Metamath Proof Explorer


Theorem bddiblnc

Description: Choice-free proof of bddibl . (Contributed by Brendan Leahy, 2-Nov-2017) (Revised by Brendan Leahy, 6-Nov-2017)

Ref Expression
Assertion bddiblnc FMblFnvoldomFxydomFFyxF𝐿1

Proof

Step Hyp Ref Expression
1 mbff FMblFnF:domF
2 1 feqmptd FMblFnF=zdomFFz
3 2 3ad2ant1 FMblFnvoldomFxydomFFyxF=zdomFFz
4 rzal domF=zdomFFz=0
5 mpteq12 domF=zdomFFz=0zdomFFz=z0
6 4 5 mpdan domF=zdomFFz=z0
7 fconstmpt ×0=z0
8 0mbl domvol
9 ibl0 domvol×0𝐿1
10 8 9 ax-mp ×0𝐿1
11 7 10 eqeltrri z0𝐿1
12 6 11 eqeltrdi domF=zdomFFz𝐿1
13 12 adantl FMblFnvoldomFxydomFFyxdomF=zdomFFz𝐿1
14 r19.2z domFydomFFyxydomFFyx
15 14 anim1i domFydomFFyxxydomFFyxx
16 15 an31s xydomFFyxdomFydomFFyxx
17 1 ad2antrr FMblFnvoldomFxF:domF
18 17 ffvelcdmda FMblFnvoldomFxydomFFy
19 18 absge0d FMblFnvoldomFxydomF0Fy
20 0red FMblFnvoldomFxydomF0
21 18 abscld FMblFnvoldomFxydomFFy
22 simplr FMblFnvoldomFxydomFx
23 letr 0Fyx0FyFyx0x
24 20 21 22 23 syl3anc FMblFnvoldomFxydomF0FyFyx0x
25 19 24 mpand FMblFnvoldomFxydomFFyx0x
26 25 rexlimdva FMblFnvoldomFxydomFFyx0x
27 26 ex FMblFnvoldomFxydomFFyx0x
28 27 com23 FMblFnvoldomFydomFFyxx0x
29 28 imp32 FMblFnvoldomFydomFFyxx0x
30 16 29 sylan2 FMblFnvoldomFxydomFFyxdomF0x
31 30 anassrs FMblFnvoldomFxydomFFyxdomF0x
32 an32 xydomFFyx0xx0xydomFFyx
33 id FMblFnFMblFn
34 2 33 eqeltrrd FMblFnzdomFFzMblFn
35 34 ad2antrr FMblFnvoldomFx0xydomFFyxzdomFFzMblFn
36 1 ad3antrrr FMblFnvoldomFx0xydomFFyxzF:domF
37 36 ffvelcdmda FMblFnvoldomFx0xydomFFyxzzdomFFz
38 37 recld FMblFnvoldomFx0xydomFFyxzzdomFFz
39 38 rexrd FMblFnvoldomFx0xydomFFyxzzdomFFz*
40 39 adantrr FMblFnvoldomFx0xydomFFyxzzdomF0FzFz*
41 simprr FMblFnvoldomFx0xydomFFyxzzdomF0Fz0Fz
42 elxrge0 Fz0+∞Fz*0Fz
43 40 41 42 sylanbrc FMblFnvoldomFx0xydomFFyxzzdomF0FzFz0+∞
44 0e0iccpnf 00+∞
45 44 a1i FMblFnvoldomFx0xydomFFyxz¬zdomF0Fz00+∞
46 43 45 ifclda FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz00+∞
47 46 fmpttd FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0:0+∞
48 mbfdm FMblFndomFdomvol
49 48 ad2antrr FMblFnvoldomFx0xydomFFyxdomFdomvol
50 simplr FMblFnvoldomFx0xydomFFyxvoldomF
51 elrege0 x0+∞x0x
52 51 biimpri x0xx0+∞
53 52 ad2antrl FMblFnvoldomFx0xydomFFyxx0+∞
54 itg2const domFdomvolvoldomFx0+∞2zifzdomFx0=xvoldomF
55 49 50 53 54 syl3anc FMblFnvoldomFx0xydomFFyx2zifzdomFx0=xvoldomF
56 simprll FMblFnvoldomFx0xydomFFyxx
57 56 50 remulcld FMblFnvoldomFx0xydomFFyxxvoldomF
58 55 57 eqeltrd FMblFnvoldomFx0xydomFFyx2zifzdomFx0
59 rexr xx*
60 elxrge0 x0+∞x*0x
61 60 biimpri x*0xx0+∞
62 59 61 sylan x0xx0+∞
63 62 ad2antrl FMblFnvoldomFx0xydomFFyxx0+∞
64 63 adantr FMblFnvoldomFx0xydomFFyxzx0+∞
65 ifcl x0+∞00+∞ifzdomFx00+∞
66 64 44 65 sylancl FMblFnvoldomFx0xydomFFyxzifzdomFx00+∞
67 66 fmpttd FMblFnvoldomFx0xydomFFyxzifzdomFx0:0+∞
68 ifan ifzdomF0FzFz0=ifzdomFif0FzFz00
69 1 ad2antrr FMblFnvoldomFx0xydomFFyxF:domF
70 69 ffvelcdmda FMblFnvoldomFx0xydomFFyxzdomFFz
71 70 recld FMblFnvoldomFx0xydomFFyxzdomFFz
72 70 abscld FMblFnvoldomFx0xydomFFyxzdomFFz
73 56 adantr FMblFnvoldomFx0xydomFFyxzdomFx
74 70 releabsd FMblFnvoldomFx0xydomFFyxzdomFFzFz
75 2fveq3 y=zFy=Fz
76 75 breq1d y=zFyxFzx
77 76 rspccva ydomFFyxzdomFFzx
78 77 adantll x0xydomFFyxzdomFFzx
79 78 adantll FMblFnvoldomFx0xydomFFyxzdomFFzx
80 71 72 73 74 79 letrd FMblFnvoldomFx0xydomFFyxzdomFFzx
81 simprlr FMblFnvoldomFx0xydomFFyx0x
82 81 adantr FMblFnvoldomFx0xydomFFyxzdomF0x
83 breq1 Fz=if0FzFz0Fzxif0FzFz0x
84 breq1 0=if0FzFz00xif0FzFz0x
85 83 84 ifboth Fzx0xif0FzFz0x
86 80 82 85 syl2anc FMblFnvoldomFx0xydomFFyxzdomFif0FzFz0x
87 iftrue zdomFifzdomFif0FzFz00=if0FzFz0
88 87 adantl FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00=if0FzFz0
89 iftrue zdomFifzdomFx0=x
90 89 adantl FMblFnvoldomFx0xydomFFyxzdomFifzdomFx0=x
91 86 88 90 3brtr4d FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00ifzdomFx0
92 91 ex FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00ifzdomFx0
93 0le0 00
94 93 a1i ¬zdomF00
95 iffalse ¬zdomFifzdomFif0FzFz00=0
96 iffalse ¬zdomFifzdomFx0=0
97 94 95 96 3brtr4d ¬zdomFifzdomFif0FzFz00ifzdomFx0
98 92 97 pm2.61d1 FMblFnvoldomFx0xydomFFyxifzdomFif0FzFz00ifzdomFx0
99 68 98 eqbrtrid FMblFnvoldomFx0xydomFFyxifzdomF0FzFz0ifzdomFx0
100 99 ralrimivw FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0ifzdomFx0
101 reex V
102 101 a1i FMblFnvoldomFx0xydomFFyxV
103 eqidd FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0=zifzdomF0FzFz0
104 eqidd FMblFnvoldomFx0xydomFFyxzifzdomFx0=zifzdomFx0
105 102 46 66 103 104 ofrfval2 FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0fzifzdomFx0zifzdomF0FzFz0ifzdomFx0
106 100 105 mpbird FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0fzifzdomFx0
107 itg2le zifzdomF0FzFz0:0+∞zifzdomFx0:0+∞zifzdomF0FzFz0fzifzdomFx02zifzdomF0FzFz02zifzdomFx0
108 47 67 106 107 syl3anc FMblFnvoldomFx0xydomFFyx2zifzdomF0FzFz02zifzdomFx0
109 itg2lecl zifzdomF0FzFz0:0+∞2zifzdomFx02zifzdomF0FzFz02zifzdomFx02zifzdomF0FzFz0
110 47 58 108 109 syl3anc FMblFnvoldomFx0xydomFFyx2zifzdomF0FzFz0
111 38 renegcld FMblFnvoldomFx0xydomFFyxzzdomFFz
112 111 rexrd FMblFnvoldomFx0xydomFFyxzzdomFFz*
113 112 adantrr FMblFnvoldomFx0xydomFFyxzzdomF0FzFz*
114 simprr FMblFnvoldomFx0xydomFFyxzzdomF0Fz0Fz
115 elxrge0 Fz0+∞Fz*0Fz
116 113 114 115 sylanbrc FMblFnvoldomFx0xydomFFyxzzdomF0FzFz0+∞
117 44 a1i FMblFnvoldomFx0xydomFFyxz¬zdomF0Fz00+∞
118 116 117 ifclda FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz00+∞
119 118 fmpttd FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0:0+∞
120 ifan ifzdomF0FzFz0=ifzdomFif0FzFz00
121 71 renegcld FMblFnvoldomFx0xydomFFyxzdomFFz
122 71 recnd FMblFnvoldomFx0xydomFFyxzdomFFz
123 122 abscld FMblFnvoldomFx0xydomFFyxzdomFFz
124 121 leabsd FMblFnvoldomFx0xydomFFyxzdomFFzFz
125 122 absnegd FMblFnvoldomFx0xydomFFyxzdomFFz=Fz
126 124 125 breqtrd FMblFnvoldomFx0xydomFFyxzdomFFzFz
127 absrele FzFzFz
128 70 127 syl FMblFnvoldomFx0xydomFFyxzdomFFzFz
129 121 123 72 126 128 letrd FMblFnvoldomFx0xydomFFyxzdomFFzFz
130 121 72 73 129 79 letrd FMblFnvoldomFx0xydomFFyxzdomFFzx
131 breq1 Fz=if0FzFz0Fzxif0FzFz0x
132 breq1 0=if0FzFz00xif0FzFz0x
133 131 132 ifboth Fzx0xif0FzFz0x
134 130 82 133 syl2anc FMblFnvoldomFx0xydomFFyxzdomFif0FzFz0x
135 iftrue zdomFifzdomFif0FzFz00=if0FzFz0
136 135 adantl FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00=if0FzFz0
137 134 136 90 3brtr4d FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00ifzdomFx0
138 137 ex FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00ifzdomFx0
139 iffalse ¬zdomFifzdomFif0FzFz00=0
140 94 139 96 3brtr4d ¬zdomFifzdomFif0FzFz00ifzdomFx0
141 138 140 pm2.61d1 FMblFnvoldomFx0xydomFFyxifzdomFif0FzFz00ifzdomFx0
142 120 141 eqbrtrid FMblFnvoldomFx0xydomFFyxifzdomF0FzFz0ifzdomFx0
143 142 ralrimivw FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0ifzdomFx0
144 eqidd FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0=zifzdomF0FzFz0
145 102 118 66 144 104 ofrfval2 FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0fzifzdomFx0zifzdomF0FzFz0ifzdomFx0
146 143 145 mpbird FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0fzifzdomFx0
147 itg2le zifzdomF0FzFz0:0+∞zifzdomFx0:0+∞zifzdomF0FzFz0fzifzdomFx02zifzdomF0FzFz02zifzdomFx0
148 119 67 146 147 syl3anc FMblFnvoldomFx0xydomFFyx2zifzdomF0FzFz02zifzdomFx0
149 itg2lecl zifzdomF0FzFz0:0+∞2zifzdomFx02zifzdomF0FzFz02zifzdomFx02zifzdomF0FzFz0
150 119 58 148 149 syl3anc FMblFnvoldomFx0xydomFFyx2zifzdomF0FzFz0
151 110 150 jca FMblFnvoldomFx0xydomFFyx2zifzdomF0FzFz02zifzdomF0FzFz0
152 37 imcld FMblFnvoldomFx0xydomFFyxzzdomFFz
153 152 rexrd FMblFnvoldomFx0xydomFFyxzzdomFFz*
154 153 adantrr FMblFnvoldomFx0xydomFFyxzzdomF0FzFz*
155 simprr FMblFnvoldomFx0xydomFFyxzzdomF0Fz0Fz
156 elxrge0 Fz0+∞Fz*0Fz
157 154 155 156 sylanbrc FMblFnvoldomFx0xydomFFyxzzdomF0FzFz0+∞
158 44 a1i FMblFnvoldomFx0xydomFFyxz¬zdomF0Fz00+∞
159 157 158 ifclda FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz00+∞
160 159 fmpttd FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0:0+∞
161 ifan ifzdomF0FzFz0=ifzdomFif0FzFz00
162 70 imcld FMblFnvoldomFx0xydomFFyxzdomFFz
163 162 recnd FMblFnvoldomFx0xydomFFyxzdomFFz
164 163 abscld FMblFnvoldomFx0xydomFFyxzdomFFz
165 162 leabsd FMblFnvoldomFx0xydomFFyxzdomFFzFz
166 absimle FzFzFz
167 70 166 syl FMblFnvoldomFx0xydomFFyxzdomFFzFz
168 162 164 72 165 167 letrd FMblFnvoldomFx0xydomFFyxzdomFFzFz
169 162 72 73 168 79 letrd FMblFnvoldomFx0xydomFFyxzdomFFzx
170 breq1 Fz=if0FzFz0Fzxif0FzFz0x
171 breq1 0=if0FzFz00xif0FzFz0x
172 170 171 ifboth Fzx0xif0FzFz0x
173 169 82 172 syl2anc FMblFnvoldomFx0xydomFFyxzdomFif0FzFz0x
174 iftrue zdomFifzdomFif0FzFz00=if0FzFz0
175 174 adantl FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00=if0FzFz0
176 173 175 90 3brtr4d FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00ifzdomFx0
177 176 ex FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00ifzdomFx0
178 iffalse ¬zdomFifzdomFif0FzFz00=0
179 94 178 96 3brtr4d ¬zdomFifzdomFif0FzFz00ifzdomFx0
180 177 179 pm2.61d1 FMblFnvoldomFx0xydomFFyxifzdomFif0FzFz00ifzdomFx0
181 161 180 eqbrtrid FMblFnvoldomFx0xydomFFyxifzdomF0FzFz0ifzdomFx0
182 181 ralrimivw FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0ifzdomFx0
183 eqidd FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0=zifzdomF0FzFz0
184 102 159 66 183 104 ofrfval2 FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0fzifzdomFx0zifzdomF0FzFz0ifzdomFx0
185 182 184 mpbird FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0fzifzdomFx0
186 itg2le zifzdomF0FzFz0:0+∞zifzdomFx0:0+∞zifzdomF0FzFz0fzifzdomFx02zifzdomF0FzFz02zifzdomFx0
187 160 67 185 186 syl3anc FMblFnvoldomFx0xydomFFyx2zifzdomF0FzFz02zifzdomFx0
188 itg2lecl zifzdomF0FzFz0:0+∞2zifzdomFx02zifzdomF0FzFz02zifzdomFx02zifzdomF0FzFz0
189 160 58 187 188 syl3anc FMblFnvoldomFx0xydomFFyx2zifzdomF0FzFz0
190 152 renegcld FMblFnvoldomFx0xydomFFyxzzdomFFz
191 190 rexrd FMblFnvoldomFx0xydomFFyxzzdomFFz*
192 191 adantrr FMblFnvoldomFx0xydomFFyxzzdomF0FzFz*
193 simprr FMblFnvoldomFx0xydomFFyxzzdomF0Fz0Fz
194 elxrge0 Fz0+∞Fz*0Fz
195 192 193 194 sylanbrc FMblFnvoldomFx0xydomFFyxzzdomF0FzFz0+∞
196 44 a1i FMblFnvoldomFx0xydomFFyxz¬zdomF0Fz00+∞
197 195 196 ifclda FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz00+∞
198 197 fmpttd FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0:0+∞
199 ifan ifzdomF0FzFz0=ifzdomFif0FzFz00
200 162 renegcld FMblFnvoldomFx0xydomFFyxzdomFFz
201 200 leabsd FMblFnvoldomFx0xydomFFyxzdomFFzFz
202 163 absnegd FMblFnvoldomFx0xydomFFyxzdomFFz=Fz
203 201 202 breqtrd FMblFnvoldomFx0xydomFFyxzdomFFzFz
204 200 164 72 203 167 letrd FMblFnvoldomFx0xydomFFyxzdomFFzFz
205 200 72 73 204 79 letrd FMblFnvoldomFx0xydomFFyxzdomFFzx
206 breq1 Fz=if0FzFz0Fzxif0FzFz0x
207 breq1 0=if0FzFz00xif0FzFz0x
208 206 207 ifboth Fzx0xif0FzFz0x
209 205 82 208 syl2anc FMblFnvoldomFx0xydomFFyxzdomFif0FzFz0x
210 iftrue zdomFifzdomFif0FzFz00=if0FzFz0
211 210 adantl FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00=if0FzFz0
212 209 211 90 3brtr4d FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00ifzdomFx0
213 212 ex FMblFnvoldomFx0xydomFFyxzdomFifzdomFif0FzFz00ifzdomFx0
214 iffalse ¬zdomFifzdomFif0FzFz00=0
215 94 214 96 3brtr4d ¬zdomFifzdomFif0FzFz00ifzdomFx0
216 213 215 pm2.61d1 FMblFnvoldomFx0xydomFFyxifzdomFif0FzFz00ifzdomFx0
217 199 216 eqbrtrid FMblFnvoldomFx0xydomFFyxifzdomF0FzFz0ifzdomFx0
218 217 ralrimivw FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0ifzdomFx0
219 eqidd FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0=zifzdomF0FzFz0
220 102 197 66 219 104 ofrfval2 FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0fzifzdomFx0zifzdomF0FzFz0ifzdomFx0
221 218 220 mpbird FMblFnvoldomFx0xydomFFyxzifzdomF0FzFz0fzifzdomFx0
222 itg2le zifzdomF0FzFz0:0+∞zifzdomFx0:0+∞zifzdomF0FzFz0fzifzdomFx02zifzdomF0FzFz02zifzdomFx0
223 198 67 221 222 syl3anc FMblFnvoldomFx0xydomFFyx2zifzdomF0FzFz02zifzdomFx0
224 itg2lecl zifzdomF0FzFz0:0+∞2zifzdomFx02zifzdomF0FzFz02zifzdomFx02zifzdomF0FzFz0
225 198 58 223 224 syl3anc FMblFnvoldomFx0xydomFFyx2zifzdomF0FzFz0
226 189 225 jca FMblFnvoldomFx0xydomFFyx2zifzdomF0FzFz02zifzdomF0FzFz0
227 eqid 2zifzdomF0FzFz0=2zifzdomF0FzFz0
228 eqid 2zifzdomF0FzFz0=2zifzdomF0FzFz0
229 eqid 2zifzdomF0FzFz0=2zifzdomF0FzFz0
230 eqid 2zifzdomF0FzFz0=2zifzdomF0FzFz0
231 227 228 229 230 70 iblcnlem1 FMblFnvoldomFx0xydomFFyxzdomFFz𝐿1zdomFFzMblFn2zifzdomF0FzFz02zifzdomF0FzFz02zifzdomF0FzFz02zifzdomF0FzFz0
232 35 151 226 231 mpbir3and FMblFnvoldomFx0xydomFFyxzdomFFz𝐿1
233 32 232 sylan2b FMblFnvoldomFxydomFFyx0xzdomFFz𝐿1
234 233 anassrs FMblFnvoldomFxydomFFyx0xzdomFFz𝐿1
235 31 234 syldan FMblFnvoldomFxydomFFyxdomFzdomFFz𝐿1
236 13 235 pm2.61dane FMblFnvoldomFxydomFFyxzdomFFz𝐿1
237 236 rexlimdvaa FMblFnvoldomFxydomFFyxzdomFFz𝐿1
238 237 3impia FMblFnvoldomFxydomFFyxzdomFFz𝐿1
239 3 238 eqeltrd FMblFnvoldomFxydomFFyxF𝐿1