Step |
Hyp |
Ref |
Expression |
1 |
|
hspmbllem2.h |
⊢ 𝐻 = ( 𝑥 ∈ Fin ↦ ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑥 if ( 𝑘 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
2 |
|
hspmbllem2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hspmbllem2.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) |
4 |
|
hspmbllem2.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
5 |
|
hspmbllem2.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
6 |
|
hspmbllem2.c |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) |
7 |
|
hspmbllem2.d |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) |
8 |
|
hspmbllem2.a |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
9 |
|
hspmbllem2.g |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) + 𝐸 ) ) |
10 |
|
hspmbllem2.r |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ ) |
11 |
|
hspmbllem2.i |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∈ ℝ ) |
12 |
|
hspmbllem2.f |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∈ ℝ ) |
13 |
|
hspmbllem2.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
14 |
|
hspmbllem2.t |
⊢ 𝑇 = ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) |
15 |
|
hspmbllem2.s |
⊢ 𝑆 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ = 𝐾 , if ( 𝑥 ≤ ( 𝑐 ‘ ℎ ) , ( 𝑐 ‘ ℎ ) , 𝑥 ) , ( 𝑐 ‘ ℎ ) ) ) ) ) |
16 |
11 12
|
readdcld |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) + ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ∈ ℝ ) |
17 |
5
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
18 |
10 17
|
readdcld |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) + 𝐸 ) ∈ ℝ ) |
19 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
20 |
|
nnex |
⊢ ℕ ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
22 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑋 ∈ Fin ) |
24 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑋 ) ) |
25 |
|
elmapi |
⊢ ( ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑋 ) → ( 𝐶 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
27 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑋 ) ) |
28 |
|
elmapi |
⊢ ( ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑋 ) → ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
30 |
13 23 26 29
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,) +∞ ) ) |
31 |
22 30
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
32 |
19 21 31
|
sge0clmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
33 |
|
ne0i |
⊢ ( 𝐾 ∈ 𝑋 → 𝑋 ≠ ∅ ) |
34 |
3 33
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑋 ≠ ∅ ) |
36 |
13 23 35 26 29
|
hoidmvn0val |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
37 |
36
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) ) |
38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) ) ) |
39 |
38 9
|
eqbrtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) + 𝐸 ) ) |
40 |
18 32 39
|
ge0lere |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
41 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑌 ∈ ℝ ) |
42 |
14 41 23 29
|
hsphoif |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑋 ⟶ ℝ ) |
43 |
13 23 26 42
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,) +∞ ) ) |
44 |
22 43
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
45 |
19 21 44
|
sge0clmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
46 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m 𝑦 ) ) |
47 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) ) |
48 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
49 |
47 48
|
ifbieq2d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) |
50 |
46 46 49
|
mpoeq123dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) = ( 𝑎 ∈ ( ℝ ↑m 𝑦 ) , 𝑏 ∈ ( ℝ ↑m 𝑦 ) ↦ if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
51 |
50
|
cbvmptv |
⊢ ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) = ( 𝑦 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑦 ) , 𝑏 ∈ ( ℝ ↑m 𝑦 ) ↦ if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
52 |
13 51
|
eqtri |
⊢ 𝐿 = ( 𝑦 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑦 ) , 𝑏 ∈ ( ℝ ↑m 𝑦 ) ↦ if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
53 |
|
diffi |
⊢ ( 𝑋 ∈ Fin → ( 𝑋 ∖ { 𝐾 } ) ∈ Fin ) |
54 |
2 53
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∖ { 𝐾 } ) ∈ Fin ) |
55 |
|
snfi |
⊢ { 𝐾 } ∈ Fin |
56 |
55
|
a1i |
⊢ ( 𝜑 → { 𝐾 } ∈ Fin ) |
57 |
|
unfi |
⊢ ( ( ( 𝑋 ∖ { 𝐾 } ) ∈ Fin ∧ { 𝐾 } ∈ Fin ) → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∈ Fin ) |
58 |
54 56 57
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∈ Fin ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∈ Fin ) |
60 |
|
snidg |
⊢ ( 𝐾 ∈ 𝑋 → 𝐾 ∈ { 𝐾 } ) |
61 |
3 60
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ { 𝐾 } ) |
62 |
|
elun2 |
⊢ ( 𝐾 ∈ { 𝐾 } → 𝐾 ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) |
63 |
61 62
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) |
64 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) ) |
65 |
63 64
|
eldifd |
⊢ ( 𝜑 → 𝐾 ∈ ( ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∖ ( 𝑋 ∖ { 𝐾 } ) ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐾 ∈ ( ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∖ ( 𝑋 ∖ { 𝐾 } ) ) ) |
67 |
|
eqid |
⊢ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) |
68 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) |
69 |
|
uncom |
⊢ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = ( { 𝐾 } ∪ ( 𝑋 ∖ { 𝐾 } ) ) |
70 |
69
|
a1i |
⊢ ( 𝜑 → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = ( { 𝐾 } ∪ ( 𝑋 ∖ { 𝐾 } ) ) ) |
71 |
3
|
snssd |
⊢ ( 𝜑 → { 𝐾 } ⊆ 𝑋 ) |
72 |
|
undif |
⊢ ( { 𝐾 } ⊆ 𝑋 ↔ ( { 𝐾 } ∪ ( 𝑋 ∖ { 𝐾 } ) ) = 𝑋 ) |
73 |
71 72
|
sylib |
⊢ ( 𝜑 → ( { 𝐾 } ∪ ( 𝑋 ∖ { 𝐾 } ) ) = 𝑋 ) |
74 |
70 73
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = 𝑋 ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = 𝑋 ) |
76 |
75
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) : ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ⟶ ℝ ↔ ( 𝐶 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) ) |
77 |
26 76
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) : ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ⟶ ℝ ) |
78 |
75
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑗 ) : ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ⟶ ℝ ↔ ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) ) |
79 |
29 78
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ⟶ ℝ ) |
80 |
52 59 66 67 41 68 77 79
|
hsphoidmvle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( 𝐷 ‘ 𝑗 ) ) ) |
81 |
74
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) = ( 𝐿 ‘ 𝑋 ) ) |
82 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑗 ) = ( 𝐶 ‘ 𝑗 ) ) |
83 |
14
|
a1i |
⊢ ( 𝜑 → 𝑇 = ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ) |
84 |
74
|
oveq2d |
⊢ ( 𝜑 → ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) = ( ℝ ↑m 𝑋 ) ) |
85 |
74
|
mpteq1d |
⊢ ( 𝜑 → ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) |
86 |
84 85
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) |
87 |
86
|
eqcomd |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) |
88 |
87
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ) |
89 |
83 88
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) = 𝑇 ) |
90 |
89
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) = ( 𝑇 ‘ 𝑌 ) ) |
91 |
90
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
92 |
81 82 91
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
94 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) = ( 𝐿 ‘ 𝑋 ) ) |
95 |
94
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( 𝐷 ‘ 𝑗 ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
96 |
93 95
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( 𝐷 ‘ 𝑗 ) ) ↔ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) |
97 |
80 96
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
98 |
19 21 44 31 97
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
99 |
40 45 98
|
ge0lere |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
100 |
15 41 23 26
|
hoidifhspf |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) : 𝑋 ⟶ ℝ ) |
101 |
13 23 100 29
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,) +∞ ) ) |
102 |
101
|
fmpttd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
103 |
22
|
a1i |
⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) |
104 |
102 103
|
fssd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
105 |
21 104
|
sge0cl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
106 |
22 101
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
107 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐾 ∈ 𝑋 ) |
108 |
13 23 26 29 107 15 41
|
hoidifhspdmvle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
109 |
19 21 106 31 108
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
110 |
40 105 109
|
ge0lere |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
111 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → 𝑌 ∈ ℝ ) |
112 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → 𝑋 ∈ Fin ) |
113 |
|
eleq1w |
⊢ ( 𝑗 = 𝑙 → ( 𝑗 ∈ ℕ ↔ 𝑙 ∈ ℕ ) ) |
114 |
113
|
anbi2d |
⊢ ( 𝑗 = 𝑙 → ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑙 ∈ ℕ ) ) ) |
115 |
|
fveq2 |
⊢ ( 𝑗 = 𝑙 → ( 𝐷 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑙 ) ) |
116 |
115
|
feq1d |
⊢ ( 𝑗 = 𝑙 → ( ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ↔ ( 𝐷 ‘ 𝑙 ) : 𝑋 ⟶ ℝ ) ) |
117 |
114 116
|
imbi12d |
⊢ ( 𝑗 = 𝑙 → ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝐷 ‘ 𝑙 ) : 𝑋 ⟶ ℝ ) ) ) |
118 |
117 29
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝐷 ‘ 𝑙 ) : 𝑋 ⟶ ℝ ) |
119 |
14 111 112 118
|
hsphoif |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) |
120 |
|
reex |
⊢ ℝ ∈ V |
121 |
120
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
122 |
121 2
|
jca |
⊢ ( 𝜑 → ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) ) |
123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) ) |
124 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ↔ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) ) |
125 |
123 124
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ↔ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) ) |
126 |
119 125
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ) |
127 |
126
|
fmpttd |
⊢ ( 𝜑 → ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) |
128 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝜑 ) |
129 |
|
elinel1 |
⊢ ( 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑓 ∈ 𝐴 ) |
130 |
129
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 ∈ 𝐴 ) |
131 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
132 |
|
eliun |
⊢ ( 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
133 |
131 132
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
134 |
128 130 133
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
135 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) → 𝜑 ) |
136 |
|
elinel2 |
⊢ ( 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
137 |
136
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
138 |
137
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) → 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
139 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
140 |
|
ixpfn |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → 𝑓 Fn 𝑋 ) |
141 |
140
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 Fn 𝑋 ) |
142 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) |
143 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑓 |
144 |
|
nfixp1 |
⊢ Ⅎ 𝑘 X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
145 |
143 144
|
nfel |
⊢ Ⅎ 𝑘 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
146 |
142 145
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
147 |
26
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
148 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
149 |
147 148
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ ) |
150 |
149
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
151 |
150
|
ad5ant135 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
152 |
42
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑋 ⟶ ℝ ) |
153 |
152 148
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ ) |
154 |
153
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ* ) |
155 |
154
|
ad5ant135 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ* ) |
156 |
|
iftrue |
⊢ ( 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( -∞ (,) 𝑌 ) ) |
157 |
|
ioossre |
⊢ ( -∞ (,) 𝑌 ) ⊆ ℝ |
158 |
157
|
a1i |
⊢ ( 𝑘 = 𝐾 → ( -∞ (,) 𝑌 ) ⊆ ℝ ) |
159 |
156 158
|
eqsstrd |
⊢ ( 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ ) |
160 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ℝ ) |
161 |
|
ssid |
⊢ ℝ ⊆ ℝ |
162 |
161
|
a1i |
⊢ ( ¬ 𝑘 = 𝐾 → ℝ ⊆ ℝ ) |
163 |
160 162
|
eqsstrd |
⊢ ( ¬ 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ ) |
164 |
159 163
|
pm2.61i |
⊢ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ |
165 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
166 |
1 2 3 4
|
hspval |
⊢ ( 𝜑 → ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) = X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) = X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
168 |
165 167
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
169 |
168
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
170 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
171 |
|
vex |
⊢ 𝑓 ∈ V |
172 |
171
|
elixp |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ↔ ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) ) |
173 |
172
|
biimpi |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) ) |
174 |
173
|
simprd |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
175 |
174
|
adantr |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∧ 𝑘 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
176 |
|
simpr |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
177 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
178 |
175 176 177
|
syl2anc |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
179 |
169 170 178
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
180 |
164 179
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
181 |
180
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ* ) |
182 |
181
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ* ) |
183 |
150
|
ad4ant124 |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
184 |
29
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
185 |
184 148
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ ) |
186 |
185
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
187 |
186
|
ad4ant124 |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
188 |
171
|
elixp |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
189 |
188
|
biimpi |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
190 |
189
|
simprd |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
191 |
190
|
adantr |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
192 |
|
simpr |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
193 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
194 |
191 192 193
|
syl2anc |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
195 |
194
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
196 |
|
icogelb |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
197 |
183 187 195 196
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
198 |
197
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
199 |
|
icoltub |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
200 |
183 187 195 199
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
201 |
200
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
202 |
201
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
203 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) → 𝜑 ) |
204 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
205 |
203 204
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝜑 ∧ 𝑗 ∈ ℕ ) ) |
206 |
205
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝜑 ∧ 𝑗 ∈ ℕ ) ) |
207 |
|
simp2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → 𝑘 = 𝐾 ) |
208 |
|
simp3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) |
209 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ) |
210 |
209
|
breq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ↔ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 ) ) |
211 |
210
|
biimpa |
⊢ ( ( 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 ) |
212 |
211
|
iftrued |
⊢ ( ( 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ) |
213 |
209
|
eqcomd |
⊢ ( 𝑘 = 𝐾 → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
214 |
213
|
adantr |
⊢ ( ( 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
215 |
212 214
|
eqtrd |
⊢ ( ( 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
216 |
215
|
3adant1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
217 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 ↔ ( 𝑐 ‘ ℎ ) ≤ 𝑌 ) ) |
218 |
|
id |
⊢ ( 𝑦 = 𝑌 → 𝑦 = 𝑌 ) |
219 |
217 218
|
ifbieq2d |
⊢ ( 𝑦 = 𝑌 → if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) = if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) |
220 |
219
|
ifeq2d |
⊢ ( 𝑦 = 𝑌 → if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) = if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) |
221 |
220
|
mpteq2dv |
⊢ ( 𝑦 = 𝑌 → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) |
222 |
221
|
mpteq2dv |
⊢ ( 𝑦 = 𝑌 → ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) ) |
223 |
|
ovex |
⊢ ( ℝ ↑m 𝑋 ) ∈ V |
224 |
223
|
mptex |
⊢ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) ∈ V |
225 |
224
|
a1i |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) ∈ V ) |
226 |
14 222 4 225
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝑌 ) = ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) ) |
227 |
226
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑌 ) = ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) ) |
228 |
|
fveq1 |
⊢ ( 𝑐 = ( 𝐷 ‘ 𝑗 ) → ( 𝑐 ‘ ℎ ) = ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ) |
229 |
228
|
breq1d |
⊢ ( 𝑐 = ( 𝐷 ‘ 𝑗 ) → ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 ↔ ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 ) ) |
230 |
229 228
|
ifbieq1d |
⊢ ( 𝑐 = ( 𝐷 ‘ 𝑗 ) → if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) |
231 |
228 230
|
ifeq12d |
⊢ ( 𝑐 = ( 𝐷 ‘ 𝑗 ) → if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) = if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) |
232 |
231
|
mpteq2dv |
⊢ ( 𝑐 = ( 𝐷 ‘ 𝑗 ) → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ) |
233 |
232
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑐 = ( 𝐷 ‘ 𝑗 ) ) → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ) |
234 |
|
mptexg |
⊢ ( 𝑋 ∈ Fin → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ∈ V ) |
235 |
2 234
|
syl |
⊢ ( 𝜑 → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ∈ V ) |
236 |
235
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ∈ V ) |
237 |
227 233 27 236
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ) |
238 |
237
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) ) |
239 |
238
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) ) |
240 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → 𝜑 ) |
241 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → 𝑘 = 𝐾 ) |
242 |
240 3
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → 𝐾 ∈ 𝑋 ) |
243 |
241 242
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → 𝑘 ∈ 𝑋 ) |
244 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ) |
245 |
|
eleq1w |
⊢ ( ℎ = 𝑘 → ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) ↔ 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) ) ) |
246 |
|
fveq2 |
⊢ ( ℎ = 𝑘 → ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
247 |
246
|
breq1d |
⊢ ( ℎ = 𝑘 → ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 ↔ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) ) |
248 |
247 246
|
ifbieq1d |
⊢ ( ℎ = 𝑘 → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) |
249 |
245 246 248
|
ifbieq12d |
⊢ ( ℎ = 𝑘 → if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
250 |
249
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ℎ = 𝑘 ) → if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
251 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
252 |
|
fvexd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ V ) |
253 |
252 4
|
ifexd |
⊢ ( 𝜑 → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ∈ V ) |
254 |
252 253
|
ifexd |
⊢ ( 𝜑 → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ∈ V ) |
255 |
254
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ∈ V ) |
256 |
244 250 251 255
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
257 |
240 243 256
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
258 |
|
eleq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) ↔ 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) ) ) |
259 |
210 209
|
ifbieq1d |
⊢ ( 𝑘 = 𝐾 → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) |
260 |
258 209 259
|
ifbieq12d |
⊢ ( 𝑘 = 𝐾 → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) = if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) ) |
261 |
260
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) = if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) ) |
262 |
257 261
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) = if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) ) |
263 |
262
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾 ) → ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) = if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) ) |
264 |
|
neldifsnd |
⊢ ( 𝑘 = 𝐾 → ¬ 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) ) |
265 |
264
|
iffalsed |
⊢ ( 𝑘 = 𝐾 → if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) |
266 |
265
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾 ) → if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) |
267 |
239 263 266
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
268 |
267
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
269 |
268
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
270 |
216 269
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
271 |
206 207 208 270
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
272 |
271
|
ad5ant145 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
273 |
202 272
|
breqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
274 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
275 |
274
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → -∞ ∈ ℝ* ) |
276 |
4
|
rexrd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
277 |
276
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑌 ∈ ℝ* ) |
278 |
277
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → 𝑌 ∈ ℝ* ) |
279 |
179
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
280 |
156
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( -∞ (,) 𝑌 ) ) |
281 |
279 280
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( -∞ (,) 𝑌 ) ) |
282 |
|
iooltub |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( -∞ (,) 𝑌 ) ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
283 |
275 278 281 282
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
284 |
283
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
285 |
284
|
ad4ant123 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
286 |
|
simpr |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) |
287 |
210
|
notbid |
⊢ ( 𝑘 = 𝐾 → ( ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ↔ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 ) ) |
288 |
287
|
adantr |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ↔ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 ) ) |
289 |
286 288
|
mpbid |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 ) |
290 |
289
|
iffalsed |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = 𝑌 ) |
291 |
|
eqidd |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → 𝑌 = 𝑌 ) |
292 |
290 291
|
eqtr2d |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → 𝑌 = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) |
293 |
292
|
adantll |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → 𝑌 = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) |
294 |
268
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
295 |
294
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
296 |
295
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
297 |
293 296
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → 𝑌 = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
298 |
285 297
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
299 |
298
|
adantl3r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
300 |
273 299
|
pm2.61dan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
301 |
201
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
302 |
237
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ) |
303 |
249
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) ∧ ℎ = 𝑘 ) → if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
304 |
255
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ∈ V ) |
305 |
302 303 148 304
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
306 |
305
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
307 |
306
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
308 |
307
|
ad4ant13 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
309 |
|
simpl |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾 ) → 𝑘 ∈ 𝑋 ) |
310 |
|
neqne |
⊢ ( ¬ 𝑘 = 𝐾 → 𝑘 ≠ 𝐾 ) |
311 |
|
nelsn |
⊢ ( 𝑘 ≠ 𝐾 → ¬ 𝑘 ∈ { 𝐾 } ) |
312 |
310 311
|
syl |
⊢ ( ¬ 𝑘 = 𝐾 → ¬ 𝑘 ∈ { 𝐾 } ) |
313 |
312
|
adantl |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾 ) → ¬ 𝑘 ∈ { 𝐾 } ) |
314 |
309 313
|
eldifd |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾 ) → 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) ) |
315 |
314
|
iftrued |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾 ) → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
316 |
315
|
adantll |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
317 |
308 316
|
eqtr2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
318 |
301 317
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
319 |
300 318
|
pm2.61dan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
320 |
151 155 182 198 319
|
elicod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
321 |
320
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ 𝑋 → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
322 |
146 321
|
ralrimi |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
323 |
141 322
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
324 |
171
|
elixp |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ↔ ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
325 |
323 324
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
326 |
325
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
327 |
135 138 139 326
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
328 |
327
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ( ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
329 |
134 328
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
330 |
|
eliun |
⊢ ( 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ↔ ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
331 |
329 330
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
332 |
331
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
333 |
|
dfss3 |
⊢ ( ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ↔ ∀ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
334 |
332 333
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
335 |
|
eqidd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) = ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) |
336 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) = ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
337 |
336
|
adantl |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑙 = 𝑗 ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) = ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
338 |
|
id |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) |
339 |
|
fvexd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ∈ V ) |
340 |
335 337 338 339
|
fvmptd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) = ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
341 |
340
|
fveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
342 |
341
|
oveq2d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
343 |
342
|
ixpeq2dv |
⊢ ( 𝑗 ∈ ℕ → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
344 |
343
|
iuneq2i |
⊢ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
345 |
334 344
|
sseqtrrdi |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
346 |
2 6 127 345 13
|
ovnlecvr2 |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ) ) ) ) |
347 |
340
|
oveq2d |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
348 |
347
|
mpteq2ia |
⊢ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
349 |
348
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
350 |
349
|
a1i |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
351 |
346 350
|
breqtrd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
352 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝐶 ‘ 𝑙 ) ∈ ( ℝ ↑m 𝑋 ) ) |
353 |
|
elmapi |
⊢ ( ( 𝐶 ‘ 𝑙 ) ∈ ( ℝ ↑m 𝑋 ) → ( 𝐶 ‘ 𝑙 ) : 𝑋 ⟶ ℝ ) |
354 |
352 353
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝐶 ‘ 𝑙 ) : 𝑋 ⟶ ℝ ) |
355 |
15 111 112 354
|
hoidifhspf |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) |
356 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ↔ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) ) |
357 |
122 356
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ↔ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) ) |
358 |
357
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ↔ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) ) |
359 |
355 358
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ) |
360 |
359
|
fmpttd |
⊢ ( 𝜑 → ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) |
361 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝜑 ) |
362 |
|
eldifi |
⊢ ( 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑓 ∈ 𝐴 ) |
363 |
362
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 ∈ 𝐴 ) |
364 |
361 363 133
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
365 |
140
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 Fn 𝑋 ) |
366 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) |
367 |
366 145
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
368 |
100
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) : 𝑋 ⟶ ℝ ) |
369 |
368 148
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ ) |
370 |
369
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ* ) |
371 |
370
|
ad5ant135 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ* ) |
372 |
187
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
373 |
149
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ ) |
374 |
186
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
375 |
|
icossre |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) → ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ⊆ ℝ ) |
376 |
373 374 375
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ⊆ ℝ ) |
377 |
376
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ⊆ ℝ ) |
378 |
377 195
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
379 |
378
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ* ) |
380 |
379
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ* ) |
381 |
41
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → 𝑌 ∈ ℝ ) |
382 |
23
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → 𝑋 ∈ Fin ) |
383 |
15 381 382 147 148
|
hoidifhspval3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
384 |
383
|
ad5ant134 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
385 |
|
iftrue |
⊢ ( 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) = if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) |
386 |
385
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) = if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) |
387 |
384 386
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) |
388 |
387
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) |
389 |
|
iftrue |
⊢ ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
390 |
389
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
391 |
197
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
392 |
391
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
393 |
390 392
|
eqbrtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
394 |
|
iffalse |
⊢ ( ¬ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) = 𝑌 ) |
395 |
394
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) = 𝑌 ) |
396 |
|
simpl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) |
397 |
|
simpr |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) |
398 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝐾 ) ) |
399 |
398
|
breq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ↔ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) ) |
400 |
399
|
notbid |
⊢ ( 𝑘 = 𝐾 → ( ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ↔ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) ) |
401 |
400
|
adantr |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ↔ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) ) |
402 |
397 401
|
mpbid |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ¬ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) |
403 |
402
|
3ad2antl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ¬ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) |
404 |
398
|
eqcomd |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 ‘ 𝐾 ) = ( 𝑓 ‘ 𝑘 ) ) |
405 |
404
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝐾 ) = ( 𝑓 ‘ 𝑘 ) ) |
406 |
364
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
407 |
|
id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝜑 ∧ 𝑗 ∈ ℕ ) ) |
408 |
407
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝜑 ∧ 𝑗 ∈ ℕ ) ) |
409 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
410 |
251
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ 𝑋 ) |
411 |
408 409 410 378
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
412 |
411
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) ) |
413 |
412
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) ) |
414 |
406 413
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
415 |
414
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
416 |
405 415
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝐾 ) ∈ ℝ ) |
417 |
416
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝐾 ) ∈ ℝ ) |
418 |
396 361 4
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → 𝑌 ∈ ℝ ) |
419 |
417 418
|
ltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑓 ‘ 𝐾 ) < 𝑌 ↔ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) ) |
420 |
403 419
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝐾 ) < 𝑌 ) |
421 |
365 364
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 Fn 𝑋 ) |
422 |
421
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) → 𝑓 Fn 𝑋 ) |
423 |
274
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → -∞ ∈ ℝ* ) |
424 |
276
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → 𝑌 ∈ ℝ* ) |
425 |
414
|
ad4ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
426 |
425
|
mnfltd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → -∞ < ( 𝑓 ‘ 𝑘 ) ) |
427 |
398
|
adantl |
⊢ ( ( ( 𝑓 ‘ 𝐾 ) < 𝑌 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝐾 ) ) |
428 |
|
simpl |
⊢ ( ( ( 𝑓 ‘ 𝐾 ) < 𝑌 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝐾 ) < 𝑌 ) |
429 |
427 428
|
eqbrtrd |
⊢ ( ( ( 𝑓 ‘ 𝐾 ) < 𝑌 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
430 |
429
|
ad4ant24 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
431 |
423 424 425 426 430
|
eliood |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( -∞ (,) 𝑌 ) ) |
432 |
156
|
eqcomd |
⊢ ( 𝑘 = 𝐾 → ( -∞ (,) 𝑌 ) = if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
433 |
432
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( -∞ (,) 𝑌 ) = if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
434 |
431 433
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
435 |
414
|
ad4ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
436 |
160
|
eqcomd |
⊢ ( ¬ 𝑘 = 𝐾 → ℝ = if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
437 |
436
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ℝ = if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
438 |
435 437
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
439 |
434 438
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
440 |
439
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
441 |
422 440
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) ) |
442 |
396 420 441
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) ) |
443 |
442 172
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
444 |
166
|
eqcomd |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
445 |
444
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
446 |
445
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
447 |
443 446
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
448 |
|
eldifn |
⊢ ( 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → ¬ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
449 |
448
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ¬ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
450 |
449
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ¬ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
451 |
450
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ¬ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
452 |
447 451
|
condan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) |
453 |
452
|
ad5ant145 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) |
454 |
453
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) |
455 |
395 454
|
eqbrtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
456 |
393 455
|
pm2.61dan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
457 |
388 456
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
458 |
383
|
ad5ant124 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
459 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
460 |
459
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
461 |
458 460
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
462 |
197
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
463 |
461 462
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
464 |
463
|
adantl4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
465 |
457 464
|
pm2.61dan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
466 |
200
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
467 |
371 372 380 465 466
|
elicod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
468 |
467
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ 𝑋 → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
469 |
367 468
|
ralrimi |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
470 |
365 469
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
471 |
171
|
elixp |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
472 |
470 471
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
473 |
|
eqidd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) = ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ) |
474 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) = ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ) |
475 |
474
|
adantl |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑙 = 𝑗 ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) = ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ) |
476 |
|
fvexd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ∈ V ) |
477 |
473 475 338 476
|
fvmptd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) = ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ) |
478 |
477
|
fveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
479 |
478
|
oveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
480 |
479
|
ixpeq2dv |
⊢ ( 𝑗 ∈ ℕ → X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
481 |
480
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
482 |
481
|
eleq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
483 |
472 482
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
484 |
483
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
485 |
484
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ( ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
486 |
364 485
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
487 |
|
eliun |
⊢ ( 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
488 |
486 487
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
489 |
488
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
490 |
|
dfss3 |
⊢ ( ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ ∀ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
491 |
489 490
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
492 |
2 360 7 491 13
|
ovnlecvr2 |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
493 |
477
|
oveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) = ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
494 |
493
|
mpteq2ia |
⊢ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
495 |
494
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) |
496 |
495
|
a1i |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
497 |
492 496
|
breqtrd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
498 |
11 12 99 110 351 497
|
leadd12dd |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) + ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
499 |
23 107 41 26 29 13 14 15
|
hspmbllem1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) = ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) +𝑒 ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) |
500 |
499
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) +𝑒 ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
501 |
500
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) +𝑒 ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
502 |
19 21 44 106
|
sge0xadd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) +𝑒 ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) +𝑒 ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
503 |
99 110
|
rexaddd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) +𝑒 ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
504 |
501 502 503
|
3eqtrrd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
505 |
498 504
|
breqtrd |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) + ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
506 |
16 40 18 505 39
|
letrd |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) + ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) + 𝐸 ) ) |