Metamath Proof Explorer


Theorem amgmlemALT

Description: Alternate proof of amgmlem using amgmwlem . (Contributed by Kunhao Zheng, 20-Jun-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses amgmlemALT.0 M=mulGrpfld
amgmlemALT.1 φAFin
amgmlemALT.2 φA
amgmlemALT.3 φF:A+
Assertion amgmlemALT φMF1AfldFA

Proof

Step Hyp Ref Expression
1 amgmlemALT.0 M=mulGrpfld
2 amgmlemALT.1 φAFin
3 amgmlemALT.2 φA
4 amgmlemALT.3 φF:A+
5 hashnncl AFinAA
6 2 5 syl φAA
7 3 6 mpbird φA
8 7 nnrpd φA+
9 8 rpreccld φ1A+
10 fconst6g 1A+A×1A:A+
11 9 10 syl φA×1A:A+
12 fconstmpt A×1A=kA1A
13 12 a1i φA×1A=kA1A
14 13 oveq2d φfldA×1A=fldkA1A
15 7 nnrecred φ1A
16 15 recnd φ1A
17 simpl AFin1AAFin
18 simplr AFin1AkA1A
19 17 18 gsumfsum AFin1AfldkA1A=kA1A
20 2 16 19 syl2anc φfldkA1A=kA1A
21 fsumconst AFin1AkA1A=A1A
22 2 16 21 syl2anc φkA1A=A1A
23 7 nncnd φA
24 7 nnne0d φA0
25 23 24 recidd φA1A=1
26 22 25 eqtrd φkA1A=1
27 14 20 26 3eqtrd φfldA×1A=1
28 1 2 3 4 11 27 amgmwlem φMFcfA×1AfldF×fA×1A
29 rpssre +
30 ax-resscn
31 29 30 sstri +
32 eqid M𝑠+=M𝑠+
33 cnfldbas =Basefld
34 1 33 mgpbas =BaseM
35 32 34 ressbas2 ++=BaseM𝑠+
36 31 35 ax-mp +=BaseM𝑠+
37 cnfld1 1=1fld
38 1 37 ringidval 1=0M
39 1 oveq1i M𝑠0=mulGrpfld𝑠0
40 39 rpmsubg +SubGrpM𝑠0
41 subgsubm +SubGrpM𝑠0+SubMndM𝑠0
42 40 41 ax-mp +SubMndM𝑠0
43 cnring fldRing
44 cnfld0 0=0fld
45 cndrng fldDivRing
46 33 44 45 drngui 0=Unitfld
47 46 1 unitsubm fldRing0SubMndM
48 43 47 ax-mp 0SubMndM
49 eqid M𝑠0=M𝑠0
50 49 subsubm 0SubMndM+SubMndM𝑠0+SubMndM+0
51 48 50 ax-mp +SubMndM𝑠0+SubMndM+0
52 42 51 mpbi +SubMndM+0
53 52 simpli +SubMndM
54 eqid 0M=0M
55 32 54 subm0 +SubMndM0M=0M𝑠+
56 53 55 ax-mp 0M=0M𝑠+
57 38 56 eqtri 1=0M𝑠+
58 cncrng fldCRing
59 1 crngmgp fldCRingMCMnd
60 58 59 ax-mp MCMnd
61 32 submmnd +SubMndMM𝑠+Mnd
62 53 61 mp1i φM𝑠+Mnd
63 32 subcmn MCMndM𝑠+MndM𝑠+CMnd
64 60 62 63 sylancr φM𝑠+CMnd
65 reex V
66 65 29 ssexi +V
67 cnfldmul ×=fld
68 1 67 mgpplusg ×=+M
69 32 68 ressplusg +V×=+M𝑠+
70 66 69 ax-mp ×=+M𝑠+
71 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
72 71 rpmsubg +SubGrpmulGrpfld𝑠0
73 1 oveq1i M𝑠+=mulGrpfld𝑠+
74 cnex V
75 difss 0
76 74 75 ssexi 0V
77 rpcndif0 w+w0
78 77 ssriv +0
79 ressabs 0V+0mulGrpfld𝑠0𝑠+=mulGrpfld𝑠+
80 76 78 79 mp2an mulGrpfld𝑠0𝑠+=mulGrpfld𝑠+
81 73 80 eqtr4i M𝑠+=mulGrpfld𝑠0𝑠+
82 81 subggrp +SubGrpmulGrpfld𝑠0M𝑠+Grp
83 72 82 mp1i φM𝑠+Grp
84 simpr φk+k+
85 15 adantr φk+1A
86 84 85 rpcxpcld φk+k1A+
87 eqid k+k1A=k+k1A
88 86 87 fmptd φk+k1A:++
89 simprl φx+y+x+
90 89 rprege0d φx+y+x0x
91 simprr φx+y+y+
92 91 rprege0d φx+y+y0y
93 16 adantr φx+y+1A
94 mulcxp x0xy0y1Axy1A=x1Ay1A
95 90 92 93 94 syl3anc φx+y+xy1A=x1Ay1A
96 rpmulcl x+y+xy+
97 96 adantl φx+y+xy+
98 oveq1 k=xyk1A=xy1A
99 ovex k1AV
100 98 87 99 fvmpt3i xy+k+k1Axy=xy1A
101 97 100 syl φx+y+k+k1Axy=xy1A
102 oveq1 k=xk1A=x1A
103 102 87 99 fvmpt3i x+k+k1Ax=x1A
104 89 103 syl φx+y+k+k1Ax=x1A
105 oveq1 k=yk1A=y1A
106 105 87 99 fvmpt3i y+k+k1Ay=y1A
107 91 106 syl φx+y+k+k1Ay=y1A
108 104 107 oveq12d φx+y+k+k1Axk+k1Ay=x1Ay1A
109 95 101 108 3eqtr4d φx+y+k+k1Axy=k+k1Axk+k1Ay
110 36 36 70 70 83 83 88 109 isghmd φk+k1AM𝑠+GrpHomM𝑠+
111 ghmmhm k+k1AM𝑠+GrpHomM𝑠+k+k1AM𝑠+MndHomM𝑠+
112 110 111 syl φk+k1AM𝑠+MndHomM𝑠+
113 1red φ1
114 4 2 113 fdmfifsupp φfinSupp1F
115 36 57 64 62 2 112 4 114 gsummhm φM𝑠+k+k1AF=k+k1AM𝑠+F
116 53 a1i φ+SubMndM
117 4 ffvelcdmda φkAFk+
118 15 adantr φkA1A
119 117 118 rpcxpcld φkAFk1A+
120 eqid kAFk1A=kAFk1A
121 119 120 fmptd φkAFk1A:A+
122 2 116 121 32 gsumsubm φMkAFk1A=M𝑠+kAFk1A
123 9 adantr φkA1A+
124 4 feqmptd φF=kAFk
125 2 117 123 124 13 offval2 φFcfA×1A=kAFk1A
126 125 oveq2d φMFcfA×1A=MkAFk1A
127 102 cbvmptv k+k1A=x+x1A
128 127 a1i φk+k1A=x+x1A
129 oveq1 x=Fkx1A=Fk1A
130 117 124 128 129 fmptco φk+k1AF=kAFk1A
131 130 oveq2d φM𝑠+k+k1AF=M𝑠+kAFk1A
132 122 126 131 3eqtr4rd φM𝑠+k+k1AF=MFcfA×1A
133 36 57 64 2 4 114 gsumcl φM𝑠+F+
134 oveq1 k=M𝑠+Fk1A=M𝑠+F1A
135 134 87 99 fvmpt3i M𝑠+F+k+k1AM𝑠+F=M𝑠+F1A
136 133 135 syl φk+k1AM𝑠+F=M𝑠+F1A
137 2 116 4 32 gsumsubm φMF=M𝑠+F
138 137 oveq1d φMF1A=M𝑠+F1A
139 136 138 eqtr4d φk+k1AM𝑠+F=MF1A
140 115 132 139 3eqtr3d φMFcfA×1A=MF1A
141 117 rpcnd φkAFk
142 2 141 fsumcl φkAFk
143 142 23 24 divrecd φkAFkA=kAFk1A
144 2 16 141 fsummulc1 φkAFk1A=kAFk1A
145 143 144 eqtr2d φkAFk1A=kAFkA
146 16 adantr φkA1A
147 141 146 mulcld φkAFk1A
148 2 147 gsumfsum φfldkAFk1A=kAFk1A
149 2 141 gsumfsum φfldkAFk=kAFk
150 149 oveq1d φfldkAFkA=kAFkA
151 145 148 150 3eqtr4d φfldkAFk1A=fldkAFkA
152 2 117 146 124 13 offval2 φF×fA×1A=kAFk1A
153 152 oveq2d φfldF×fA×1A=fldkAFk1A
154 124 oveq2d φfldF=fldkAFk
155 154 oveq1d φfldFA=fldkAFkA
156 151 153 155 3eqtr4d φfldF×fA×1A=fldFA
157 28 140 156 3brtr3d φMF1AfldFA