| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumnnodd.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) |
| 2 |
|
sumnnodd.even0 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
| 3 |
|
sumnnodd.sc |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝐵 ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑘 seq 1 ( + , 𝐹 ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑘 + |
| 8 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 9 |
6 7 8
|
nfseq |
⊢ Ⅎ 𝑘 seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
| 10 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) |
| 11 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 12 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 13 |
|
seqex |
⊢ seq 1 ( + , 𝐹 ) ∈ V |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ V ) |
| 15 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 16 |
11 12 15
|
serf |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
| 17 |
16
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
| 18 |
|
1nn |
⊢ 1 ∈ ℕ |
| 19 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 2 · 𝑘 ) = ( 2 · 1 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 1 ) − 1 ) ) |
| 21 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) |
| 22 |
|
ovex |
⊢ ( ( 2 · 1 ) − 1 ) ∈ V |
| 23 |
20 21 22
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) = ( ( 2 · 1 ) − 1 ) ) |
| 24 |
18 23
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) = ( ( 2 · 1 ) − 1 ) |
| 25 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 26 |
25
|
oveq1i |
⊢ ( ( 2 · 1 ) − 1 ) = ( 2 − 1 ) |
| 27 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 28 |
24 26 27
|
3eqtri |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) = 1 |
| 29 |
28 18
|
eqeltri |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) ∈ ℕ |
| 30 |
29
|
a1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) ∈ ℕ ) |
| 31 |
|
2z |
⊢ 2 ∈ ℤ |
| 32 |
31
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℤ ) |
| 33 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 34 |
32 33
|
zmulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℤ ) |
| 35 |
33
|
peano2zd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℤ ) |
| 36 |
32 35
|
zmulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · ( 𝑘 + 1 ) ) ∈ ℤ ) |
| 37 |
|
1zzd |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℤ ) |
| 38 |
36 37
|
zsubcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ℤ ) |
| 39 |
|
2re |
⊢ 2 ∈ ℝ |
| 40 |
39
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ ) |
| 41 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
| 42 |
40 41
|
remulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ ) |
| 43 |
42
|
lep1d |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
| 44 |
|
2cnd |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) |
| 45 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 46 |
|
1cnd |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℂ ) |
| 47 |
44 45 46
|
adddid |
⊢ ( 𝑘 ∈ ℕ → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) ) |
| 48 |
25
|
oveq2i |
⊢ ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑘 ) + 2 ) |
| 49 |
47 48
|
eqtrdi |
⊢ ( 𝑘 ∈ ℕ → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + 2 ) ) |
| 50 |
49
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) = ( ( ( 2 · 𝑘 ) + 2 ) − 1 ) ) |
| 51 |
44 45
|
mulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
| 52 |
51 44 46
|
addsubassd |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 2 ) − 1 ) = ( ( 2 · 𝑘 ) + ( 2 − 1 ) ) ) |
| 53 |
27
|
oveq2i |
⊢ ( ( 2 · 𝑘 ) + ( 2 − 1 ) ) = ( ( 2 · 𝑘 ) + 1 ) |
| 54 |
53
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + ( 2 − 1 ) ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 55 |
50 52 54
|
3eqtrrd |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
| 56 |
43 55
|
breqtrd |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ≤ ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
| 57 |
|
eluz2 |
⊢ ( ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 2 · 𝑘 ) ) ↔ ( ( 2 · 𝑘 ) ∈ ℤ ∧ ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ℤ ∧ ( 2 · 𝑘 ) ≤ ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) ) |
| 58 |
34 38 56 57
|
syl3anbrc |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 2 · 𝑘 ) ) ) |
| 59 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 2 · 𝑘 ) = ( 2 · 𝑗 ) ) |
| 60 |
59
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 61 |
60
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 2 · 𝑗 ) − 1 ) ) |
| 62 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 2 · 𝑗 ) = ( 2 · ( 𝑘 + 1 ) ) ) |
| 63 |
62
|
oveq1d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 2 · 𝑗 ) − 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
| 64 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
| 65 |
61 63 64 38
|
fvmptd3 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
| 66 |
34 37
|
zsubcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) |
| 67 |
21
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
| 68 |
66 67
|
mpdan |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
| 69 |
68
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) = ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ) |
| 70 |
51 46
|
npcand |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) = ( 2 · 𝑘 ) ) |
| 71 |
69 70
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) = ( 2 · 𝑘 ) ) |
| 72 |
71
|
fveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ℤ≥ ‘ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) ) = ( ℤ≥ ‘ ( 2 · 𝑘 ) ) ) |
| 73 |
58 65 72
|
3eltr4d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) ) ) |
| 74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) ) ) |
| 75 |
|
seqex |
⊢ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ V |
| 76 |
75
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ V ) |
| 77 |
|
incom |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 78 |
|
inss2 |
⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } |
| 79 |
|
ssrin |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) |
| 80 |
78 79
|
ax-mp |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 81 |
77 80
|
eqsstri |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 82 |
|
disjdif |
⊢ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ∅ |
| 83 |
81 82
|
sseqtri |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ∅ |
| 84 |
|
ss0 |
⊢ ( ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ∅ → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ∅ ) |
| 85 |
83 84
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ∅ ) |
| 86 |
|
uncom |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 87 |
|
inundif |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) |
| 88 |
86 87
|
eqtr2i |
⊢ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 89 |
88
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) |
| 90 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ) |
| 91 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → 𝐹 : ℕ ⟶ ℂ ) |
| 92 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 𝑗 ∈ ℕ ) |
| 93 |
92
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → 𝑗 ∈ ℕ ) |
| 94 |
91 93
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 95 |
94
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 96 |
85 89 90 95
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) = ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 97 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝜑 ) |
| 98 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ⊆ ℕ |
| 99 |
78
|
sseli |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
| 100 |
98 99
|
sselid |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℕ ) |
| 101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝑗 ∈ ℕ ) |
| 102 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 / 2 ) = ( 𝑗 / 2 ) ) |
| 103 |
102
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 / 2 ) ∈ ℕ ↔ ( 𝑗 / 2 ) ∈ ℕ ) ) |
| 104 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 / 2 ) = ( 𝑘 / 2 ) ) |
| 105 |
104
|
eleq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( 𝑘 / 2 ) ∈ ℕ ) ) |
| 106 |
105
|
elrab |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) ) |
| 107 |
106
|
simprbi |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } → ( 𝑘 / 2 ) ∈ ℕ ) |
| 108 |
103 107
|
vtoclga |
⊢ ( 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } → ( 𝑗 / 2 ) ∈ ℕ ) |
| 109 |
99 108
|
syl |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ( 𝑗 / 2 ) ∈ ℕ ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝑗 / 2 ) ∈ ℕ ) |
| 111 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ ℕ ↔ 𝑗 ∈ ℕ ) ) |
| 112 |
111 103
|
3anbi23d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) ) ) |
| 113 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) = 0 ↔ ( 𝐹 ‘ 𝑗 ) = 0 ) ) |
| 114 |
112 113
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 0 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = 0 ) ) ) |
| 115 |
114 2
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = 0 ) |
| 116 |
97 101 110 115
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) = 0 ) |
| 117 |
116
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) 0 ) |
| 118 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ) |
| 119 |
|
inss1 |
⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) |
| 120 |
119
|
a1i |
⊢ ( 𝜑 → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 121 |
|
ssfi |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ∧ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) |
| 122 |
118 120 121
|
syl2anc |
⊢ ( 𝜑 → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) |
| 123 |
122
|
olcd |
⊢ ( 𝜑 → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( ℤ≥ ‘ 𝐶 ) ∨ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) ) |
| 124 |
|
sumz |
⊢ ( ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( ℤ≥ ‘ 𝐶 ) ∨ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) 0 = 0 ) |
| 125 |
123 124
|
syl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) 0 = 0 ) |
| 126 |
117 125
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = 0 ) |
| 127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = 0 ) |
| 128 |
127
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) = ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + 0 ) ) |
| 129 |
|
fzfi |
⊢ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin |
| 130 |
|
difss |
⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) |
| 131 |
|
ssfi |
⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ∧ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) |
| 132 |
129 130 131
|
mp2an |
⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin |
| 133 |
132
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) |
| 134 |
130
|
sseli |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 135 |
134 94
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 136 |
135
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 137 |
133 136
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 138 |
137
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + 0 ) = Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) |
| 139 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 140 |
139
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) |
| 141 |
138 140
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + 0 ) = Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) ) |
| 142 |
128 141
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) ) |
| 143 |
|
fveq2 |
⊢ ( 𝑖 = ( ( 2 · 𝑗 ) − 1 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 144 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... 𝑘 ) ∈ Fin ) |
| 145 |
|
1zzd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 1 ∈ ℤ ) |
| 146 |
66
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) |
| 147 |
31
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℤ ) |
| 148 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ∈ ℤ ) |
| 149 |
147 148
|
zmulcld |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑖 ) ∈ ℤ ) |
| 150 |
|
1zzd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℤ ) |
| 151 |
149 150
|
zsubcld |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ℤ ) |
| 152 |
151
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ℤ ) |
| 153 |
26 27
|
eqtr2i |
⊢ 1 = ( ( 2 · 1 ) − 1 ) |
| 154 |
|
1re |
⊢ 1 ∈ ℝ |
| 155 |
39 154
|
remulcli |
⊢ ( 2 · 1 ) ∈ ℝ |
| 156 |
155
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ∈ ℝ ) |
| 157 |
149
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑖 ) ∈ ℝ ) |
| 158 |
|
1red |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℝ ) |
| 159 |
148
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ∈ ℝ ) |
| 160 |
39
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℝ ) |
| 161 |
|
0le2 |
⊢ 0 ≤ 2 |
| 162 |
161
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 0 ≤ 2 ) |
| 163 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ≤ 𝑖 ) |
| 164 |
158 159 160 162 163
|
lemul2ad |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ≤ ( 2 · 𝑖 ) ) |
| 165 |
156 157 158 164
|
lesub1dd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 1 ) − 1 ) ≤ ( ( 2 · 𝑖 ) − 1 ) ) |
| 166 |
153 165
|
eqbrtrid |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ≤ ( ( 2 · 𝑖 ) − 1 ) ) |
| 167 |
166
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 1 ≤ ( ( 2 · 𝑖 ) − 1 ) ) |
| 168 |
157
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( 2 · 𝑖 ) ∈ ℝ ) |
| 169 |
42
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( 2 · 𝑘 ) ∈ ℝ ) |
| 170 |
|
1red |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 1 ∈ ℝ ) |
| 171 |
159
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 𝑖 ∈ ℝ ) |
| 172 |
41
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 𝑘 ∈ ℝ ) |
| 173 |
39
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 2 ∈ ℝ ) |
| 174 |
161
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 0 ≤ 2 ) |
| 175 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ≤ 𝑘 ) |
| 176 |
175
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 𝑖 ≤ 𝑘 ) |
| 177 |
171 172 173 174 176
|
lemul2ad |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( 2 · 𝑖 ) ≤ ( 2 · 𝑘 ) ) |
| 178 |
168 169 170 177
|
lesub1dd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
| 179 |
145 146 152 167 178
|
elfzd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 180 |
149
|
zcnd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑖 ) ∈ ℂ ) |
| 181 |
|
1cnd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℂ ) |
| 182 |
|
2cnd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℂ ) |
| 183 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 184 |
183
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ≠ 0 ) |
| 185 |
180 181 182 184
|
divsubdird |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) = ( ( ( 2 · 𝑖 ) / 2 ) − ( 1 / 2 ) ) ) |
| 186 |
148
|
zcnd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ∈ ℂ ) |
| 187 |
186 182 184
|
divcan3d |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑖 ) / 2 ) = 𝑖 ) |
| 188 |
187
|
oveq1d |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( ( 2 · 𝑖 ) / 2 ) − ( 1 / 2 ) ) = ( 𝑖 − ( 1 / 2 ) ) ) |
| 189 |
185 188
|
eqtrd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) = ( 𝑖 − ( 1 / 2 ) ) ) |
| 190 |
148 150
|
zsubcld |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − 1 ) ∈ ℤ ) |
| 191 |
160 184
|
rereccld |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 1 / 2 ) ∈ ℝ ) |
| 192 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 193 |
192
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 1 / 2 ) < 1 ) |
| 194 |
191 158 159 193
|
ltsub2dd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − 1 ) < ( 𝑖 − ( 1 / 2 ) ) ) |
| 195 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 196 |
|
rpreccl |
⊢ ( 2 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) |
| 197 |
195 196
|
mp1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 1 / 2 ) ∈ ℝ+ ) |
| 198 |
159 197
|
ltsubrpd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − ( 1 / 2 ) ) < 𝑖 ) |
| 199 |
186 181
|
npcand |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 − 1 ) + 1 ) = 𝑖 ) |
| 200 |
198 199
|
breqtrrd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − ( 1 / 2 ) ) < ( ( 𝑖 − 1 ) + 1 ) ) |
| 201 |
|
btwnnz |
⊢ ( ( ( 𝑖 − 1 ) ∈ ℤ ∧ ( 𝑖 − 1 ) < ( 𝑖 − ( 1 / 2 ) ) ∧ ( 𝑖 − ( 1 / 2 ) ) < ( ( 𝑖 − 1 ) + 1 ) ) → ¬ ( 𝑖 − ( 1 / 2 ) ) ∈ ℤ ) |
| 202 |
190 194 200 201
|
syl3anc |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( 𝑖 − ( 1 / 2 ) ) ∈ ℤ ) |
| 203 |
|
nnz |
⊢ ( ( 𝑖 − ( 1 / 2 ) ) ∈ ℕ → ( 𝑖 − ( 1 / 2 ) ) ∈ ℤ ) |
| 204 |
202 203
|
nsyl |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( 𝑖 − ( 1 / 2 ) ) ∈ ℕ ) |
| 205 |
189 204
|
eqneltrd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) |
| 206 |
205
|
intnand |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( ( ( 2 · 𝑖 ) − 1 ) ∈ ℕ ∧ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) ) |
| 207 |
|
oveq1 |
⊢ ( 𝑛 = ( ( 2 · 𝑖 ) − 1 ) → ( 𝑛 / 2 ) = ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ) |
| 208 |
207
|
eleq1d |
⊢ ( 𝑛 = ( ( 2 · 𝑖 ) − 1 ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) ) |
| 209 |
208
|
elrab |
⊢ ( ( ( 2 · 𝑖 ) − 1 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ↔ ( ( ( 2 · 𝑖 ) − 1 ) ∈ ℕ ∧ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) ) |
| 210 |
206 209
|
sylnibr |
⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( ( 2 · 𝑖 ) − 1 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
| 211 |
210
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ¬ ( ( 2 · 𝑖 ) − 1 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
| 212 |
179 211
|
eldifd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 213 |
212
|
fmpttd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) ⟶ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 214 |
|
eqidd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) |
| 215 |
|
oveq2 |
⊢ ( 𝑖 = 𝑥 → ( 2 · 𝑖 ) = ( 2 · 𝑥 ) ) |
| 216 |
215
|
oveq1d |
⊢ ( 𝑖 = 𝑥 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
| 217 |
216
|
adantl |
⊢ ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑖 = 𝑥 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
| 218 |
|
id |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 𝑥 ∈ ( 1 ... 𝑘 ) ) |
| 219 |
|
ovexd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑥 ) − 1 ) ∈ V ) |
| 220 |
214 217 218 219
|
fvmptd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
| 221 |
220
|
eqcomd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) ) |
| 222 |
221
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) ) |
| 223 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) |
| 224 |
|
eqidd |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) |
| 225 |
|
oveq2 |
⊢ ( 𝑖 = 𝑦 → ( 2 · 𝑖 ) = ( 2 · 𝑦 ) ) |
| 226 |
225
|
oveq1d |
⊢ ( 𝑖 = 𝑦 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 227 |
226
|
adantl |
⊢ ( ( 𝑦 ∈ ( 1 ... 𝑘 ) ∧ 𝑖 = 𝑦 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 228 |
|
id |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 𝑦 ∈ ( 1 ... 𝑘 ) ) |
| 229 |
|
ovexd |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑦 ) − 1 ) ∈ V ) |
| 230 |
224 227 228 229
|
fvmptd |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 231 |
230
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 232 |
222 223 231
|
3eqtrd |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 233 |
|
2cnd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℂ ) |
| 234 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 𝑥 ∈ ℤ ) |
| 235 |
234
|
zcnd |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 𝑥 ∈ ℂ ) |
| 236 |
233 235
|
mulcld |
⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑥 ) ∈ ℂ ) |
| 237 |
236
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( 2 · 𝑥 ) ∈ ℂ ) |
| 238 |
|
2cnd |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℂ ) |
| 239 |
|
elfzelz |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 𝑦 ∈ ℤ ) |
| 240 |
239
|
zcnd |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 𝑦 ∈ ℂ ) |
| 241 |
238 240
|
mulcld |
⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑦 ) ∈ ℂ ) |
| 242 |
241
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( 2 · 𝑦 ) ∈ ℂ ) |
| 243 |
|
1cnd |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → 1 ∈ ℂ ) |
| 244 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 245 |
237 242 243 244
|
subcan2d |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) |
| 246 |
235
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 𝑥 ∈ ℂ ) |
| 247 |
240
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 𝑦 ∈ ℂ ) |
| 248 |
|
2cnd |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 2 ∈ ℂ ) |
| 249 |
183
|
a1i |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 2 ≠ 0 ) |
| 250 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) |
| 251 |
246 247 248 249 250
|
mulcanad |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 252 |
245 251
|
syldan |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → 𝑥 = 𝑦 ) |
| 253 |
232 252
|
syldan |
⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 254 |
253
|
adantll |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 255 |
254
|
ex |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ) → ( ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 256 |
255
|
ralrimivva |
⊢ ( 𝑘 ∈ ℕ → ∀ 𝑥 ∈ ( 1 ... 𝑘 ) ∀ 𝑦 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 257 |
|
dff13 |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) ⟶ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) ∀ 𝑦 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 258 |
213 256 257
|
sylanbrc |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 259 |
|
1zzd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 1 ∈ ℤ ) |
| 260 |
33
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝑘 ∈ ℤ ) |
| 261 |
134
|
elfzelzd |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℤ ) |
| 262 |
|
zeo |
⊢ ( 𝑗 ∈ ℤ → ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) |
| 263 |
261 262
|
syl |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) |
| 264 |
263
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) |
| 265 |
|
eldifn |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ¬ 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
| 266 |
134 92
|
syl |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℕ ) |
| 267 |
266
|
adantr |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 𝑗 ∈ ℕ ) |
| 268 |
|
simpr |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → ( 𝑗 / 2 ) ∈ ℤ ) |
| 269 |
267
|
nnred |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 𝑗 ∈ ℝ ) |
| 270 |
39
|
a1i |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 2 ∈ ℝ ) |
| 271 |
267
|
nngt0d |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 0 < 𝑗 ) |
| 272 |
|
2pos |
⊢ 0 < 2 |
| 273 |
272
|
a1i |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 0 < 2 ) |
| 274 |
269 270 271 273
|
divgt0d |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 0 < ( 𝑗 / 2 ) ) |
| 275 |
|
elnnz |
⊢ ( ( 𝑗 / 2 ) ∈ ℕ ↔ ( ( 𝑗 / 2 ) ∈ ℤ ∧ 0 < ( 𝑗 / 2 ) ) ) |
| 276 |
268 274 275
|
sylanbrc |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → ( 𝑗 / 2 ) ∈ ℕ ) |
| 277 |
|
oveq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 / 2 ) = ( 𝑗 / 2 ) ) |
| 278 |
277
|
eleq1d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( 𝑗 / 2 ) ∈ ℕ ) ) |
| 279 |
278
|
elrab |
⊢ ( 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ↔ ( 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) ) |
| 280 |
267 276 279
|
sylanbrc |
⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
| 281 |
265 280
|
mtand |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ¬ ( 𝑗 / 2 ) ∈ ℤ ) |
| 282 |
281
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ¬ ( 𝑗 / 2 ) ∈ ℤ ) |
| 283 |
|
pm2.53 |
⊢ ( ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) → ( ¬ ( 𝑗 / 2 ) ∈ ℤ → ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) |
| 284 |
264 282 283
|
sylc |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) |
| 285 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 286 |
285
|
oveq1i |
⊢ ( ( 1 + 1 ) / 2 ) = ( 2 / 2 ) |
| 287 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
| 288 |
286 287
|
eqtr2i |
⊢ 1 = ( ( 1 + 1 ) / 2 ) |
| 289 |
|
1red |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 1 ∈ ℝ ) |
| 290 |
289 289
|
readdcld |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 1 + 1 ) ∈ ℝ ) |
| 291 |
92
|
nnred |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 𝑗 ∈ ℝ ) |
| 292 |
291 289
|
readdcld |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 𝑗 + 1 ) ∈ ℝ ) |
| 293 |
195
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 2 ∈ ℝ+ ) |
| 294 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 1 ≤ 𝑗 ) |
| 295 |
289 291 289 294
|
leadd1dd |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 1 + 1 ) ≤ ( 𝑗 + 1 ) ) |
| 296 |
290 292 293 295
|
lediv1dd |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 1 + 1 ) / 2 ) ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
| 297 |
288 296
|
eqbrtrid |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 1 ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
| 298 |
134 297
|
syl |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 1 ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
| 299 |
298
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 1 ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
| 300 |
|
elfzel2 |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) |
| 301 |
300
|
zred |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℝ ) |
| 302 |
301 289
|
readdcld |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ∈ ℝ ) |
| 303 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 𝑗 ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
| 304 |
291 301 289 303
|
leadd1dd |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 𝑗 + 1 ) ≤ ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ) |
| 305 |
292 302 293 304
|
lediv1dd |
⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) ) |
| 306 |
305
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) ) |
| 307 |
51
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( 2 · 𝑘 ) ∈ ℂ ) |
| 308 |
|
1cnd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → 1 ∈ ℂ ) |
| 309 |
307 308
|
npcand |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) = ( 2 · 𝑘 ) ) |
| 310 |
309
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) = ( ( 2 · 𝑘 ) / 2 ) ) |
| 311 |
183
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ≠ 0 ) |
| 312 |
45 44 311
|
divcan3d |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) / 2 ) = 𝑘 ) |
| 313 |
312
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 2 · 𝑘 ) / 2 ) = 𝑘 ) |
| 314 |
310 313
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) = 𝑘 ) |
| 315 |
306 314
|
breqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ 𝑘 ) |
| 316 |
134 315
|
sylan2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ 𝑘 ) |
| 317 |
259 260 284 299 316
|
elfzd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 + 1 ) / 2 ) ∈ ( 1 ... 𝑘 ) ) |
| 318 |
266
|
nncnd |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℂ ) |
| 319 |
|
peano2cn |
⊢ ( 𝑗 ∈ ℂ → ( 𝑗 + 1 ) ∈ ℂ ) |
| 320 |
|
2cnd |
⊢ ( 𝑗 ∈ ℂ → 2 ∈ ℂ ) |
| 321 |
183
|
a1i |
⊢ ( 𝑗 ∈ ℂ → 2 ≠ 0 ) |
| 322 |
319 320 321
|
divcan2d |
⊢ ( 𝑗 ∈ ℂ → ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) = ( 𝑗 + 1 ) ) |
| 323 |
322
|
oveq1d |
⊢ ( 𝑗 ∈ ℂ → ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) = ( ( 𝑗 + 1 ) − 1 ) ) |
| 324 |
|
pncan1 |
⊢ ( 𝑗 ∈ ℂ → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
| 325 |
323 324
|
eqtr2d |
⊢ ( 𝑗 ∈ ℂ → 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
| 326 |
318 325
|
syl |
⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
| 327 |
326
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
| 328 |
|
oveq2 |
⊢ ( 𝑚 = ( ( 𝑗 + 1 ) / 2 ) → ( 2 · 𝑚 ) = ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) ) |
| 329 |
328
|
oveq1d |
⊢ ( 𝑚 = ( ( 𝑗 + 1 ) / 2 ) → ( ( 2 · 𝑚 ) − 1 ) = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
| 330 |
329
|
rspceeqv |
⊢ ( ( ( ( 𝑗 + 1 ) / 2 ) ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) |
| 331 |
317 327 330
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) |
| 332 |
|
eqidd |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) |
| 333 |
|
oveq2 |
⊢ ( 𝑖 = 𝑚 → ( 2 · 𝑖 ) = ( 2 · 𝑚 ) ) |
| 334 |
333
|
oveq1d |
⊢ ( 𝑖 = 𝑚 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
| 335 |
334
|
adantl |
⊢ ( ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) ∧ 𝑖 = 𝑚 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
| 336 |
|
simpl |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → 𝑚 ∈ ( 1 ... 𝑘 ) ) |
| 337 |
|
ovexd |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( ( 2 · 𝑚 ) − 1 ) ∈ V ) |
| 338 |
332 335 336 337
|
fvmptd |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
| 339 |
|
id |
⊢ ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) |
| 340 |
339
|
eqcomd |
⊢ ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → ( ( 2 · 𝑚 ) − 1 ) = 𝑗 ) |
| 341 |
340
|
adantl |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( ( 2 · 𝑚 ) − 1 ) = 𝑗 ) |
| 342 |
338 341
|
eqtr2d |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) |
| 343 |
342
|
ex |
⊢ ( 𝑚 ∈ ( 1 ... 𝑘 ) → ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
| 344 |
343
|
adantl |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
| 345 |
344
|
reximdva |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
| 346 |
331 345
|
mpd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) |
| 347 |
346
|
ralrimiva |
⊢ ( 𝑘 ∈ ℕ → ∀ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) |
| 348 |
|
dffo3 |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) ⟶ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ∀ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
| 349 |
213 347 348
|
sylanbrc |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 350 |
|
df-f1o |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1-onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) |
| 351 |
258 349 350
|
sylanbrc |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1-onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 352 |
351
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1-onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 353 |
|
eqidd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) |
| 354 |
|
oveq2 |
⊢ ( 𝑖 = 𝑗 → ( 2 · 𝑖 ) = ( 2 · 𝑗 ) ) |
| 355 |
354
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 356 |
355
|
adantl |
⊢ ( ( 𝑗 ∈ ( 1 ... 𝑘 ) ∧ 𝑖 = 𝑗 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 357 |
|
id |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ( 1 ... 𝑘 ) ) |
| 358 |
|
ovexd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ V ) |
| 359 |
353 356 357 358
|
fvmptd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑗 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 360 |
359
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑗 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 361 |
|
eleq1w |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) |
| 362 |
361
|
anbi2d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) ) |
| 363 |
139
|
eleq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) ) |
| 364 |
362 363
|
imbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) ) ) |
| 365 |
364 136
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) |
| 366 |
143 144 352 360 365
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) = Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 367 |
96 142 366
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ) |
| 368 |
|
ovex |
⊢ ( ( 2 · 𝑘 ) − 1 ) ∈ V |
| 369 |
21
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 2 · 𝑘 ) − 1 ) ∈ V ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
| 370 |
368 369
|
mpan2 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
| 371 |
370
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) = ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 372 |
371
|
eqcomd |
⊢ ( 𝑘 ∈ ℕ → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) = ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
| 373 |
372
|
sumeq1d |
⊢ ( 𝑘 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) ) |
| 374 |
373
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) ) |
| 375 |
367 374
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) ) |
| 376 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℕ ) |
| 377 |
376
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝑗 ∈ ℕ ) |
| 378 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝐹 : ℕ ⟶ ℂ ) |
| 379 |
31
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℤ ) |
| 380 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℤ ) |
| 381 |
379 380
|
zmulcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑗 ) ∈ ℤ ) |
| 382 |
|
1zzd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℤ ) |
| 383 |
381 382
|
zsubcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℤ ) |
| 384 |
|
0red |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 ∈ ℝ ) |
| 385 |
39
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℝ ) |
| 386 |
25 385
|
eqeltrid |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ∈ ℝ ) |
| 387 |
|
1red |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℝ ) |
| 388 |
386 387
|
resubcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 1 ) − 1 ) ∈ ℝ ) |
| 389 |
383
|
zred |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℝ ) |
| 390 |
|
0lt1 |
⊢ 0 < 1 |
| 391 |
153
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 = ( ( 2 · 1 ) − 1 ) ) |
| 392 |
390 391
|
breqtrid |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 < ( ( 2 · 1 ) − 1 ) ) |
| 393 |
381
|
zred |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑗 ) ∈ ℝ ) |
| 394 |
376
|
nnred |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℝ ) |
| 395 |
161
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 ≤ 2 ) |
| 396 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 ≤ 𝑗 ) |
| 397 |
387 394 385 395 396
|
lemul2ad |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ≤ ( 2 · 𝑗 ) ) |
| 398 |
386 393 387 397
|
lesub1dd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 1 ) − 1 ) ≤ ( ( 2 · 𝑗 ) − 1 ) ) |
| 399 |
384 388 389 392 398
|
ltletrd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 < ( ( 2 · 𝑗 ) − 1 ) ) |
| 400 |
|
elnnz |
⊢ ( ( ( 2 · 𝑗 ) − 1 ) ∈ ℕ ↔ ( ( ( 2 · 𝑗 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 401 |
383 399 400
|
sylanbrc |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℕ ) |
| 402 |
401
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℕ ) |
| 403 |
378 402
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) |
| 404 |
403
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) |
| 405 |
60
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 406 |
405
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 407 |
406
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ℕ ∧ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 408 |
377 404 407
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 409 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 410 |
409 11
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 411 |
408 410 404
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ‘ 𝑘 ) ) |
| 412 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 413 |
155
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 1 ) ∈ ℝ ) |
| 414 |
|
1red |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℝ ) |
| 415 |
161
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ 2 ) |
| 416 |
|
nnge1 |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 ) |
| 417 |
414 41 40 415 416
|
lemul2ad |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 1 ) ≤ ( 2 · 𝑘 ) ) |
| 418 |
413 42 414 417
|
lesub1dd |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 1 ) − 1 ) ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
| 419 |
153 418
|
eqbrtrid |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
| 420 |
|
eluz2 |
⊢ ( ( ( 2 · 𝑘 ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ∧ 1 ≤ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 421 |
37 66 419 420
|
syl3anbrc |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 422 |
68 421
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 423 |
422
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 424 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝜑 ) |
| 425 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
| 426 |
371
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) = ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 427 |
425 426
|
eleqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 428 |
427
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 429 |
424 428 94
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 430 |
412 423 429
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
| 431 |
375 411 430
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
| 432 |
4 5 9 10 11 12 14 17 3 30 74 76 431
|
climsuse |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ) |
| 433 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 434 |
11 12 433 15
|
isum |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 435 |
|
climrel |
⊢ Rel ⇝ |
| 436 |
435
|
releldmi |
⊢ ( seq 1 ( + , 𝐹 ) ⇝ 𝐵 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 437 |
3 436
|
syl |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 438 |
|
climdm |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 439 |
437 438
|
sylib |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 440 |
|
climuni |
⊢ ( ( seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ∧ seq 1 ( + , 𝐹 ) ⇝ 𝐵 ) → ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) = 𝐵 ) |
| 441 |
439 3 440
|
syl2anc |
⊢ ( 𝜑 → ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) = 𝐵 ) |
| 442 |
435
|
a1i |
⊢ ( 𝜑 → Rel ⇝ ) |
| 443 |
|
releldm |
⊢ ( ( Rel ⇝ ∧ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ dom ⇝ ) |
| 444 |
442 432 443
|
syl2anc |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ dom ⇝ ) |
| 445 |
|
climdm |
⊢ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) ) |
| 446 |
444 445
|
sylib |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) ) |
| 447 |
406
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) |
| 448 |
447
|
seqeq3d |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) = seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) |
| 449 |
448
|
fveq2d |
⊢ ( 𝜑 → ( ⇝ ‘ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
| 450 |
446 449
|
breqtrd |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
| 451 |
|
climuni |
⊢ ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ∧ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) → 𝐵 = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
| 452 |
432 450 451
|
syl2anc |
⊢ ( 𝜑 → 𝐵 = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
| 453 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) |
| 454 |
|
eqcom |
⊢ ( 𝑘 = 𝑗 ↔ 𝑗 = 𝑘 ) |
| 455 |
|
eqcom |
⊢ ( ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ↔ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 456 |
405 454 455
|
3imtr3i |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 457 |
456
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 = 𝑘 ) → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 458 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℕ ⟶ ℂ ) |
| 459 |
421 11
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ ) |
| 460 |
459
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ ) |
| 461 |
458 460
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℂ ) |
| 462 |
453 457 409 461
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 463 |
11 12 462 461
|
isum |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
| 464 |
452 463
|
eqtr4d |
⊢ ( 𝜑 → 𝐵 = Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 465 |
434 441 464
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 466 |
432 465
|
jca |
⊢ ( 𝜑 → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ∧ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |