| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hspmbllem2.h |
⊢ 𝐻 = ( 𝑥 ∈ Fin ↦ ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑥 if ( 𝑘 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
| 2 |
|
hspmbllem2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
hspmbllem2.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) |
| 4 |
|
hspmbllem2.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 5 |
|
hspmbllem2.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 6 |
|
hspmbllem2.c |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) |
| 7 |
|
hspmbllem2.d |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) |
| 8 |
|
hspmbllem2.a |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 9 |
|
hspmbllem2.g |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) + 𝐸 ) ) |
| 10 |
|
hspmbllem2.r |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ ) |
| 11 |
|
hspmbllem2.i |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∈ ℝ ) |
| 12 |
|
hspmbllem2.f |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∈ ℝ ) |
| 13 |
|
hspmbllem2.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 14 |
|
hspmbllem2.t |
⊢ 𝑇 = ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) |
| 15 |
|
hspmbllem2.s |
⊢ 𝑆 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ = 𝐾 , if ( 𝑥 ≤ ( 𝑐 ‘ ℎ ) , ( 𝑐 ‘ ℎ ) , 𝑥 ) , ( 𝑐 ‘ ℎ ) ) ) ) ) |
| 16 |
11 12
|
readdcld |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) + ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ∈ ℝ ) |
| 17 |
5
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 18 |
10 17
|
readdcld |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) + 𝐸 ) ∈ ℝ ) |
| 19 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
| 20 |
|
nnex |
⊢ ℕ ∈ V |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
| 22 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑋 ∈ Fin ) |
| 24 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑋 ) ) |
| 25 |
|
elmapi |
⊢ ( ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑋 ) → ( 𝐶 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
| 26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
| 27 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑋 ) ) |
| 28 |
|
elmapi |
⊢ ( ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑋 ) → ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
| 30 |
13 23 26 29
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,) +∞ ) ) |
| 31 |
22 30
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
| 32 |
19 21 31
|
sge0clmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 33 |
|
ne0i |
⊢ ( 𝐾 ∈ 𝑋 → 𝑋 ≠ ∅ ) |
| 34 |
3 33
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑋 ≠ ∅ ) |
| 36 |
13 23 35 26 29
|
hoidmvn0val |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
| 37 |
36
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) ) |
| 38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) ) ) |
| 39 |
38 9
|
eqbrtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) + 𝐸 ) ) |
| 40 |
18 32 39
|
ge0lere |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 41 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑌 ∈ ℝ ) |
| 42 |
14 41 23 29
|
hsphoif |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑋 ⟶ ℝ ) |
| 43 |
13 23 26 42
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 44 |
22 43
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 45 |
19 21 44
|
sge0clmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m 𝑦 ) ) |
| 47 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) ) |
| 48 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 49 |
47 48
|
ifbieq2d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) |
| 50 |
46 46 49
|
mpoeq123dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) = ( 𝑎 ∈ ( ℝ ↑m 𝑦 ) , 𝑏 ∈ ( ℝ ↑m 𝑦 ) ↦ if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 51 |
50
|
cbvmptv |
⊢ ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) = ( 𝑦 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑦 ) , 𝑏 ∈ ( ℝ ↑m 𝑦 ) ↦ if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 52 |
13 51
|
eqtri |
⊢ 𝐿 = ( 𝑦 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑦 ) , 𝑏 ∈ ( ℝ ↑m 𝑦 ) ↦ if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 53 |
|
diffi |
⊢ ( 𝑋 ∈ Fin → ( 𝑋 ∖ { 𝐾 } ) ∈ Fin ) |
| 54 |
2 53
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∖ { 𝐾 } ) ∈ Fin ) |
| 55 |
|
snfi |
⊢ { 𝐾 } ∈ Fin |
| 56 |
55
|
a1i |
⊢ ( 𝜑 → { 𝐾 } ∈ Fin ) |
| 57 |
|
unfi |
⊢ ( ( ( 𝑋 ∖ { 𝐾 } ) ∈ Fin ∧ { 𝐾 } ∈ Fin ) → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∈ Fin ) |
| 58 |
54 56 57
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∈ Fin ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∈ Fin ) |
| 60 |
|
snidg |
⊢ ( 𝐾 ∈ 𝑋 → 𝐾 ∈ { 𝐾 } ) |
| 61 |
3 60
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ { 𝐾 } ) |
| 62 |
|
elun2 |
⊢ ( 𝐾 ∈ { 𝐾 } → 𝐾 ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) |
| 63 |
61 62
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) |
| 64 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) ) |
| 65 |
63 64
|
eldifd |
⊢ ( 𝜑 → 𝐾 ∈ ( ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∖ ( 𝑋 ∖ { 𝐾 } ) ) ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐾 ∈ ( ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∖ ( 𝑋 ∖ { 𝐾 } ) ) ) |
| 67 |
|
eqid |
⊢ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) |
| 68 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) |
| 69 |
|
uncom |
⊢ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = ( { 𝐾 } ∪ ( 𝑋 ∖ { 𝐾 } ) ) |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = ( { 𝐾 } ∪ ( 𝑋 ∖ { 𝐾 } ) ) ) |
| 71 |
3
|
snssd |
⊢ ( 𝜑 → { 𝐾 } ⊆ 𝑋 ) |
| 72 |
|
undif |
⊢ ( { 𝐾 } ⊆ 𝑋 ↔ ( { 𝐾 } ∪ ( 𝑋 ∖ { 𝐾 } ) ) = 𝑋 ) |
| 73 |
71 72
|
sylib |
⊢ ( 𝜑 → ( { 𝐾 } ∪ ( 𝑋 ∖ { 𝐾 } ) ) = 𝑋 ) |
| 74 |
70 73
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = 𝑋 ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = 𝑋 ) |
| 76 |
75
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) : ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ⟶ ℝ ↔ ( 𝐶 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) ) |
| 77 |
26 76
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) : ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ⟶ ℝ ) |
| 78 |
75
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑗 ) : ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ⟶ ℝ ↔ ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) ) |
| 79 |
29 78
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ⟶ ℝ ) |
| 80 |
52 59 66 67 41 68 77 79
|
hsphoidmvle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( 𝐷 ‘ 𝑗 ) ) ) |
| 81 |
74
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) = ( 𝐿 ‘ 𝑋 ) ) |
| 82 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑗 ) = ( 𝐶 ‘ 𝑗 ) ) |
| 83 |
14
|
a1i |
⊢ ( 𝜑 → 𝑇 = ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ) |
| 84 |
74
|
oveq2d |
⊢ ( 𝜑 → ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) = ( ℝ ↑m 𝑋 ) ) |
| 85 |
74
|
mpteq1d |
⊢ ( 𝜑 → ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) |
| 86 |
84 85
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) |
| 87 |
86
|
eqcomd |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) |
| 88 |
87
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ) |
| 89 |
83 88
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) = 𝑇 ) |
| 90 |
89
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) = ( 𝑇 ‘ 𝑌 ) ) |
| 91 |
90
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
| 92 |
81 82 91
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 94 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) = ( 𝐿 ‘ 𝑋 ) ) |
| 95 |
94
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( 𝐷 ‘ 𝑗 ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
| 96 |
93 95
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( ( ( 𝑦 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ↦ ( ℎ ∈ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) ) ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ ( ( 𝑋 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ( 𝐷 ‘ 𝑗 ) ) ↔ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 97 |
80 96
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
| 98 |
19 21 44 31 97
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 99 |
40 45 98
|
ge0lere |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
| 100 |
15 41 23 26
|
hoidifhspf |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) : 𝑋 ⟶ ℝ ) |
| 101 |
13 23 100 29
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,) +∞ ) ) |
| 102 |
101
|
fmpttd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 103 |
22
|
a1i |
⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) |
| 104 |
102 103
|
fssd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 105 |
21 104
|
sge0cl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 106 |
22 101
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
| 107 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐾 ∈ 𝑋 ) |
| 108 |
13 23 26 29 107 15 41
|
hoidifhspdmvle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
| 109 |
19 21 106 31 108
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 110 |
40 105 109
|
ge0lere |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 111 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → 𝑌 ∈ ℝ ) |
| 112 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → 𝑋 ∈ Fin ) |
| 113 |
|
eleq1w |
⊢ ( 𝑗 = 𝑙 → ( 𝑗 ∈ ℕ ↔ 𝑙 ∈ ℕ ) ) |
| 114 |
113
|
anbi2d |
⊢ ( 𝑗 = 𝑙 → ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑙 ∈ ℕ ) ) ) |
| 115 |
|
fveq2 |
⊢ ( 𝑗 = 𝑙 → ( 𝐷 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑙 ) ) |
| 116 |
115
|
feq1d |
⊢ ( 𝑗 = 𝑙 → ( ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ↔ ( 𝐷 ‘ 𝑙 ) : 𝑋 ⟶ ℝ ) ) |
| 117 |
114 116
|
imbi12d |
⊢ ( 𝑗 = 𝑙 → ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝐷 ‘ 𝑙 ) : 𝑋 ⟶ ℝ ) ) ) |
| 118 |
117 29
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝐷 ‘ 𝑙 ) : 𝑋 ⟶ ℝ ) |
| 119 |
14 111 112 118
|
hsphoif |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) |
| 120 |
|
reex |
⊢ ℝ ∈ V |
| 121 |
120
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 122 |
121 2
|
jca |
⊢ ( 𝜑 → ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) ) |
| 123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) ) |
| 124 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ↔ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) ) |
| 125 |
123 124
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ↔ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) ) |
| 126 |
119 125
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ) |
| 127 |
126
|
fmpttd |
⊢ ( 𝜑 → ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) |
| 128 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝜑 ) |
| 129 |
|
elinel1 |
⊢ ( 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑓 ∈ 𝐴 ) |
| 130 |
129
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 ∈ 𝐴 ) |
| 131 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 132 |
|
eliun |
⊢ ( 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 133 |
131 132
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 134 |
128 130 133
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 135 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) → 𝜑 ) |
| 136 |
|
elinel2 |
⊢ ( 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 137 |
136
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 138 |
137
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) → 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 139 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
| 140 |
|
ixpfn |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → 𝑓 Fn 𝑋 ) |
| 141 |
140
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 Fn 𝑋 ) |
| 142 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) |
| 143 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑓 |
| 144 |
|
nfixp1 |
⊢ Ⅎ 𝑘 X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 145 |
143 144
|
nfel |
⊢ Ⅎ 𝑘 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 146 |
142 145
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 147 |
26
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
| 148 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 149 |
147 148
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ ) |
| 150 |
149
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
| 151 |
150
|
ad5ant135 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
| 152 |
42
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑋 ⟶ ℝ ) |
| 153 |
152 148
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 154 |
153
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ* ) |
| 155 |
154
|
ad5ant135 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ* ) |
| 156 |
|
iftrue |
⊢ ( 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( -∞ (,) 𝑌 ) ) |
| 157 |
|
ioossre |
⊢ ( -∞ (,) 𝑌 ) ⊆ ℝ |
| 158 |
157
|
a1i |
⊢ ( 𝑘 = 𝐾 → ( -∞ (,) 𝑌 ) ⊆ ℝ ) |
| 159 |
156 158
|
eqsstrd |
⊢ ( 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ ) |
| 160 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ℝ ) |
| 161 |
|
ssid |
⊢ ℝ ⊆ ℝ |
| 162 |
161
|
a1i |
⊢ ( ¬ 𝑘 = 𝐾 → ℝ ⊆ ℝ ) |
| 163 |
160 162
|
eqsstrd |
⊢ ( ¬ 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ ) |
| 164 |
159 163
|
pm2.61i |
⊢ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ |
| 165 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 166 |
1 2 3 4
|
hspval |
⊢ ( 𝜑 → ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) = X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) = X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 168 |
165 167
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 169 |
168
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 170 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 171 |
|
vex |
⊢ 𝑓 ∈ V |
| 172 |
171
|
elixp |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ↔ ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) ) |
| 173 |
172
|
biimpi |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) ) |
| 174 |
173
|
simprd |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 175 |
174
|
adantr |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∧ 𝑘 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 176 |
|
simpr |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 177 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 178 |
175 176 177
|
syl2anc |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 179 |
169 170 178
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 180 |
164 179
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
| 181 |
180
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ* ) |
| 182 |
181
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ* ) |
| 183 |
150
|
ad4ant124 |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
| 184 |
29
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑗 ) : 𝑋 ⟶ ℝ ) |
| 185 |
184 148
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ ) |
| 186 |
185
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
| 187 |
186
|
ad4ant124 |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
| 188 |
171
|
elixp |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
| 189 |
188
|
biimpi |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
| 190 |
189
|
simprd |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 191 |
190
|
adantr |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 192 |
|
simpr |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 193 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 194 |
191 192 193
|
syl2anc |
⊢ ( ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 195 |
194
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 196 |
|
icogelb |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 197 |
183 187 195 196
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 198 |
197
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 199 |
|
icoltub |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 200 |
183 187 195 199
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 201 |
200
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 202 |
201
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 203 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) → 𝜑 ) |
| 204 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
| 205 |
203 204
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝜑 ∧ 𝑗 ∈ ℕ ) ) |
| 206 |
205
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝜑 ∧ 𝑗 ∈ ℕ ) ) |
| 207 |
|
simp2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → 𝑘 = 𝐾 ) |
| 208 |
|
simp3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) |
| 209 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ) |
| 210 |
209
|
breq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ↔ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 ) ) |
| 211 |
210
|
biimpa |
⊢ ( ( 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 ) |
| 212 |
211
|
iftrued |
⊢ ( ( 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ) |
| 213 |
209
|
eqcomd |
⊢ ( 𝑘 = 𝐾 → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 214 |
213
|
adantr |
⊢ ( ( 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 215 |
212 214
|
eqtrd |
⊢ ( ( 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 216 |
215
|
3adant1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 217 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 ↔ ( 𝑐 ‘ ℎ ) ≤ 𝑌 ) ) |
| 218 |
|
id |
⊢ ( 𝑦 = 𝑌 → 𝑦 = 𝑌 ) |
| 219 |
217 218
|
ifbieq2d |
⊢ ( 𝑦 = 𝑌 → if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) = if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) |
| 220 |
219
|
ifeq2d |
⊢ ( 𝑦 = 𝑌 → if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) = if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) |
| 221 |
220
|
mpteq2dv |
⊢ ( 𝑦 = 𝑌 → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) |
| 222 |
221
|
mpteq2dv |
⊢ ( 𝑦 = 𝑌 → ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑦 , ( 𝑐 ‘ ℎ ) , 𝑦 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) ) |
| 223 |
|
ovex |
⊢ ( ℝ ↑m 𝑋 ) ∈ V |
| 224 |
223
|
mptex |
⊢ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) ∈ V |
| 225 |
224
|
a1i |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) ∈ V ) |
| 226 |
14 222 4 225
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝑌 ) = ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) ) |
| 227 |
226
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑌 ) = ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) ) ) |
| 228 |
|
fveq1 |
⊢ ( 𝑐 = ( 𝐷 ‘ 𝑗 ) → ( 𝑐 ‘ ℎ ) = ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ) |
| 229 |
228
|
breq1d |
⊢ ( 𝑐 = ( 𝐷 ‘ 𝑗 ) → ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 ↔ ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 ) ) |
| 230 |
229 228
|
ifbieq1d |
⊢ ( 𝑐 = ( 𝐷 ‘ 𝑗 ) → if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) |
| 231 |
228 230
|
ifeq12d |
⊢ ( 𝑐 = ( 𝐷 ‘ 𝑗 ) → if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) = if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) |
| 232 |
231
|
mpteq2dv |
⊢ ( 𝑐 = ( 𝐷 ‘ 𝑗 ) → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ) |
| 233 |
232
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑐 = ( 𝐷 ‘ 𝑗 ) ) → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑌 , ( 𝑐 ‘ ℎ ) , 𝑌 ) ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ) |
| 234 |
|
mptexg |
⊢ ( 𝑋 ∈ Fin → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ∈ V ) |
| 235 |
2 234
|
syl |
⊢ ( 𝜑 → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ∈ V ) |
| 236 |
235
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ∈ V ) |
| 237 |
227 233 27 236
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ) |
| 238 |
237
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) ) |
| 239 |
238
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) ) |
| 240 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → 𝜑 ) |
| 241 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → 𝑘 = 𝐾 ) |
| 242 |
240 3
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → 𝐾 ∈ 𝑋 ) |
| 243 |
241 242
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → 𝑘 ∈ 𝑋 ) |
| 244 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ) |
| 245 |
|
eleq1w |
⊢ ( ℎ = 𝑘 → ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) ↔ 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) ) ) |
| 246 |
|
fveq2 |
⊢ ( ℎ = 𝑘 → ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 247 |
246
|
breq1d |
⊢ ( ℎ = 𝑘 → ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 ↔ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) ) |
| 248 |
247 246
|
ifbieq1d |
⊢ ( ℎ = 𝑘 → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) |
| 249 |
245 246 248
|
ifbieq12d |
⊢ ( ℎ = 𝑘 → if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
| 250 |
249
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ℎ = 𝑘 ) → if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
| 251 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 252 |
|
fvexd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ V ) |
| 253 |
252 4
|
ifexd |
⊢ ( 𝜑 → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ∈ V ) |
| 254 |
252 253
|
ifexd |
⊢ ( 𝜑 → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ∈ V ) |
| 255 |
254
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ∈ V ) |
| 256 |
244 250 251 255
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
| 257 |
240 243 256
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
| 258 |
|
eleq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) ↔ 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) ) ) |
| 259 |
210 209
|
ifbieq1d |
⊢ ( 𝑘 = 𝐾 → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) |
| 260 |
258 209 259
|
ifbieq12d |
⊢ ( 𝑘 = 𝐾 → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) = if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) ) |
| 261 |
260
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) = if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) ) |
| 262 |
257 261
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) = if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) ) |
| 263 |
262
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾 ) → ( ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ‘ 𝑘 ) = if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) ) |
| 264 |
|
neldifsnd |
⊢ ( 𝑘 = 𝐾 → ¬ 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) ) |
| 265 |
264
|
iffalsed |
⊢ ( 𝑘 = 𝐾 → if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) |
| 266 |
265
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾 ) → if ( 𝐾 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) |
| 267 |
239 263 266
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 268 |
267
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 269 |
268
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 270 |
216 269
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 271 |
206 207 208 270
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 = 𝐾 ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 272 |
271
|
ad5ant145 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 273 |
202 272
|
breqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 274 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 275 |
274
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → -∞ ∈ ℝ* ) |
| 276 |
4
|
rexrd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 277 |
276
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑌 ∈ ℝ* ) |
| 278 |
277
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → 𝑌 ∈ ℝ* ) |
| 279 |
179
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 280 |
156
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( -∞ (,) 𝑌 ) ) |
| 281 |
279 280
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( -∞ (,) 𝑌 ) ) |
| 282 |
|
iooltub |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( -∞ (,) 𝑌 ) ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
| 283 |
275 278 281 282
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
| 284 |
283
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
| 285 |
284
|
ad4ant123 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
| 286 |
|
simpr |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) |
| 287 |
210
|
notbid |
⊢ ( 𝑘 = 𝐾 → ( ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ↔ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 ) ) |
| 288 |
287
|
adantr |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ↔ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 ) ) |
| 289 |
286 288
|
mpbid |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 ) |
| 290 |
289
|
iffalsed |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = 𝑌 ) |
| 291 |
|
eqidd |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → 𝑌 = 𝑌 ) |
| 292 |
290 291
|
eqtr2d |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → 𝑌 = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) |
| 293 |
292
|
adantll |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → 𝑌 = if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) ) |
| 294 |
268
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 295 |
294
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 296 |
295
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝐾 ) , 𝑌 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 297 |
293 296
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → 𝑌 = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 298 |
285 297
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 299 |
298
|
adantl3r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 300 |
273 299
|
pm2.61dan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 301 |
201
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 302 |
237
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ℎ ∈ 𝑋 ↦ if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) ) ) |
| 303 |
249
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) ∧ ℎ = 𝑘 ) → if ( ℎ ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ ℎ ) , 𝑌 ) ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
| 304 |
255
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ∈ V ) |
| 305 |
302 303 148 304
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
| 306 |
305
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
| 307 |
306
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
| 308 |
307
|
ad4ant13 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) ) |
| 309 |
|
simpl |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾 ) → 𝑘 ∈ 𝑋 ) |
| 310 |
|
neqne |
⊢ ( ¬ 𝑘 = 𝐾 → 𝑘 ≠ 𝐾 ) |
| 311 |
|
nelsn |
⊢ ( 𝑘 ≠ 𝐾 → ¬ 𝑘 ∈ { 𝐾 } ) |
| 312 |
310 311
|
syl |
⊢ ( ¬ 𝑘 = 𝐾 → ¬ 𝑘 ∈ { 𝐾 } ) |
| 313 |
312
|
adantl |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾 ) → ¬ 𝑘 ∈ { 𝐾 } ) |
| 314 |
309 313
|
eldifd |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾 ) → 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) ) |
| 315 |
314
|
iftrued |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾 ) → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 316 |
315
|
adantll |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → if ( 𝑘 ∈ ( 𝑋 ∖ { 𝐾 } ) , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ≤ 𝑌 , ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 317 |
308 316
|
eqtr2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 318 |
301 317
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 319 |
300 318
|
pm2.61dan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) < ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 320 |
151 155 182 198 319
|
elicod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 321 |
320
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ 𝑋 → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 322 |
146 321
|
ralrimi |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 323 |
141 322
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 324 |
171
|
elixp |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ↔ ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 325 |
323 324
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 326 |
325
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 327 |
135 138 139 326
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 328 |
327
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ( ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 329 |
134 328
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 330 |
|
eliun |
⊢ ( 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ↔ ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 331 |
329 330
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 332 |
331
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 333 |
|
dfss3 |
⊢ ( ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ↔ ∀ 𝑓 ∈ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 334 |
332 333
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 335 |
|
eqidd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) = ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) |
| 336 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) = ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
| 337 |
336
|
adantl |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑙 = 𝑗 ) → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) = ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
| 338 |
|
id |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) |
| 339 |
|
fvexd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ∈ V ) |
| 340 |
335 337 338 339
|
fvmptd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) = ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
| 341 |
340
|
fveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 342 |
341
|
oveq2d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 343 |
342
|
ixpeq2dv |
⊢ ( 𝑗 ∈ ℕ → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 344 |
343
|
iuneq2i |
⊢ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 345 |
334 344
|
sseqtrrdi |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 346 |
2 6 127 345 13
|
ovnlecvr2 |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ) ) ) ) |
| 347 |
340
|
oveq2d |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 348 |
347
|
mpteq2ia |
⊢ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 349 |
348
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 350 |
349
|
a1i |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
| 351 |
346 350
|
breqtrd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
| 352 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝐶 ‘ 𝑙 ) ∈ ( ℝ ↑m 𝑋 ) ) |
| 353 |
|
elmapi |
⊢ ( ( 𝐶 ‘ 𝑙 ) ∈ ( ℝ ↑m 𝑋 ) → ( 𝐶 ‘ 𝑙 ) : 𝑋 ⟶ ℝ ) |
| 354 |
352 353
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝐶 ‘ 𝑙 ) : 𝑋 ⟶ ℝ ) |
| 355 |
15 111 112 354
|
hoidifhspf |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) |
| 356 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ↔ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) ) |
| 357 |
122 356
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ↔ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) ) |
| 358 |
357
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ↔ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) : 𝑋 ⟶ ℝ ) ) |
| 359 |
355 358
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ∈ ( ℝ ↑m 𝑋 ) ) |
| 360 |
359
|
fmpttd |
⊢ ( 𝜑 → ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) |
| 361 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝜑 ) |
| 362 |
|
eldifi |
⊢ ( 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → 𝑓 ∈ 𝐴 ) |
| 363 |
362
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 ∈ 𝐴 ) |
| 364 |
361 363 133
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 365 |
140
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 Fn 𝑋 ) |
| 366 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) |
| 367 |
366 145
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 368 |
100
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) : 𝑋 ⟶ ℝ ) |
| 369 |
368 148
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 370 |
369
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ* ) |
| 371 |
370
|
ad5ant135 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ℝ* ) |
| 372 |
187
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
| 373 |
149
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ ) |
| 374 |
186
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) |
| 375 |
|
icossre |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ ∧ ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ∈ ℝ* ) → ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ⊆ ℝ ) |
| 376 |
373 374 375
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ⊆ ℝ ) |
| 377 |
376
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ⊆ ℝ ) |
| 378 |
377 195
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
| 379 |
378
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ* ) |
| 380 |
379
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ* ) |
| 381 |
41
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → 𝑌 ∈ ℝ ) |
| 382 |
23
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → 𝑋 ∈ Fin ) |
| 383 |
15 381 382 147 148
|
hoidifhspval3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 384 |
383
|
ad5ant134 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 385 |
|
iftrue |
⊢ ( 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) = if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) |
| 386 |
385
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) = if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) |
| 387 |
384 386
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) |
| 388 |
387
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ) |
| 389 |
|
iftrue |
⊢ ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 390 |
389
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 391 |
197
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 392 |
391
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 393 |
390 392
|
eqbrtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 394 |
|
iffalse |
⊢ ( ¬ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) = 𝑌 ) |
| 395 |
394
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) = 𝑌 ) |
| 396 |
|
simpl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) |
| 397 |
|
simpr |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 398 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝐾 ) ) |
| 399 |
398
|
breq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ↔ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) ) |
| 400 |
399
|
notbid |
⊢ ( 𝑘 = 𝐾 → ( ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ↔ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) ) |
| 401 |
400
|
adantr |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ↔ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) ) |
| 402 |
397 401
|
mpbid |
⊢ ( ( 𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ¬ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) |
| 403 |
402
|
3ad2antl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ¬ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) |
| 404 |
398
|
eqcomd |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 ‘ 𝐾 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 405 |
404
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝐾 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 406 |
364
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 407 |
|
id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝜑 ∧ 𝑗 ∈ ℕ ) ) |
| 408 |
407
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝜑 ∧ 𝑗 ∈ ℕ ) ) |
| 409 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 410 |
251
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ 𝑋 ) |
| 411 |
408 409 410 378
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
| 412 |
411
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) ) |
| 413 |
412
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) ) |
| 414 |
406 413
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
| 415 |
414
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
| 416 |
405 415
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝐾 ) ∈ ℝ ) |
| 417 |
416
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝐾 ) ∈ ℝ ) |
| 418 |
396 361 4
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → 𝑌 ∈ ℝ ) |
| 419 |
417 418
|
ltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑓 ‘ 𝐾 ) < 𝑌 ↔ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝐾 ) ) ) |
| 420 |
403 419
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝐾 ) < 𝑌 ) |
| 421 |
365 364
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 Fn 𝑋 ) |
| 422 |
421
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) → 𝑓 Fn 𝑋 ) |
| 423 |
274
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → -∞ ∈ ℝ* ) |
| 424 |
276
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → 𝑌 ∈ ℝ* ) |
| 425 |
414
|
ad4ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
| 426 |
425
|
mnfltd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → -∞ < ( 𝑓 ‘ 𝑘 ) ) |
| 427 |
398
|
adantl |
⊢ ( ( ( 𝑓 ‘ 𝐾 ) < 𝑌 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝐾 ) ) |
| 428 |
|
simpl |
⊢ ( ( ( 𝑓 ‘ 𝐾 ) < 𝑌 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝐾 ) < 𝑌 ) |
| 429 |
427 428
|
eqbrtrd |
⊢ ( ( ( 𝑓 ‘ 𝐾 ) < 𝑌 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
| 430 |
429
|
ad4ant24 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) < 𝑌 ) |
| 431 |
423 424 425 426 430
|
eliood |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( -∞ (,) 𝑌 ) ) |
| 432 |
156
|
eqcomd |
⊢ ( 𝑘 = 𝐾 → ( -∞ (,) 𝑌 ) = if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 433 |
432
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( -∞ (,) 𝑌 ) = if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 434 |
431 433
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 435 |
414
|
ad4ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
| 436 |
160
|
eqcomd |
⊢ ( ¬ 𝑘 = 𝐾 → ℝ = if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 437 |
436
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ℝ = if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 438 |
435 437
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 439 |
434 438
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 440 |
439
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 441 |
422 440
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ( 𝑓 ‘ 𝐾 ) < 𝑌 ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) ) |
| 442 |
396 420 441
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) ) |
| 443 |
442 172
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 444 |
166
|
eqcomd |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 445 |
444
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 446 |
445
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 447 |
443 446
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 448 |
|
eldifn |
⊢ ( 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) → ¬ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 449 |
448
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ¬ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 450 |
449
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → ¬ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 451 |
450
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) → ¬ 𝑓 ∈ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) |
| 452 |
447 451
|
condan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾 ) → 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 453 |
452
|
ad5ant145 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 454 |
453
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → 𝑌 ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 455 |
395 454
|
eqbrtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) ∧ ¬ 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 456 |
393 455
|
pm2.61dan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 457 |
388 456
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 458 |
383
|
ad5ant124 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 459 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 460 |
459
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) , 𝑌 ) , ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 461 |
458 460
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 462 |
197
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 463 |
461 462
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 464 |
463
|
adantl4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 465 |
457 464
|
pm2.61dan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ≤ ( 𝑓 ‘ 𝑘 ) ) |
| 466 |
200
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) < ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
| 467 |
371 372 380 465 466
|
elicod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 468 |
467
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ 𝑋 → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
| 469 |
367 468
|
ralrimi |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 470 |
365 469
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
| 471 |
171
|
elixp |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ ( 𝑓 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝑓 ‘ 𝑘 ) ∈ ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
| 472 |
470 471
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 473 |
|
eqidd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) = ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ) |
| 474 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) = ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ) |
| 475 |
474
|
adantl |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑙 = 𝑗 ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) = ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ) |
| 476 |
|
fvexd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ∈ V ) |
| 477 |
473 475 338 476
|
fvmptd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) = ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ) |
| 478 |
477
|
fveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 479 |
478
|
oveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 480 |
479
|
ixpeq2dv |
⊢ ( 𝑗 ∈ ℕ → X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 481 |
480
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 482 |
481
|
eleq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
| 483 |
472 482
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 484 |
483
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
| 485 |
484
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ( ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
| 486 |
364 485
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 487 |
|
eliun |
⊢ ( 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 488 |
486 487
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) → 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 489 |
488
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 490 |
|
dfss3 |
⊢ ( ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ ∀ 𝑓 ∈ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 491 |
489 490
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 492 |
2 360 7 491 13
|
ovnlecvr2 |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 493 |
477
|
oveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) = ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
| 494 |
493
|
mpteq2ia |
⊢ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
| 495 |
494
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 496 |
495
|
a1i |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑙 ∈ ℕ ↦ ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 497 |
492 496
|
breqtrd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 498 |
11 12 99 110 351 497
|
leadd12dd |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) + ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
| 499 |
23 107 41 26 29 13 14 15
|
hspmbllem1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) = ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) +𝑒 ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 500 |
499
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) +𝑒 ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 501 |
500
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) +𝑒 ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
| 502 |
19 21 44 106
|
sge0xadd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) +𝑒 ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) +𝑒 ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
| 503 |
99 110
|
rexaddd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) +𝑒 ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
| 504 |
501 502 503
|
3eqtrrd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( ( 𝑇 ‘ 𝑌 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐶 ‘ 𝑗 ) ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 505 |
498 504
|
breqtrd |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) + ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 506 |
16 40 18 505 39
|
letrd |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) + ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) + 𝐸 ) ) |