Metamath Proof Explorer


Theorem ballotlemfc0

Description: F takes value 0 between negative and positive values. (Contributed by Thierry Arnoux, 24-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotlemfp1.c φCO
ballotlemfp1.j φJ
ballotlemfc0.3 φi1JFCi0
ballotlemfc0.4 φ0<FCJ
Assertion ballotlemfc0 φk1JFCk=0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotlemfp1.c φCO
7 ballotlemfp1.j φJ
8 ballotlemfc0.3 φi1JFCi0
9 ballotlemfc0.4 φ0<FCJ
10 fveq2 i=kFCi=FCk
11 10 breq1d i=kFCi0FCk0
12 11 elrab ki1J|FCi0k1JFCk0
13 12 anbi1i ki1J|FCi0ji1J|FCi0jkk1JFCk0ji1J|FCi0jk
14 simprlr φk1JFCk0ji1J|FCi0jkFCk0
15 simprl φk1JFCk0k1J
16 15 adantrr φk1JFCk0ji1J|FCi0jkk1J
17 fzssuz 1J1
18 uzssz 1
19 17 18 sstri 1J
20 zssre
21 19 20 sstri 1J
22 21 sseli k1Jk
23 22 ltp1d k1Jk<k+1
24 1red k1J1
25 22 24 readdcld k1Jk+1
26 22 25 ltnled k1Jk<k+1¬k+1k
27 23 26 mpbid k1J¬k+1k
28 16 27 syl φk1JFCk0ji1J|FCi0jk¬k+1k
29 simprr φk1JFCk0ji1J|FCi0jkji1J|FCi0jk
30 9 adantr φk=J0<FCJ
31 simpr φk=Jk=J
32 31 fveq2d φk=JFCk=FCJ
33 32 breq2d φk=J0<FCk0<FCJ
34 elnnuz JJ1
35 7 34 sylib φJ1
36 eluzfz2 J1J1J
37 35 36 syl φJ1J
38 eleq1 k=Jk1JJ1J
39 37 38 syl5ibrcom φk=Jk1J
40 39 anc2li φk=Jφk1J
41 1eluzge0 10
42 fzss1 101J0J
43 42 sseld 10k1Jk0J
44 41 43 ax-mp k1Jk0J
45 0red φk0J0
46 6 adantr φk0JCO
47 elfzelz k0Jk
48 47 adantl φk0Jk
49 1 2 3 4 5 46 48 ballotlemfelz φk0JFCk
50 49 zred φk0JFCk
51 45 50 ltnled φk0J0<FCk¬FCk0
52 44 51 sylan2 φk1J0<FCk¬FCk0
53 40 52 syl6 φk=J0<FCk¬FCk0
54 53 imp φk=J0<FCk¬FCk0
55 33 54 bitr3d φk=J0<FCJ¬FCk0
56 30 55 mpbid φk=J¬FCk0
57 56 ex φk=J¬FCk0
58 57 con2d φFCk0¬k=J
59 nn1m1nn JJ=1J1
60 7 59 syl φJ=1J1
61 8 adantr φJ=1i1JFCi0
62 oveq1 J=1JJ=1J
63 62 adantl φJ=1JJ=1J
64 7 nnzd φJ
65 fzsn JJJ=J
66 64 65 syl φJJ=J
67 66 adantr φJ=1JJ=J
68 63 67 eqtr3d φJ=11J=J
69 68 rexeqdv φJ=1i1JFCi0iJFCi0
70 61 69 mpbid φJ=1iJFCi0
71 fveq2 i=JFCi=FCJ
72 71 breq1d i=JFCi0FCJ0
73 72 rexsng JiJFCi0FCJ0
74 7 73 syl φiJFCi0FCJ0
75 74 adantr φJ=1iJFCi0FCJ0
76 70 75 mpbid φJ=1FCJ0
77 9 adantr φJ=10<FCJ
78 0red φ0
79 1 2 3 4 5 6 64 ballotlemfelz φFCJ
80 79 zred φFCJ
81 78 80 ltnled φ0<FCJ¬FCJ0
82 81 adantr φJ=10<FCJ¬FCJ0
83 77 82 mpbid φJ=1¬FCJ0
84 76 83 pm2.65da φ¬J=1
85 biortn ¬J=1J1¬¬J=1J1
86 84 85 syl φJ1¬¬J=1J1
87 notnotb J=1¬¬J=1
88 87 orbi1i J=1J1¬¬J=1J1
89 86 88 bitr4di φJ1J=1J1
90 60 89 mpbird φJ1
91 elnnuz J1J11
92 90 91 sylib φJ11
93 elfzp1 J11k1J-1+1k1J1k=J-1+1
94 92 93 syl φk1J-1+1k1J1k=J-1+1
95 7 nncnd φJ
96 1cnd φ1
97 95 96 npcand φJ-1+1=J
98 97 oveq2d φ1J-1+1=1J
99 98 eleq2d φk1J-1+1k1J
100 97 eqeq2d φk=J-1+1k=J
101 100 orbi2d φk1J1k=J-1+1k1J1k=J
102 94 99 101 3bitr3d φk1Jk1J1k=J
103 orcom k1J1k=Jk=Jk1J1
104 102 103 bitrdi φk1Jk=Jk1J1
105 104 biimpd φk1Jk=Jk1J1
106 pm5.6 k1J¬k=Jk1J1k1Jk=Jk1J1
107 105 106 sylibr φk1J¬k=Jk1J1
108 90 nnzd φJ1
109 1z 1
110 108 109 jctil φ1J1
111 elfzelz k1J1k
112 111 109 jctir k1J1k1
113 fzaddel 1J1k1k1J1k+11+1J-1+1
114 110 112 113 syl2an φk1J1k1J1k+11+1J-1+1
115 114 biimp3a φk1J1k1J1k+11+1J-1+1
116 115 3anidm23 φk1J1k+11+1J-1+1
117 1p1e2 1+1=2
118 117 a1i φ1+1=2
119 118 97 oveq12d φ1+1J-1+1=2J
120 119 eleq2d φk+11+1J-1+1k+12J
121 2eluzge1 21
122 fzss1 212J1J
123 121 122 ax-mp 2J1J
124 123 sseli k+12Jk+11J
125 120 124 syl6bi φk+11+1J-1+1k+11J
126 125 adantr φk1J1k+11+1J-1+1k+11J
127 116 126 mpd φk1J1k+11J
128 127 ex φk1J1k+11J
129 107 128 syld φk1J¬k=Jk+11J
130 58 129 sylan2d φk1JFCk0k+11J
131 130 imp φk1JFCk0k+11J
132 131 adantrr φk1JFCk0ji1J|FCi0jkk+11J
133 fveq2 i=k+1FCi=FCk+1
134 133 breq1d i=k+1FCi0FCk+10
135 134 elrab k+1i1J|FCi0k+11JFCk+10
136 breq1 j=k+1jkk+1k
137 136 rspccva ji1J|FCi0jkk+1i1J|FCi0k+1k
138 135 137 sylan2br ji1J|FCi0jkk+11JFCk+10k+1k
139 138 expr ji1J|FCi0jkk+11JFCk+10k+1k
140 139 con3d ji1J|FCi0jkk+11J¬k+1k¬FCk+10
141 29 132 140 syl2anc φk1JFCk0ji1J|FCi0jk¬k+1k¬FCk+10
142 28 141 mpd φk1JFCk0ji1J|FCi0jk¬FCk+10
143 simplrr φk1JFCk0ji1J|FCi0jk¬k+1Cji1J|FCi0jk
144 132 adantr φk1JFCk0ji1J|FCi0jk¬k+1Ck+11J
145 simpll φk1JFCk0¬k+1Cφ
146 131 adantr φk1JFCk0¬k+1Ck+11J
147 42 sseld 10k+11Jk+10J
148 41 146 147 mpsyl φk1JFCk0¬k+1Ck+10J
149 6 adantr φk+10JCO
150 elfzelz k+10Jk+1
151 150 adantl φk+10Jk+1
152 1 2 3 4 5 149 151 ballotlemfelz φk+10JFCk+1
153 152 zred φk+10JFCk+1
154 145 148 153 syl2anc φk1JFCk0¬k+1CFCk+1
155 0red φk1JFCk0¬k+1C0
156 simplrr φk1JFCk0¬k+1CFCk0
157 15 adantr φk1JFCk0¬k+1Ck1J
158 157 44 syl φk1JFCk0¬k+1Ck0J
159 130 imdistani φk1JFCk0φk+11J
160 6 adantr φk+11JCO
161 elfznn k+11Jk+1
162 161 adantl φk+11Jk+1
163 1 2 3 4 5 160 162 ballotlemfp1 φk+11J¬k+1CFCk+1=FCk+1-11k+1CFCk+1=FCk+1-1+1
164 163 simpld φk+11J¬k+1CFCk+1=FCk+1-11
165 164 imp φk+11J¬k+1CFCk+1=FCk+1-11
166 159 165 sylan φk1JFCk0¬k+1CFCk+1=FCk+1-11
167 elfzelz k1Jk
168 167 zcnd k1Jk
169 1cnd k1J1
170 168 169 pncand k1Jk+1-1=k
171 170 fveq2d k1JFCk+1-1=FCk
172 171 oveq1d k1JFCk+1-11=FCk1
173 172 eqeq2d k1JFCk+1=FCk+1-11FCk+1=FCk1
174 157 173 syl φk1JFCk0¬k+1CFCk+1=FCk+1-11FCk+1=FCk1
175 166 174 mpbid φk1JFCk0¬k+1CFCk+1=FCk1
176 0z 0
177 zlem1lt FCk0FCk0FCk1<0
178 49 176 177 sylancl φk0JFCk0FCk1<0
179 178 adantr φk0JFCk+1=FCk1FCk0FCk1<0
180 breq1 FCk+1=FCk1FCk+1<0FCk1<0
181 180 adantl φk0JFCk+1=FCk1FCk+1<0FCk1<0
182 179 181 bitr4d φk0JFCk+1=FCk1FCk0FCk+1<0
183 145 158 175 182 syl21anc φk1JFCk0¬k+1CFCk0FCk+1<0
184 156 183 mpbid φk1JFCk0¬k+1CFCk+1<0
185 154 155 184 ltled φk1JFCk0¬k+1CFCk+10
186 185 adantlrr φk1JFCk0ji1J|FCi0jk¬k+1CFCk+10
187 143 144 186 138 syl12anc φk1JFCk0ji1J|FCi0jk¬k+1Ck+1k
188 28 adantr φk1JFCk0ji1J|FCi0jk¬k+1C¬k+1k
189 187 188 condan φk1JFCk0ji1J|FCi0jkk+1C
190 163 simprd φk+11Jk+1CFCk+1=FCk+1-1+1
191 190 imp φk+11Jk+1CFCk+1=FCk+1-1+1
192 159 191 sylan φk1JFCk0k+1CFCk+1=FCk+1-1+1
193 15 adantr φk1JFCk0k+1Ck1J
194 171 oveq1d k1JFCk+1-1+1=FCk+1
195 194 eqeq2d k1JFCk+1=FCk+1-1+1FCk+1=FCk+1
196 193 195 syl φk1JFCk0k+1CFCk+1=FCk+1-1+1FCk+1=FCk+1
197 192 196 mpbid φk1JFCk0k+1CFCk+1=FCk+1
198 197 adantlrr φk1JFCk0ji1J|FCi0jkk+1CFCk+1=FCk+1
199 189 198 mpdan φk1JFCk0ji1J|FCi0jkFCk+1=FCk+1
200 breq1 FCk+1=FCk+1FCk+10FCk+10
201 200 notbid FCk+1=FCk+1¬FCk+10¬FCk+10
202 199 201 syl φk1JFCk0ji1J|FCi0jk¬FCk+10¬FCk+10
203 142 202 mpbid φk1JFCk0ji1J|FCi0jk¬FCk+10
204 15 44 syl φk1JFCk0k0J
205 204 49 syldan φk1JFCk0FCk
206 205 adantrr φk1JFCk0ji1J|FCi0jkFCk
207 zleltp1 0FCk0FCk0<FCk+1
208 176 207 mpan FCk0FCk0<FCk+1
209 0red FCk0
210 zre FCkFCk
211 1red FCk1
212 210 211 readdcld FCkFCk+1
213 209 212 ltnled FCk0<FCk+1¬FCk+10
214 208 213 bitrd FCk0FCk¬FCk+10
215 206 214 syl φk1JFCk0ji1J|FCi0jk0FCk¬FCk+10
216 203 215 mpbird φk1JFCk0ji1J|FCi0jk0FCk
217 206 zred φk1JFCk0ji1J|FCi0jkFCk
218 0red φk1JFCk0ji1J|FCi0jk0
219 217 218 letri3d φk1JFCk0ji1J|FCi0jkFCk=0FCk00FCk
220 14 216 219 mpbir2and φk1JFCk0ji1J|FCi0jkFCk=0
221 13 220 sylan2b φki1J|FCi0ji1J|FCi0jkFCk=0
222 ssrab2 i1J|FCi01J
223 222 21 sstri i1J|FCi0
224 223 a1i φi1J|FCi0
225 fzfi 1JFin
226 ssfi 1JFini1J|FCi01Ji1J|FCi0Fin
227 225 222 226 mp2an i1J|FCi0Fin
228 227 a1i φi1J|FCi0Fin
229 rabn0 i1J|FCi0i1JFCi0
230 8 229 sylibr φi1J|FCi0
231 fimaxre i1J|FCi0i1J|FCi0Fini1J|FCi0ki1J|FCi0ji1J|FCi0jk
232 224 228 230 231 syl3anc φki1J|FCi0ji1J|FCi0jk
233 221 232 reximddv φki1J|FCi0FCk=0
234 elrabi ki1J|FCi0k1J
235 234 anim1i ki1J|FCi0FCk=0k1JFCk=0
236 235 reximi2 ki1J|FCi0FCk=0k1JFCk=0
237 233 236 syl φk1JFCk=0