveq2 l=icl=ci
130 nfcv _i1K+1
131 nfcv _l1K+1
132 nfcv _icl
133 nfcv _lci
134 129 130 131 132 133 cbvsum l=1K+1cl=i=1K+1ci
135 134 a1i φcAl=1K+1cl=i=1K+1ci
136 96 simprd φcAi=1K+1ci=N
137 135 136 eqtrd φcAl=1K+1cl=N
138 128 137 eqtrd φcAl=1Kcl+cK+1=N
139 1zzd φcA1
140 53 adantr φcAK
141 140 peano2zd φcAK+1
142 1e0p1 1=0+1
143 142 a1i φcA1=0+1
144 0red φcA0
145 55 adantr φcAK
146 1red φcA1
147 11 55 12 ltled φ0K
148 147 adantr φcA0K
149 144 145 146 148 leadd1dd φcA0+1K+1
150 143 149 eqbrtrd φcA1K+1
151 55 55 108 56 leadd1dd φK+1K+1
152 151 adantr φcAK+1K+1
153 139 141 141 150 152 elfzd φcAK+11K+1
154 97 153 ffvelcdmd φcAcK+10
155 154 nn0cnd φcAcK+1
156 63 102 155 subaddd φcANl=1Kcl=cK+1l=1Kcl+cK+1=N
157 138 156 mpbird φcANl=1Kcl=cK+1
158 103 157 eqtrd φcAK+N-K+l=1Kcl=cK+1
159 67 158 eqtrd φcAN+K-K+l=1Kcl=cK+1
160 61 159 eqtrd φcAN+K-FcK=cK+1
161 160 3adant3 φcAk1K+1N+K-FcK=cK+1
162 161 adantr φcAk1K+1k=K+1N+K-FcK=cK+1
163 simpr φcAk1K+1k=K+1k=K+1
164 163 fveq2d φcAk1K+1k=K+1ck=cK+1
165 164 eqcomd φcAk1K+1k=K+1cK+1=ck
166 162 165 eqtrd φcAk1K+1k=K+1N+K-FcK=ck
167 47 fveq1d φcAFc1=j1Kj+l=1jcl1
168 167 oveq1d φcAFc11=j1Kj+l=1jcl11
169 eqidd φcAj1Kj+l=1jcl=j1Kj+l=1jcl
170 simpr φcAj=1j=1
171 170 oveq2d φcAj=11j=11
172 171 sumeq1d φcAj=1l=1jcl=l=11cl
173 170 172 oveq12d φcAj=1j+l=1jcl=1+l=11cl
174 146 leidd φcA11
175 54 adantr φcA1K
176 139 140 139 174 175 elfzd φcA11K
177 ovexd φcA1+l=11clV
178 169 173 176 177 fvmptd φcAj1Kj+l=1jcl1=1+l=11cl
179 178 oveq1d φcAj1Kj+l=1jcl11=1+l=11cl-1
180 fzfid φcA11Fin
181 1zzd φcAl111
182 140 adantr φcAl11K
183 182 peano2zd φcAl11K+1
184 elfzelz l11l
185 184 adantl φcAl11l
186 elfzle1 l111l
187 186 adantl φcAl111l
188 185 zred φcAl11l
189 0red φcAl110
190 1red φcAl111
191 189 190 readdcld φcAl110+1
192 183 zred φcAl11K+1
193 elfzle2 l11l1
194 193 adantl φcAl11l1
195 142 a1i φcAl111=0+1
196 194 195 breqtrd φcAl11l0+1
197 149 adantr φcAl110+1K+1
198 188 191 192 196 197 letrd φcAl11lK+1
199 181 183 185 187 198 elfzd φcAl11l1K+1
200 118 adantlr φcAl11l1K+1cl0
201 199 200 mpdan φcAl11cl0
202 180 201 fsumnn0cl φcAl=11cl0
203 202 nn0cnd φcAl=11cl
204 122 203 pncan2d φcA1+l=11cl-1=l=11cl
205 139 141 139 174 150 elfzd φcA11K+1
206 97 205 ffvelcdmd φcAc10
207 206 nn0cnd φcAc1
208 fveq2 l=1cl=c1
209 208 fsum1 1c1l=11cl=c1
210 139 207 209 syl2anc φcAl=11cl=c1
211 204 210 eqtrd φcA1+l=11cl-1=c1
212 179 211 eqtrd φcAj1Kj+l=1jcl11=c1
213 168 212 eqtrd φcAFc11=c1
214 213 3adant3 φcAk1K+1Fc11=c1
215 214 adantr φcAk1K+1¬k=K+1Fc11=c1
216 215 adantr φcAk1K+1¬k=K+1k=1Fc11=c1
217 simpr φcAk1K+1¬k=K+1k=1k=1
218 217 fveq2d φcAk1K+1¬k=K+1k=1ck=c1
219 218 eqcomd φcAk1K+1¬k=K+1k=1c1=ck
220 216 219 eqtrd φcAk1K+1¬k=K+1k=1Fc11=ck
221 3 a1i φcAk1K+1¬k=K+1¬k=1F=aAj1Kj+l=1jal
222 simpllr φcAk1K+1¬k=K+1¬k=1a=cj1Kl1ja=c
223 222 fveq1d φcAk1K+1¬k=K+1¬k=1a=cj1Kl1jal=cl
224 223 sumeq2dv φcAk1K+1¬k=K+1¬k=1a=cj1Kl=1jal=l=1jcl
225 224 oveq2d φcAk1K+1¬k=K+1¬k=1a=cj1Kj+l=1jal=j+l=1jcl
226 225 mpteq2dva φcAk1K+1¬k=K+1¬k=1a=cj1Kj+l=1jal=j1Kj+l=1jcl
227 simpll2 φcAk1K+1¬k=K+1¬k=1cA
228 fzfid φcAk1K+1¬k=K+1¬k=11KFin
229 228 mptexd φcAk1K+1¬k=K+1¬k=1j1Kj+l=1jclV
230 221 226 227 229 fvmptd φcAk1K+1¬k=K+1¬k=1Fc=j1Kj+l=1jcl
231 230 fveq1d φcAk1K+1¬k=K+1¬k=1Fck=j1Kj+l=1jclk
232 230 fveq1d φcAk1K+1¬k=K+1¬k=1Fck1=j1Kj+l=1jclk1
233 231 232 oveq12d φcAk1K+1¬k=K+1¬k=1FckFck1=j1Kj+l=1jclkj1Kj+l=1jclk1
234 233 oveq1d φcAk1K+1¬k=K+1¬k=1Fck-Fck1-1=j1Kj+l=1jclk-j1Kj+l=1jclk1-1
235 eqidd φcAk1K+1¬k=K+1¬k=1j1Kj+l=1jcl=j1Kj+l=1jcl
236 simpr φcAk1K+1¬k=K+1¬k=1j=kj=k
237 236 oveq2d φcAk1K+1¬k=K+1¬k=1j=k1j=1k
238 237 sumeq1d φcAk1K+1¬k=K+1¬k=1j=kl=1jcl=l=1kcl
239 236 238 oveq12d φcAk1K+1¬k=K+1¬k=1j=kj+l=1jcl=k+l=1kcl
240 1zzd φcAk1K+1¬k=K+1¬k=11
241 140 3adant3 φcAk1K+1K
242 241 adantr φcAk1K+1¬k=K+1K
243 242 adantr φcAk1K+1¬k=K+1¬k=1K
244 elfznn k1K+1k
245 244 3ad2ant3 φcAk1K+1k
246 245 nnzd φcAk1K+1k
247 246 adantr φcAk1K+1¬k=K+1k
248 247 adantr φcAk1K+1¬k=K+1¬k=1k
249 245 nnge1d φcAk1K+11k
250 249 adantr φcAk1K+1¬k=K+11k
251 250 adantr φcAk1K+1¬k=K+1¬k=11k
252 simpl3 φcAk1K+1¬k=K+1k1K+1
253 1zzd φcAk1K+1¬k=K+11
254 242 peano2zd φcAk1K+1¬k=K+1K+1
255 elfz k1K+1k1K+11kkK+1
256 247 253 254 255 syl3anc φcAk1K+1¬k=K+1k1K+11kkK+1
257 256 biimpd φcAk1K+1¬k=K+1k1K+11kkK+1
258 252 257 mpd φcAk1K+1¬k=K+11kkK+1
259 258 simprd φcAk1K+1¬k=K+1kK+1
260 neqne ¬k=K+1kK+1
261 260 adantl φcAk1K+1¬k=K+1kK+1
262 261 necomd φcAk1K+1¬k=K+1K+1k
263 259 262 jca φcAk1K+1¬k=K+1kK+1K+1k
264 247 zred φcAk1K+1¬k=K+1k
265 254 zred φcAk1K+1¬k=K+1K+1
266 264 265 ltlend φcAk1K+1¬k=K+1k<K+1kK+1K+1k
267 263 266 mpbird φcAk1K+1¬k=K+1k<K+1
268 zleltp1 kKkKk<K+1
269 247 242 268 syl2anc φcAk1K+1¬k=K+1kKk<K+1
270 267 269 mpbird φcAk1K+1¬k=K+1kK
271 270 adantr φcAk1K+1¬k=K+1¬k=1kK
272 240 243 248 251 271 elfzd φcAk1K+1¬k=K+1¬k=1k1K
273 ovexd φcAk1K+1¬k=K+1¬k=1k+l=1kclV
274 235 239 272 273 fvmptd φcAk1K+1¬k=K+1¬k=1j1Kj+l=1jclk=k+l=1kcl
275 simpr φcAk1K+1¬k=K+1¬k=1j=k1j=k1
276 275 oveq2d φcAk1K+1¬k=K+1¬k=1j=k11j=1k1
277 276 sumeq1d φcAk1K+1¬k=K+1¬k=1j=k1l=1jcl=l=1k1cl
278 275 277 oveq12d φcAk1K+1¬k=K+1¬k=1j=k1j+l=1jcl=k-1+l=1k1cl
279 1zzd φk1K+1¬k=11
280 53 ad2antrr φk1K+1¬k=1K
281 280 3impa φk1K+1¬k=1K
282 244 nnzd k1K+1k
283 282 adantl φk1K+1k
284 283 adantr φk1K+1¬k=1k
285 284 3impa φk1K+1¬k=1k
286 285 279 zsubcld φk1K+1¬k=1k1
287 neqne ¬k=1k1
288 287 3ad2ant3 φk1K+1¬k=1k1
289 108 3ad2ant1 φk1K+1¬k=11
290 285 zred φk1K+1¬k=1k
291 simp2 φk1K+1¬k=1k1K+1
292 elfzle1 k1K+11k
293 291 292 syl φk1K+1¬k=11k
294 289 290 293 leltned φk1K+1¬k=11<kk1
295 288 294 mpbird φk1K+1¬k=11<k
296 279 285 zltp1led φk1K+1¬k=11<k1+1k
297 295 296 mpbid φk1K+1¬k=11+1k
298 leaddsub 11k1+1k1k1
299 289 289 290 298 syl3anc φk1K+1¬k=11+1k1k1
300 297 299 mpbid φk1K+1¬k=11k1
301 286 zred φk1K+1¬k=1k1
302 55 3ad2ant1 φk1K+1¬k=1K
303 1red φk1K+1¬k=11
304 302 303 readdcld φk1K+1¬k=1K+1
305 304 303 resubcld φk1K+1¬k=1K+1-1
306 elfzle2 k1K+1kK+1
307 306 3ad2ant2 φk1K+1¬k=1kK+1
308 290 304 303 307 lesub1dd φk1K+1¬k=1k1K+1-1
309 64 3ad2ant1 φk1K+1¬k=1K
310 1cnd φk1K+1¬k=11
311 309 310 pncand φk1K+1¬k=1K+1-1=K
312 56 3ad2ant1 φk1K+1¬k=1KK
313 311 312 eqbrtrd φk1K+1¬k=1K+1-1K
314 301 305 302 308 313 letrd φk1K+1¬k=1k1K
315 279 281 286 300 314 elfzd φk1K+1¬k=1k11K
316 315 3expa φk1K+1¬k=1k11K
317 316 3adantl2 φcAk1K+1¬k=1k11K
318 317 adantlr φcAk1K+1¬k=K+1¬k=1k11K
319 ovexd φcAk1K+1¬k=K+1¬k=1k-1+l=1k1clV
320 235 278 318 319 fvmptd φcAk1K+1¬k=K+1¬k=1j1Kj+l=1jclk1=k-1+l=1k1cl
321 274 320 oveq12d φcAk1K+1¬k=K+1¬k=1j1Kj+l=1jclkj1Kj+l=1jclk1=k+l=1kcl-k-1+l=1k1cl
322 321 oveq1d φcAk1K+1¬k=K+1¬k=1j1Kj+l=1jclk-j1Kj+l=1jclk1-1=k+l=1kcl-k-1+l=1k1cl-1
323 248 zcnd φcAk1K+1¬k=K+1¬k=1k
324 fzfid φcAk1K+1¬k=K+1¬k=11kFin
325 1zzd φcAk1K+1¬k=K+1¬k=1l1k1
326 243 adantr φcAk1K+1¬k=K+1¬k=1l1kK
327 326 peano2zd φcAk1K+1¬k=K+1¬k=1l1kK+1
328 elfznn l1kl
329 328 adantl φcAk1K+1¬k=K+1¬k=1l1kl
330 329 nnzd φcAk1K+1¬k=K+1¬k=1l1kl
331 329 nnge1d φcAk1K+1¬k=K+1¬k=1l1k1l
332 329 nnred φcAk1K+1¬k=K+1¬k=1l1kl
333 264 ad2antrr φcAk1K+1¬k=K+1¬k=1l1kk
334 265 ad2antrr φcAk1K+1¬k=K+1¬k=1l1kK+1
335 elfzle2 l1klk
336 335 adantl φcAk1K+1¬k=K+1¬k=1l1klk
337 259 ad2antrr φcAk1K+1¬k=K+1¬k=1l1kkK+1
338 332 333 334 336 337 letrd φcAk1K+1¬k=K+1¬k=1l1klK+1
339 325 327 330 331 338 elfzd φcAk1K+1¬k=K+1¬k=1l1kl1K+1
340 97 3adant3 φcAk1K+1c:1K+10
341 340 adantr φcAk1K+1¬k=K+1c:1K+10
342 341 adantr φcAk1K+1¬k=K+1¬k=1c:1K+10
343 342 adantr φcAk1K+1¬k=K+1¬k=1l1kc:1K+10
344 343 ffvelcdmda φcAk1K+1¬k=K+1¬k=1l1kl1K+1cl0
345 339 344 mpdan φcAk1K+1¬k=K+1¬k=1l1kcl0
346 324 345 fsumnn0cl φcAk1K+1¬k=K+1¬k=1l=1kcl0
347 346 nn0cnd φcAk1K+1¬k=K+1¬k=1l=1kcl
348 1cnd φcAk1K+1¬k=K+1¬k=11
349 323 348 subcld φcAk1K+1¬k=K+1¬k=1k1
350 fzfid φcAk1K+1¬k=K+1¬k=11k1Fin
351 1zzd φcAk1K+1¬k=K+1¬k=1l1k11
352 243 adantr φcAk1K+1¬k=K+1¬k=1l1k1K
353 352 peano2zd φcAk1K+1¬k=K+1¬k=1l1k1K+1
354 elfznn l1k1l
355 354 adantl φcAk1K+1¬k=K+1¬k=1l1k1l
356 355 nnzd φcAk1K+1¬k=K+1¬k=1l1k1l
357 355 nnge1d φcAk1K+1¬k=K+1¬k=1l1k11l
358 355 nnred φcAk1K+1¬k=K+1¬k=1l1k1l
359 264 ad2antrr φcAk1K+1¬k=K+1¬k=1l1k1k
360 1red φcAk1K+1¬k=K+1¬k=1l1k11
361 359 360 resubcld φcAk1K+1¬k=K+1¬k=1l1k1k1
362 265 ad2antrr φcAk1K+1¬k=K+1¬k=1l1k1K+1
363 elfzle2 l1k1lk1
364 363 adantl φcAk1K+1¬k=K+1¬k=1l1k1lk1
365 359 lem1d φcAk1K+1¬k=K+1¬k=1l1k1k1k
366 259 ad2antrr φcAk1K+1¬k=K+1¬k=1l1k1kK+1
367 361 359 362 365 366 letrd φcAk1K+1¬k=K+1¬k=1l1k1k1K+1
368 358 361 362 364 367 letrd φcAk1K+1¬k=K+1¬k=1l1k1lK+1
369 351 353 356 357 368 elfzd φcAk1K+1¬k=K+1¬k=1l1k1l1K+1
370 342 adantr φcAk1K+1¬k=K+1¬k=1l1k1c:1K+10
371 370 ffvelcdmda φcAk1K+1¬k=K+1¬k=1l1k1l1K+1cl0
372 369 371 mpdan φcAk1K+1¬k=K+1¬k=1l1k1cl0
373 350 372 fsumnn0cl φcAk1K+1¬k=K+1¬k=1l=1k1cl0
374 373 nn0cnd φcAk1K+1¬k=K+1¬k=1l=1k1cl
375 323 347 349 374 addsub4d φcAk1K+1¬k=K+1¬k=1k+l=1kcl-k-1+l=1k1cl=kk1+l=1kcl-l=1k1cl
376 375 oveq1d φcAk1K+1¬k=K+1¬k=1k+l=1kcl-k-1+l=1k1cl-1=kk1+l=1kcll=1k1cl-1
377 323 348 nncand φcAk1K+1¬k=K+1¬k=1kk1=1
378 377 oveq1d φcAk1K+1¬k=K+1¬k=1kk1+l=1kcl-l=1k1cl=1+l=1kcl-l=1k1cl
379 378 oveq1d φcAk1K+1¬k=K+1¬k=1kk1+l=1kcll=1k1cl-1=1+l=1kcll=1k1cl-1
380 347 374 subcld φcAk1K+1¬k=K+1¬k=1l=1kcll=1k1cl
381 348 380 pncan2d φcAk1K+1¬k=K+1¬k=11+l=1kcll=1k1cl-1=l=1kcll=1k1cl
382 139 3adant3 φcAk1K+11
383 382 246 249 3jca φcAk1K+11k1k
384 eluz2 k11k1k
385 383 384 sylibr φcAk1K+1k1
386 385 adantr φcAk1K+1¬k=K+1k1
387 386 adantr φcAk1K+1¬k=K+1¬k=1k1
388 345 nn0cnd φcAk1K+1¬k=K+1¬k=1l1kcl
389 fveq2 l=kcl=ck
390 387 388 389 fsumm1 φcAk1K+1¬k=K+1¬k=1l=1kcl=l=1k1cl+ck
391 390 eqcomd φcAk1K+1¬k=K+1¬k=1l=1k1cl+ck=l=1kcl
392 simp3 φcAk1K+1k1K+1
393 340 392 ffvelcdmd φcAk1K+1ck0
394 393 nn0cnd φcAk1K+1ck
395 394 adantr φcAk1K+1¬k=K+1ck
396 395 adantr φcAk1K+1¬k=K+1¬k=1ck
397 347 374 396 subaddd φcAk1K+1¬k=K+1¬k=1l=1kcll=1k1cl=ckl=1k1cl+ck=l=1kcl
398 391 397 mpbird φcAk1K+1¬k=K+1¬k=1l=1kcll=1k1cl=ck
399 381 398 eqtrd φcAk1K+1¬k=K+1¬k=11+l=1kcll=1k1cl-1=ck
400 379 399 eqtrd φcAk1K+1¬k=K+1¬k=1kk1+l=1kcll=1k1cl-1=ck
401 376 400 eqtrd φcAk1K+1¬k=K+1¬k=1k+l=1kcl-k-1+l=1k1cl-1=ck
402 322 401 eqtrd φcAk1K+1¬k=K+1¬k=1j1Kj+l=1jclk-j1Kj+l=1jclk1-1=ck
403 234 402 eqtrd φcAk1K+1¬k=K+1¬k=1Fck-Fck1-1=ck
404 220 403 ifeqda φcAk1K+1¬k=K+1ifk=1Fc11Fck-Fck1-1=ck
405 166 404 ifeqda φcAk1K+1ifk=K+1N+K-FcKifk=1Fc11Fck-Fck1-1=ck
406 405 3expa φcAk1K+1ifk=K+1N+K-FcKifk=1Fc11Fck-Fck1-1=ck
407 406 mpteq2dva φcAk1K+1ifk=K+1N+K-FcKifk=1Fc11Fck-Fck1-1=k1K+1ck
408 97 ffnd φcAcFn1K+1
409 dffn5 cFn1K+1c=k1K+1ck
410 409 biimpi cFn1K+1c=k1K+1ck
411 408 410 syl φcAc=k1K+1ck
412 411 eqcomd φcAk1K+1ck=c
413 407 412 eqtrd φcAk1K+1ifk=K+1N+K-FcKifk=1Fc11Fck-Fck1-1=c
414 37 413 eqtrd φcAGFc=c
415 414 ralrimiva φcAGFc=c
416 1 2 3 4 5 6 sticksstones12a φdBFGd=d
417 8 9 415 416 2fvidf1od φF:A1-1 ontoB