| Step |
Hyp |
Ref |
Expression |
| 1 |
|
amgmlemALT.0 |
|
| 2 |
|
amgmlemALT.1 |
|
| 3 |
|
amgmlemALT.2 |
|
| 4 |
|
amgmlemALT.3 |
|
| 5 |
|
hashnncl |
|
| 6 |
2 5
|
syl |
|
| 7 |
3 6
|
mpbird |
|
| 8 |
7
|
nnrpd |
|
| 9 |
8
|
rpreccld |
|
| 10 |
|
fconst6g |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
fconstmpt |
|
| 13 |
12
|
a1i |
|
| 14 |
13
|
oveq2d |
|
| 15 |
7
|
nnrecred |
|
| 16 |
15
|
recnd |
|
| 17 |
|
simpl |
|
| 18 |
|
simplr |
|
| 19 |
17 18
|
gsumfsum |
|
| 20 |
2 16 19
|
syl2anc |
|
| 21 |
|
fsumconst |
|
| 22 |
2 16 21
|
syl2anc |
|
| 23 |
7
|
nncnd |
|
| 24 |
7
|
nnne0d |
|
| 25 |
23 24
|
recidd |
|
| 26 |
22 25
|
eqtrd |
|
| 27 |
14 20 26
|
3eqtrd |
|
| 28 |
1 2 3 4 11 27
|
amgmwlem |
|
| 29 |
|
rpssre |
|
| 30 |
|
ax-resscn |
|
| 31 |
29 30
|
sstri |
|
| 32 |
|
eqid |
|
| 33 |
|
cnfldbas |
|
| 34 |
1 33
|
mgpbas |
|
| 35 |
32 34
|
ressbas2 |
|
| 36 |
31 35
|
ax-mp |
|
| 37 |
|
cnfld1 |
|
| 38 |
1 37
|
ringidval |
|
| 39 |
1
|
oveq1i |
|
| 40 |
39
|
rpmsubg |
|
| 41 |
|
subgsubm |
|
| 42 |
40 41
|
ax-mp |
|
| 43 |
|
cnring |
|
| 44 |
|
cnfld0 |
|
| 45 |
|
cndrng |
|
| 46 |
33 44 45
|
drngui |
|
| 47 |
46 1
|
unitsubm |
|
| 48 |
43 47
|
ax-mp |
|
| 49 |
|
eqid |
|
| 50 |
49
|
subsubm |
|
| 51 |
48 50
|
ax-mp |
|
| 52 |
42 51
|
mpbi |
|
| 53 |
52
|
simpli |
|
| 54 |
|
eqid |
|
| 55 |
32 54
|
subm0 |
|
| 56 |
53 55
|
ax-mp |
|
| 57 |
38 56
|
eqtri |
|
| 58 |
|
cncrng |
|
| 59 |
1
|
crngmgp |
|
| 60 |
58 59
|
ax-mp |
|
| 61 |
32
|
submmnd |
|
| 62 |
53 61
|
mp1i |
|
| 63 |
32
|
subcmn |
|
| 64 |
60 62 63
|
sylancr |
|
| 65 |
|
reex |
|
| 66 |
65 29
|
ssexi |
|
| 67 |
|
cnfldmul |
|
| 68 |
1 67
|
mgpplusg |
|
| 69 |
32 68
|
ressplusg |
|
| 70 |
66 69
|
ax-mp |
|
| 71 |
|
eqid |
|
| 72 |
71
|
rpmsubg |
|
| 73 |
1
|
oveq1i |
|
| 74 |
|
cnex |
|
| 75 |
|
difss |
|
| 76 |
74 75
|
ssexi |
|
| 77 |
|
rpcndif0 |
|
| 78 |
77
|
ssriv |
|
| 79 |
|
ressabs |
|
| 80 |
76 78 79
|
mp2an |
|
| 81 |
73 80
|
eqtr4i |
|
| 82 |
81
|
subggrp |
|
| 83 |
72 82
|
mp1i |
|
| 84 |
|
simpr |
|
| 85 |
15
|
adantr |
|
| 86 |
84 85
|
rpcxpcld |
|
| 87 |
|
eqid |
|
| 88 |
86 87
|
fmptd |
|
| 89 |
|
simprl |
|
| 90 |
89
|
rprege0d |
|
| 91 |
|
simprr |
|
| 92 |
91
|
rprege0d |
|
| 93 |
16
|
adantr |
|
| 94 |
|
mulcxp |
|
| 95 |
90 92 93 94
|
syl3anc |
|
| 96 |
|
rpmulcl |
|
| 97 |
96
|
adantl |
|
| 98 |
|
oveq1 |
|
| 99 |
|
ovex |
|
| 100 |
98 87 99
|
fvmpt3i |
|
| 101 |
97 100
|
syl |
|
| 102 |
|
oveq1 |
|
| 103 |
102 87 99
|
fvmpt3i |
|
| 104 |
89 103
|
syl |
|
| 105 |
|
oveq1 |
|
| 106 |
105 87 99
|
fvmpt3i |
|
| 107 |
91 106
|
syl |
|
| 108 |
104 107
|
oveq12d |
|
| 109 |
95 101 108
|
3eqtr4d |
|
| 110 |
36 36 70 70 83 83 88 109
|
isghmd |
|
| 111 |
|
ghmmhm |
|
| 112 |
110 111
|
syl |
|
| 113 |
|
1red |
|
| 114 |
4 2 113
|
fdmfifsupp |
|
| 115 |
36 57 64 62 2 112 4 114
|
gsummhm |
|
| 116 |
53
|
a1i |
|
| 117 |
4
|
ffvelcdmda |
|
| 118 |
15
|
adantr |
|
| 119 |
117 118
|
rpcxpcld |
|
| 120 |
|
eqid |
|
| 121 |
119 120
|
fmptd |
|
| 122 |
2 116 121 32
|
gsumsubm |
|
| 123 |
9
|
adantr |
|
| 124 |
4
|
feqmptd |
|
| 125 |
2 117 123 124 13
|
offval2 |
|
| 126 |
125
|
oveq2d |
|
| 127 |
102
|
cbvmptv |
|
| 128 |
127
|
a1i |
|
| 129 |
|
oveq1 |
|
| 130 |
117 124 128 129
|
fmptco |
|
| 131 |
130
|
oveq2d |
|
| 132 |
122 126 131
|
3eqtr4rd |
|
| 133 |
36 57 64 2 4 114
|
gsumcl |
|
| 134 |
|
oveq1 |
|
| 135 |
134 87 99
|
fvmpt3i |
|
| 136 |
133 135
|
syl |
|
| 137 |
2 116 4 32
|
gsumsubm |
|
| 138 |
137
|
oveq1d |
|
| 139 |
136 138
|
eqtr4d |
|
| 140 |
115 132 139
|
3eqtr3d |
|
| 141 |
117
|
rpcnd |
|
| 142 |
2 141
|
fsumcl |
|
| 143 |
142 23 24
|
divrecd |
|
| 144 |
2 16 141
|
fsummulc1 |
|
| 145 |
143 144
|
eqtr2d |
|
| 146 |
16
|
adantr |
|
| 147 |
141 146
|
mulcld |
|
| 148 |
2 147
|
gsumfsum |
|
| 149 |
2 141
|
gsumfsum |
|
| 150 |
149
|
oveq1d |
|
| 151 |
145 148 150
|
3eqtr4d |
|
| 152 |
2 117 146 124 13
|
offval2 |
|
| 153 |
152
|
oveq2d |
|
| 154 |
124
|
oveq2d |
|
| 155 |
154
|
oveq1d |
|
| 156 |
151 153 155
|
3eqtr4d |
|
| 157 |
28 140 156
|
3brtr3d |
|