Metamath Proof Explorer


Theorem fsumharmonic

Description: Bound a finite sum based on the harmonic series, where the "strong" bound C only applies asymptotically, and there is a "weak" bound R for the remaining values. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses fsumharmonic.a φA+
fsumharmonic.t φT1T
fsumharmonic.r φR0R
fsumharmonic.b φn1AB
fsumharmonic.c φn1AC
fsumharmonic.0 φn1A0C
fsumharmonic.1 φn1ATAnBCn
fsumharmonic.2 φn1AAn<TBR
Assertion fsumharmonic φn=1ABnn=1AC+RlogT+1

Proof

Step Hyp Ref Expression
1 fsumharmonic.a φA+
2 fsumharmonic.t φT1T
3 fsumharmonic.r φR0R
4 fsumharmonic.b φn1AB
5 fsumharmonic.c φn1AC
6 fsumharmonic.0 φn1A0C
7 fsumharmonic.1 φn1ATAnBCn
8 fsumharmonic.2 φn1AAn<TBR
9 fzfid φ1AFin
10 elfznn n1An
11 10 adantl φn1An
12 11 nncnd φn1An
13 11 nnne0d φn1An0
14 4 12 13 divcld φn1ABn
15 9 14 fsumcl φn=1ABn
16 15 abscld φn=1ABn
17 4 abscld φn1AB
18 17 11 nndivred φn1ABn
19 9 18 fsumrecl φn=1ABn
20 9 5 fsumrecl φn=1AC
21 3 simpld φR
22 2 simpld φT
23 0red φ0
24 1red φ1
25 0lt1 0<1
26 25 a1i φ0<1
27 2 simprd φ1T
28 23 24 22 26 27 ltletrd φ0<T
29 22 28 elrpd φT+
30 29 relogcld φlogT
31 30 24 readdcld φlogT+1
32 21 31 remulcld φRlogT+1
33 20 32 readdcld φn=1AC+RlogT+1
34 9 14 fsumabs φn=1ABnn=1ABn
35 4 12 13 absdivd φn1ABn=Bn
36 11 nnrpd φn1An+
37 36 rprege0d φn1An0n
38 absid n0nn=n
39 37 38 syl φn1An=n
40 39 oveq2d φn1ABn=Bn
41 35 40 eqtrd φn1ABn=Bn
42 41 sumeq2dv φn=1ABn=n=1ABn
43 34 42 breqtrd φn=1ABnn=1ABn
44 1 29 rpdivcld φAT+
45 44 rprege0d φAT0AT
46 flge0nn0 AT0ATAT0
47 45 46 syl φAT0
48 47 nn0red φAT
49 48 ltp1d φAT<AT+1
50 fzdisj AT<AT+11ATAT+1A=
51 49 50 syl φ1ATAT+1A=
52 nn0p1nn AT0AT+1
53 47 52 syl φAT+1
54 nnuz =1
55 53 54 eleqtrdi φAT+11
56 44 rpred φAT
57 1 rpred φA
58 22 28 jca φT0<T
59 1 rpregt0d φA0<A
60 lediv2 10<1T0<TA0<A1TATA1
61 24 26 58 59 60 syl211anc φ1TATA1
62 27 61 mpbid φATA1
63 57 recnd φA
64 63 div1d φA1=A
65 62 64 breqtrd φATA
66 flword2 ATAATAAAT
67 56 57 65 66 syl3anc φAAT
68 fzsplit2 AT+11AAT1A=1ATAT+1A
69 55 67 68 syl2anc φ1A=1ATAT+1A
70 18 recnd φn1ABn
71 51 69 9 70 fsumsplit φn=1ABn=n=1ATBn+n=AT+1ABn
72 fzfid φ1ATFin
73 ssun1 1AT1ATAT+1A
74 73 69 sseqtrrid φ1AT1A
75 74 sselda φn1ATn1A
76 75 18 syldan φn1ATBn
77 72 76 fsumrecl φn=1ATBn
78 fzfid φAT+1AFin
79 ssun2 AT+1A1ATAT+1A
80 79 69 sseqtrrid φAT+1A1A
81 80 sselda φnAT+1An1A
82 81 18 syldan φnAT+1ABn
83 78 82 fsumrecl φn=AT+1ABn
84 75 5 syldan φn1ATC
85 72 84 fsumrecl φn=1ATC
86 fznnfl ATn1ATnnAT
87 56 86 syl φn1ATnnAT
88 87 simplbda φn1ATnAT
89 36 rpred φn1An
90 57 adantr φn1AA
91 58 adantr φn1AT0<T
92 lemuldiv2 nAT0<TTnAnAT
93 89 90 91 92 syl3anc φn1ATnAnAT
94 22 adantr φn1AT
95 94 90 36 lemuldivd φn1ATnATAn
96 93 95 bitr3d φn1AnATTAn
97 75 96 syldan φn1ATnATTAn
98 88 97 mpbid φn1ATTAn
99 7 ex φn1ATAnBCn
100 75 99 syldan φn1ATTAnBCn
101 98 100 mpd φn1ATBCn
102 75 4 syldan φn1ATB
103 102 abscld φn1ATB
104 75 10 syl φn1ATn
105 104 nnrpd φn1ATn+
106 103 84 105 ledivmul2d φn1ATBnCBCn
107 101 106 mpbird φn1ATBnC
108 72 76 84 107 fsumle φn=1ATBnn=1ATC
109 9 5 6 74 fsumless φn=1ATCn=1AC
110 77 85 20 108 109 letrd φn=1ATBnn=1AC
111 81 10 syl φnAT+1An
112 111 nnrecred φnAT+1A1n
113 78 112 fsumrecl φn=AT+1A1n
114 21 113 remulcld φRn=AT+1A1n
115 21 adantr φnAT+1AR
116 115 recnd φnAT+1AR
117 111 nncnd φnAT+1An
118 111 nnne0d φnAT+1An0
119 116 117 118 divrecd φnAT+1ARn=R1n
120 115 111 nndivred φnAT+1ARn
121 119 120 eqeltrrd φnAT+1AR1n
122 81 17 syldan φnAT+1AB
123 81 36 syldan φnAT+1An+
124 noel ¬n
125 elin n1ATAT+1An1ATnAT+1A
126 51 eleq2d φn1ATAT+1An
127 125 126 bitr3id φn1ATnAT+1An
128 124 127 mtbiri φ¬n1ATnAT+1A
129 imnan n1AT¬nAT+1A¬n1ATnAT+1A
130 128 129 sylibr φn1AT¬nAT+1A
131 130 con2d φnAT+1A¬n1AT
132 131 imp φnAT+1A¬n1AT
133 86 baibd ATnn1ATnAT
134 56 10 133 syl2an φn1An1ATnAT
135 134 96 bitrd φn1An1ATTAn
136 81 135 syldan φnAT+1An1ATTAn
137 132 136 mtbid φnAT+1A¬TAn
138 57 adantr φnAT+1AA
139 138 111 nndivred φnAT+1AAn
140 22 adantr φnAT+1AT
141 139 140 ltnled φnAT+1AAn<T¬TAn
142 137 141 mpbird φnAT+1AAn<T
143 8 ex φn1AAn<TBR
144 81 143 syldan φnAT+1AAn<TBR
145 142 144 mpd φnAT+1ABR
146 122 115 123 145 lediv1dd φnAT+1ABnRn
147 146 119 breqtrd φnAT+1ABnR1n
148 78 82 121 147 fsumle φn=AT+1ABnn=AT+1AR1n
149 21 recnd φR
150 112 recnd φnAT+1A1n
151 78 149 150 fsummulc2 φRn=AT+1A1n=n=AT+1AR1n
152 148 151 breqtrrd φn=AT+1ABnRn=AT+1A1n
153 104 nnrecred φn1AT1n
154 72 153 fsumrecl φn=1AT1n
155 154 recnd φn=1AT1n
156 113 recnd φn=AT+1A1n
157 11 nnrecred φn1A1n
158 157 recnd φn1A1n
159 51 69 9 158 fsumsplit φn=1A1n=n=1AT1n+n=AT+1A1n
160 155 156 159 mvrladdd φn=1A1nn=1AT1n=n=AT+1A1n
161 9 157 fsumrecl φn=1A1n
162 161 adantr φA<1n=1A1n
163 154 adantr φA<1n=1AT1n
164 162 163 resubcld φA<1n=1A1nn=1AT1n
165 0red φA<10
166 31 adantr φA<1logT+1
167 fzfid φA<11ATFin
168 105 adantlr φA<1n1ATn+
169 168 rpreccld φA<1n1AT1n+
170 169 rpred φA<1n1AT1n
171 169 rpge0d φA<1n1AT01n
172 1 adantr φA<1A+
173 172 rpge0d φA<10A
174 simpr φA<1A<1
175 0p1e1 0+1=1
176 174 175 breqtrrdi φA<1A<0+1
177 57 adantr φA<1A
178 0z 0
179 flbi A0A=00AA<0+1
180 177 178 179 sylancl φA<1A=00AA<0+1
181 173 176 180 mpbir2and φA<1A=0
182 181 oveq2d φA<11A=10
183 fz10 10=
184 182 183 eqtrdi φA<11A=
185 0ss 1AT
186 184 185 eqsstrdi φA<11A1AT
187 167 170 171 186 fsumless φA<1n=1A1nn=1AT1n
188 162 163 suble0d φA<1n=1A1nn=1AT1n0n=1A1nn=1AT1n
189 187 188 mpbird φA<1n=1A1nn=1AT1n0
190 22 27 logge0d φ0logT
191 0le1 01
192 191 a1i φ01
193 30 24 190 192 addge0d φ0logT+1
194 193 adantr φA<10logT+1
195 164 165 166 189 194 letrd φA<1n=1A1nn=1AT1nlogT+1
196 harmonicubnd A1An=1A1nlogA+1
197 57 196 sylan φ1An=1A1nlogA+1
198 harmoniclbnd AT+logATn=1AT1n
199 44 198 syl φlogATn=1AT1n
200 199 adantr φ1AlogATn=1AT1n
201 1 relogcld φlogA
202 peano2re logAlogA+1
203 201 202 syl φlogA+1
204 44 relogcld φlogAT
205 le2sub n=1A1nn=1AT1nlogA+1logATn=1A1nlogA+1logATn=1AT1nn=1A1nn=1AT1nlogA+1-logAT
206 161 154 203 204 205 syl22anc φn=1A1nlogA+1logATn=1AT1nn=1A1nn=1AT1nlogA+1-logAT
207 206 adantr φ1An=1A1nlogA+1logATn=1AT1nn=1A1nn=1AT1nlogA+1-logAT
208 197 200 207 mp2and φ1An=1A1nn=1AT1nlogA+1-logAT
209 201 recnd φlogA
210 24 recnd φ1
211 30 recnd φlogT
212 209 210 211 pnncand φlogA+1-logAlogT=1+logT
213 1 29 relogdivd φlogAT=logAlogT
214 213 oveq2d φlogA+1-logAT=logA+1-logAlogT
215 ax-1cn 1
216 addcom logT1logT+1=1+logT
217 211 215 216 sylancl φlogT+1=1+logT
218 212 214 217 3eqtr4d φlogA+1-logAT=logT+1
219 218 adantr φ1AlogA+1-logAT=logT+1
220 208 219 breqtrd φ1An=1A1nn=1AT1nlogT+1
221 195 220 57 24 ltlecasei φn=1A1nn=1AT1nlogT+1
222 160 221 eqbrtrrd φn=AT+1A1nlogT+1
223 lemul2a n=AT+1A1nlogT+1R0Rn=AT+1A1nlogT+1Rn=AT+1A1nRlogT+1
224 113 31 3 222 223 syl31anc φRn=AT+1A1nRlogT+1
225 83 114 32 152 224 letrd φn=AT+1ABnRlogT+1
226 77 83 20 32 110 225 le2addd φn=1ATBn+n=AT+1ABnn=1AC+RlogT+1
227 71 226 eqbrtrd φn=1ABnn=1AC+RlogT+1
228 16 19 33 43 227 letrd φn=1ABnn=1AC+RlogT+1