Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
|
2 |
|
heibor.3 |
|
3 |
|
heibor.4 |
|
4 |
|
heibor.5 |
|
5 |
|
heibor.6 |
|
6 |
|
heibor.7 |
|
7 |
|
heibor.8 |
|
8 |
|
nn0ex |
|
9 |
|
fvex |
|
10 |
|
snex |
|
11 |
9 10
|
xpex |
|
12 |
8 11
|
iunex |
|
13 |
3
|
relopabiv |
|
14 |
|
1st2nd |
|
15 |
13 14
|
mpan |
|
16 |
15
|
eleq1d |
|
17 |
|
df-br |
|
18 |
16 17
|
bitr4di |
|
19 |
|
fvex |
|
20 |
|
fvex |
|
21 |
1 2 3 19 20
|
heiborlem2 |
|
22 |
18 21
|
bitrdi |
|
23 |
22
|
ibi |
|
24 |
20
|
snid |
|
25 |
|
opelxp |
|
26 |
24 25
|
mpbiran2 |
|
27 |
|
fveq2 |
|
28 |
|
sneq |
|
29 |
27 28
|
xpeq12d |
|
30 |
29
|
eleq2d |
|
31 |
30
|
rspcev |
|
32 |
26 31
|
sylan2br |
|
33 |
|
eliun |
|
34 |
32 33
|
sylibr |
|
35 |
34
|
3adant3 |
|
36 |
23 35
|
syl |
|
37 |
15 36
|
eqeltrd |
|
38 |
37
|
ssriv |
|
39 |
|
ssdomg |
|
40 |
12 38 39
|
mp2 |
|
41 |
|
nn0ennn |
|
42 |
|
nnenom |
|
43 |
41 42
|
entri |
|
44 |
|
endom |
|
45 |
43 44
|
ax-mp |
|
46 |
|
vex |
|
47 |
9 46
|
xpsnen |
|
48 |
|
inss2 |
|
49 |
6
|
ffvelrnda |
|
50 |
48 49
|
sselid |
|
51 |
|
isfinite |
|
52 |
|
sdomdom |
|
53 |
51 52
|
sylbi |
|
54 |
50 53
|
syl |
|
55 |
|
endomtr |
|
56 |
47 54 55
|
sylancr |
|
57 |
56
|
ralrimiva |
|
58 |
|
iunctb |
|
59 |
45 57 58
|
sylancr |
|
60 |
|
domtr |
|
61 |
40 59 60
|
sylancr |
|
62 |
23
|
simp1d |
|
63 |
|
peano2nn0 |
|
64 |
62 63
|
syl |
|
65 |
|
ffvelrn |
|
66 |
6 64 65
|
syl2an |
|
67 |
48 66
|
sselid |
|
68 |
|
iunin2 |
|
69 |
|
oveq1 |
|
70 |
69
|
cbviunv |
|
71 |
|
fveq2 |
|
72 |
71
|
iuneq1d |
|
73 |
70 72
|
eqtrid |
|
74 |
|
oveq2 |
|
75 |
74
|
iuneq2d |
|
76 |
73 75
|
eqtrd |
|
77 |
76
|
eqeq2d |
|
78 |
77
|
rspccva |
|
79 |
7 64 78
|
syl2an |
|
80 |
79
|
ineq2d |
|
81 |
15
|
fveq2d |
|
82 |
|
df-ov |
|
83 |
81 82
|
eqtr4di |
|
84 |
83
|
adantl |
|
85 |
|
inss1 |
|
86 |
|
ffvelrn |
|
87 |
6 62 86
|
syl2an |
|
88 |
85 87
|
sselid |
|
89 |
88
|
elpwid |
|
90 |
23
|
simp2d |
|
91 |
90
|
adantl |
|
92 |
89 91
|
sseldd |
|
93 |
62
|
adantl |
|
94 |
|
oveq1 |
|
95 |
|
oveq2 |
|
96 |
95
|
oveq2d |
|
97 |
96
|
oveq2d |
|
98 |
|
ovex |
|
99 |
94 97 4 98
|
ovmpo |
|
100 |
92 93 99
|
syl2anc |
|
101 |
84 100
|
eqtrd |
|
102 |
|
cmetmet |
|
103 |
5 102
|
syl |
|
104 |
|
metxmet |
|
105 |
103 104
|
syl |
|
106 |
105
|
adantr |
|
107 |
|
2nn |
|
108 |
|
nnexpcl |
|
109 |
107 93 108
|
sylancr |
|
110 |
109
|
nnrpd |
|
111 |
110
|
rpreccld |
|
112 |
111
|
rpxrd |
|
113 |
|
blssm |
|
114 |
106 92 112 113
|
syl3anc |
|
115 |
101 114
|
eqsstrd |
|
116 |
|
df-ss |
|
117 |
115 116
|
sylib |
|
118 |
80 117
|
eqtr3d |
|
119 |
68 118
|
eqtrid |
|
120 |
|
eqimss2 |
|
121 |
119 120
|
syl |
|
122 |
23
|
simp3d |
|
123 |
83 122
|
eqeltrd |
|
124 |
123
|
adantl |
|
125 |
|
fvex |
|
126 |
125
|
inex1 |
|
127 |
1 2 126
|
heiborlem1 |
|
128 |
67 121 124 127
|
syl3anc |
|
129 |
85 66
|
sselid |
|
130 |
129
|
elpwid |
|
131 |
1
|
mopnuni |
|
132 |
105 131
|
syl |
|
133 |
132
|
adantr |
|
134 |
130 133
|
sseqtrd |
|
135 |
134
|
sselda |
|
136 |
135
|
adantrr |
|
137 |
64
|
adantl |
|
138 |
|
id |
|
139 |
|
snfi |
|
140 |
|
inss2 |
|
141 |
|
ovex |
|
142 |
141
|
unisn |
|
143 |
|
uniiun |
|
144 |
142 143
|
eqtr3i |
|
145 |
140 144
|
sseqtri |
|
146 |
|
vex |
|
147 |
1 2 146
|
heiborlem1 |
|
148 |
139 145 147
|
mp3an12 |
|
149 |
|
eleq1 |
|
150 |
141 149
|
rexsn |
|
151 |
148 150
|
sylib |
|
152 |
|
ovex |
|
153 |
1 2 3 46 152
|
heiborlem2 |
|
154 |
153
|
biimpri |
|
155 |
137 138 151 154
|
syl3an |
|
156 |
155
|
3expb |
|
157 |
|
simprr |
|
158 |
136 156 157
|
jca32 |
|
159 |
158
|
ex |
|
160 |
159
|
reximdv2 |
|
161 |
128 160
|
mpd |
|
162 |
161
|
ralrimiva |
|
163 |
1
|
fvexi |
|
164 |
163
|
uniex |
|
165 |
|
breq1 |
|
166 |
|
oveq1 |
|
167 |
166
|
ineq2d |
|
168 |
167
|
eleq1d |
|
169 |
165 168
|
anbi12d |
|
170 |
164 169
|
axcc4dom |
|
171 |
61 162 170
|
syl2anc |
|
172 |
|
exsimpr |
|
173 |
171 172
|
syl |
|