Metamath Proof Explorer


Theorem hartogslem1

Description: Lemma for hartogs . (Contributed by Mario Carneiro, 14-Jan-2013) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses hartogslem.2 F=ry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
hartogslem.3 R=st|wyzys=fwt=fzwEz
Assertion hartogslem1 domF𝒫A×AFunFAVranF=xOn|xA

Proof

Step Hyp Ref Expression
1 hartogslem.2 F=ry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
2 hartogslem.3 R=st|wyzys=fwt=fzwEz
3 1 dmeqi domF=domry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
4 dmopab domry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr=r|ydomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
5 3 4 eqtri domF=r|ydomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
6 simp3 domrAIdomrrrdomr×domrrdomr×domr
7 simp1 domrAIdomrrrdomr×domrdomrA
8 xpss12 domrAdomrAdomr×domrA×A
9 7 7 8 syl2anc domrAIdomrrrdomr×domrdomr×domrA×A
10 6 9 sstrd domrAIdomrrrdomr×domrrA×A
11 velpw r𝒫A×ArA×A
12 10 11 sylibr domrAIdomrrrdomr×domrr𝒫A×A
13 12 ad2antrr domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrr𝒫A×A
14 13 exlimiv ydomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrr𝒫A×A
15 14 abssi r|ydomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr𝒫A×A
16 5 15 eqsstri domF𝒫A×A
17 funopab4 Funry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
18 1 funeqi FunFFunry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
19 17 18 mpbir FunF
20 1 rneqi ranF=ranry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
21 rnopab ranry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr=y|rdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
22 20 21 eqtri ranF=y|rdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
23 breq1 x=yxAyA
24 23 elrab yxOn|xAyOnyA
25 f1f f:y1-1Af:yA
26 25 adantl yOnf:y1-1Af:yA
27 26 frnd yOnf:y1-1AranfA
28 resss IranfI
29 ssun2 IRI
30 28 29 sstri IranfRI
31 idssxp Iranfranf×ranf
32 30 31 ssini IranfRIranf×ranf
33 32 a1i yOnf:y1-1AIranfRIranf×ranf
34 inss2 RIranf×ranfranf×ranf
35 34 a1i yOnf:y1-1ARIranf×ranfranf×ranf
36 27 33 35 3jca yOnf:y1-1AranfAIranfRIranf×ranfRIranf×ranfranf×ranf
37 eloni yOnOrdy
38 ordwe OrdyEWey
39 37 38 syl yOnEWey
40 39 adantr yOnf:y1-1AEWey
41 f1f1orn f:y1-1Af:y1-1 ontoranf
42 41 adantl yOnf:y1-1Af:y1-1 ontoranf
43 f1oiso f:y1-1 ontoranfR=st|wyzys=fwt=fzwEzfIsomE,Ryranf
44 42 2 43 sylancl yOnf:y1-1AfIsomE,Ryranf
45 isores2 fIsomE,RyranffIsomE,Rranf×ranfyranf
46 44 45 sylib yOnf:y1-1AfIsomE,Rranf×ranfyranf
47 isowe fIsomE,Rranf×ranfyranfEWeyRranf×ranfWeranf
48 46 47 syl yOnf:y1-1AEWeyRranf×ranfWeranf
49 40 48 mpbid yOnf:y1-1ARranf×ranfWeranf
50 weso Rranf×ranfWeranfRranf×ranfOrranf
51 49 50 syl yOnf:y1-1ARranf×ranfOrranf
52 inss2 Rranf×ranfranf×ranf
53 52 brel xRranf×ranfxxranfxranf
54 53 simpld xRranf×ranfxxranf
55 sonr Rranf×ranfOrranfxranf¬xRranf×ranfx
56 51 54 55 syl2an yOnf:y1-1AxRranf×ranfx¬xRranf×ranfx
57 56 pm2.01da yOnf:y1-1A¬xRranf×ranfx
58 57 alrimiv yOnf:y1-1Ax¬xRranf×ranfx
59 intirr Rranf×ranfI=x¬xRranf×ranfx
60 58 59 sylibr yOnf:y1-1ARranf×ranfI=
61 disj3 Rranf×ranfI=Rranf×ranf=Rranf×ranfI
62 60 61 sylib yOnf:y1-1ARranf×ranf=Rranf×ranfI
63 weeq1 Rranf×ranf=Rranf×ranfIRranf×ranfWeranfRranf×ranfIWeranf
64 62 63 syl yOnf:y1-1ARranf×ranfWeranfRranf×ranfIWeranf
65 49 64 mpbid yOnf:y1-1ARranf×ranfIWeranf
66 37 adantr yOnf:y1-1AOrdy
67 isoeq3 Rranf×ranf=Rranf×ranfIfIsomE,Rranf×ranfyranffIsomE,Rranf×ranfIyranf
68 62 67 syl yOnf:y1-1AfIsomE,Rranf×ranfyranffIsomE,Rranf×ranfIyranf
69 46 68 mpbid yOnf:y1-1AfIsomE,Rranf×ranfIyranf
70 vex fV
71 70 rnex ranfV
72 exse ranfVRranf×ranfISeranf
73 71 72 ax-mp Rranf×ranfISeranf
74 eqid OrdIsoRranf×ranfIranf=OrdIsoRranf×ranfIranf
75 74 oieu Rranf×ranfIWeranfRranf×ranfISeranfOrdyfIsomE,Rranf×ranfIyranfy=domOrdIsoRranf×ranfIranff=OrdIsoRranf×ranfIranf
76 65 73 75 sylancl yOnf:y1-1AOrdyfIsomE,Rranf×ranfIyranfy=domOrdIsoRranf×ranfIranff=OrdIsoRranf×ranfIranf
77 66 69 76 mpbi2and yOnf:y1-1Ay=domOrdIsoRranf×ranfIranff=OrdIsoRranf×ranfIranf
78 77 simpld yOnf:y1-1Ay=domOrdIsoRranf×ranfIranf
79 71 71 xpex ranf×ranfV
80 79 inex2 RIranf×ranfV
81 sseq1 r=RIranf×ranfrranf×ranfRIranf×ranfranf×ranf
82 34 81 mpbiri r=RIranf×ranfrranf×ranf
83 dmss rranf×ranfdomrdomranf×ranf
84 82 83 syl r=RIranf×ranfdomrdomranf×ranf
85 dmxpid domranf×ranf=ranf
86 84 85 sseqtrdi r=RIranf×ranfdomrranf
87 dmresi domIranf=ranf
88 sseq2 r=RIranf×ranfIranfrIranfRIranf×ranf
89 32 88 mpbiri r=RIranf×ranfIranfr
90 dmss IranfrdomIranfdomr
91 89 90 syl r=RIranf×ranfdomIranfdomr
92 87 91 eqsstrrid r=RIranf×ranfranfdomr
93 86 92 eqssd r=RIranf×ranfdomr=ranf
94 93 sseq1d r=RIranf×ranfdomrAranfA
95 93 reseq2d r=RIranf×ranfIdomr=Iranf
96 id r=RIranf×ranfr=RIranf×ranf
97 95 96 sseq12d r=RIranf×ranfIdomrrIranfRIranf×ranf
98 93 sqxpeqd r=RIranf×ranfdomr×domr=ranf×ranf
99 96 98 sseq12d r=RIranf×ranfrdomr×domrRIranf×ranfranf×ranf
100 94 97 99 3anbi123d r=RIranf×ranfdomrAIdomrrrdomr×domrranfAIranfRIranf×ranfRIranf×ranfranf×ranf
101 difeq1 r=RIranf×ranfrI=RIranf×ranfI
102 difun2 RII=RI
103 102 ineq1i RIIranf×ranf=RIranf×ranf
104 indif1 RIIranf×ranf=RIranf×ranfI
105 indif1 RIranf×ranf=Rranf×ranfI
106 103 104 105 3eqtr3i RIranf×ranfI=Rranf×ranfI
107 101 106 eqtrdi r=RIranf×ranfrI=Rranf×ranfI
108 weeq1 rI=Rranf×ranfIrIWedomrRranf×ranfIWedomr
109 107 108 syl r=RIranf×ranfrIWedomrRranf×ranfIWedomr
110 weeq2 domr=ranfRranf×ranfIWedomrRranf×ranfIWeranf
111 93 110 syl r=RIranf×ranfRranf×ranfIWedomrRranf×ranfIWeranf
112 109 111 bitrd r=RIranf×ranfrIWedomrRranf×ranfIWeranf
113 100 112 anbi12d r=RIranf×ranfdomrAIdomrrrdomr×domrrIWedomrranfAIranfRIranf×ranfRIranf×ranfranf×ranfRranf×ranfIWeranf
114 oieq1 rI=Rranf×ranfIOrdIsorIdomr=OrdIsoRranf×ranfIdomr
115 107 114 syl r=RIranf×ranfOrdIsorIdomr=OrdIsoRranf×ranfIdomr
116 oieq2 domr=ranfOrdIsoRranf×ranfIdomr=OrdIsoRranf×ranfIranf
117 93 116 syl r=RIranf×ranfOrdIsoRranf×ranfIdomr=OrdIsoRranf×ranfIranf
118 115 117 eqtrd r=RIranf×ranfOrdIsorIdomr=OrdIsoRranf×ranfIranf
119 118 dmeqd r=RIranf×ranfdomOrdIsorIdomr=domOrdIsoRranf×ranfIranf
120 119 eqeq2d r=RIranf×ranfy=domOrdIsorIdomry=domOrdIsoRranf×ranfIranf
121 113 120 anbi12d r=RIranf×ranfdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrranfAIranfRIranf×ranfRIranf×ranfranf×ranfRranf×ranfIWeranfy=domOrdIsoRranf×ranfIranf
122 80 121 spcev ranfAIranfRIranf×ranfRIranf×ranfranf×ranfRranf×ranfIWeranfy=domOrdIsoRranf×ranfIranfrdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
123 36 65 78 122 syl21anc yOnf:y1-1ArdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
124 123 ex yOnf:y1-1ArdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
125 124 exlimdv yOnff:y1-1ArdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
126 brdomi yAff:y1-1A
127 125 126 impel yOnyArdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
128 simpr domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomry=domOrdIsorIdomr
129 vex rV
130 129 dmex domrV
131 eqid OrdIsorIdomr=OrdIsorIdomr
132 131 oion domrVdomOrdIsorIdomrOn
133 130 132 ax-mp domOrdIsorIdomrOn
134 128 133 eqeltrdi domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomryOn
135 134 adantl AVdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomryOn
136 simplr domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrrIWedomr
137 131 oien domrVrIWedomrdomOrdIsorIdomrdomr
138 130 136 137 sylancr domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrdomOrdIsorIdomrdomr
139 128 138 eqbrtrd domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrydomr
140 ssdomg AVdomrAdomrA
141 simpll1 domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrdomrA
142 140 141 impel AVdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrdomrA
143 endomtr ydomrdomrAyA
144 139 142 143 syl2an2 AVdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomryA
145 135 144 jca AVdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomryOnyA
146 145 ex AVdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomryOnyA
147 146 exlimdv AVrdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomryOnyA
148 127 147 impbid2 AVyOnyArdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
149 24 148 bitrid AVyxOn|xArdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
150 149 eqabdv AVxOn|xA=y|rdomrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
151 22 150 eqtr4id AVranF=xOn|xA
152 16 19 151 3pm3.2i domF𝒫A×AFunFAVranF=xOn|xA