Metamath Proof Explorer


Theorem infxpenlem

Description: Lemma for infxpen . (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses leweon.1 L=xy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndy
r0weon.1 R=zw|zOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
infxpen.1 Q=Ra×a×a×a
infxpen.2 φaOnmaωmm×mmωamama
infxpen.3 M=1stw2ndw
infxpen.4 J=OrdIsoQa×a
Assertion infxpenlem AOnωAA×AA

Proof

Step Hyp Ref Expression
1 leweon.1 L=xy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndy
2 r0weon.1 R=zw|zOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
3 infxpen.1 Q=Ra×a×a×a
4 infxpen.2 φaOnmaωmm×mmωamama
5 infxpen.3 M=1stw2ndw
6 infxpen.4 J=OrdIsoQa×a
7 sseq2 a=mωaωm
8 xpeq12 a=ma=ma×a=m×m
9 8 anidms a=ma×a=m×m
10 id a=ma=m
11 9 10 breq12d a=ma×aam×mm
12 7 11 imbi12d a=mωaa×aaωmm×mm
13 sseq2 a=AωaωA
14 xpeq12 a=Aa=Aa×a=A×A
15 14 anidms a=Aa×a=A×A
16 id a=Aa=A
17 15 16 breq12d a=Aa×aaA×AA
18 13 17 imbi12d a=Aωaa×aaωAA×AA
19 vex aV
20 19 19 xpex a×aV
21 simpll aOnmaωmm×mmωamamaaOn
22 4 21 sylbi φaOn
23 onss aOnaOn
24 22 23 syl φaOn
25 xpss12 aOnaOna×aOn×On
26 24 24 25 syl2anc φa×aOn×On
27 1 2 r0weon RWeOn×OnRSeOn×On
28 27 simpli RWeOn×On
29 wess a×aOn×OnRWeOn×OnRWea×a
30 26 28 29 mpisyl φRWea×a
31 weinxp RWea×aRa×a×a×aWea×a
32 30 31 sylib φRa×a×a×aWea×a
33 weeq1 Q=Ra×a×a×aQWea×aRa×a×a×aWea×a
34 3 33 ax-mp QWea×aRa×a×a×aWea×a
35 32 34 sylibr φQWea×a
36 6 oiiso a×aVQWea×aJIsomE,QdomJa×a
37 20 35 36 sylancr φJIsomE,QdomJa×a
38 isof1o JIsomE,QdomJa×aJ:domJ1-1 ontoa×a
39 f1ocnv J:domJ1-1 ontoa×aJ-1:a×a1-1 ontodomJ
40 f1of1 J-1:a×a1-1 ontodomJJ-1:a×a1-1domJ
41 37 38 39 40 4syl φJ-1:a×a1-1domJ
42 f1f1orn J-1:a×a1-1domJJ-1:a×a1-1 ontoranJ-1
43 20 f1oen J-1:a×a1-1 ontoranJ-1a×aranJ-1
44 41 42 43 3syl φa×aranJ-1
45 f1ofn J-1:a×a1-1 ontodomJJ-1Fna×a
46 37 38 39 45 4syl φJ-1Fna×a
47 37 adantr φwa×aJIsomE,QdomJa×a
48 38 39 40 3syl JIsomE,QdomJa×aJ-1:a×a1-1domJ
49 cnvimass Q-1wdomQ
50 inss2 Ra×a×a×aa×a×a×a
51 3 50 eqsstri Qa×a×a×a
52 dmss Qa×a×a×adomQdoma×a×a×a
53 51 52 ax-mp domQdoma×a×a×a
54 dmxpid doma×a×a×a=a×a
55 53 54 sseqtri domQa×a
56 49 55 sstri Q-1wa×a
57 f1ores J-1:a×a1-1domJQ-1wa×aJ-1Q-1w:Q-1w1-1 ontoJ-1Q-1w
58 48 56 57 sylancl JIsomE,QdomJa×aJ-1Q-1w:Q-1w1-1 ontoJ-1Q-1w
59 20 20 xpex a×a×a×aV
60 59 inex2 Ra×a×a×aV
61 3 60 eqeltri QV
62 61 cnvex Q-1V
63 62 imaex Q-1wV
64 63 f1oen J-1Q-1w:Q-1w1-1 ontoJ-1Q-1wQ-1wJ-1Q-1w
65 47 58 64 3syl φwa×aQ-1wJ-1Q-1w
66 sseqin2 Q-1wa×aa×aQ-1w=Q-1w
67 56 66 mpbi a×aQ-1w=Q-1w
68 67 imaeq2i J-1a×aQ-1w=J-1Q-1w
69 isocnv JIsomE,QdomJa×aJ-1IsomQ,Ea×adomJ
70 47 69 syl φwa×aJ-1IsomQ,Ea×adomJ
71 simpr φwa×awa×a
72 isoini J-1IsomQ,Ea×adomJwa×aJ-1a×aQ-1w=domJE-1J-1w
73 70 71 72 syl2anc φwa×aJ-1a×aQ-1w=domJE-1J-1w
74 fvex J-1wV
75 74 epini E-1J-1w=J-1w
76 75 ineq2i domJE-1J-1w=domJJ-1w
77 6 oicl OrddomJ
78 f1of J-1:a×a1-1 ontodomJJ-1:a×adomJ
79 37 38 39 78 4syl φJ-1:a×adomJ
80 79 ffvelcdmda φwa×aJ-1wdomJ
81 ordelss OrddomJJ-1wdomJJ-1wdomJ
82 77 80 81 sylancr φwa×aJ-1wdomJ
83 sseqin2 J-1wdomJdomJJ-1w=J-1w
84 82 83 sylib φwa×adomJJ-1w=J-1w
85 76 84 eqtrid φwa×adomJE-1J-1w=J-1w
86 73 85 eqtrd φwa×aJ-1a×aQ-1w=J-1w
87 68 86 eqtr3id φwa×aJ-1Q-1w=J-1w
88 65 87 breqtrd φwa×aQ-1wJ-1w
89 88 ensymd φwa×aJ-1wQ-1w
90 fvex 1stwV
91 fvex 2ndwV
92 90 91 unex 1stw2ndwV
93 5 92 eqeltri MV
94 93 sucex sucMV
95 94 94 xpex sucM×sucMV
96 xpss a×aV×V
97 simp3 φwa×azQ-1wzQ-1w
98 vex zV
99 98 eliniseg wVzQ-1wzQw
100 99 elv zQ-1wzQw
101 97 100 sylib φwa×azQ-1wzQw
102 3 breqi zQwzRa×a×a×aw
103 brin zRa×a×a×awzRwza×a×a×aw
104 102 103 bitri zQwzRwza×a×a×aw
105 104 simprbi zQwza×a×a×aw
106 brxp za×a×a×awza×awa×a
107 106 simplbi za×a×a×awza×a
108 101 105 107 3syl φwa×azQ-1wza×a
109 96 108 sselid φwa×azQ-1wzV×V
110 22 adantr φwa×aaOn
111 110 3adant3 φwa×azQ-1waOn
112 xp1st za×a1stza
113 onelon aOn1stza1stzOn
114 112 113 sylan2 aOnza×a1stzOn
115 111 108 114 syl2anc φwa×azQ-1w1stzOn
116 eloni aOnOrda
117 elxp7 wa×awV×V1stwa2ndwa
118 117 simprbi wa×a1stwa2ndwa
119 ordunel Orda1stwa2ndwa1stw2ndwa
120 119 3expib Orda1stwa2ndwa1stw2ndwa
121 116 118 120 syl2im aOnwa×a1stw2ndwa
122 110 71 121 sylc φwa×a1stw2ndwa
123 5 122 eqeltrid φwa×aMa
124 simprr aOnmaωmm×mmωamamamama
125 4 124 sylbi φmama
126 simprl aOnmaωmm×mmωamamaωa
127 4 126 sylbi φωa
128 iscard carda=aaOnmama
129 cardlim ωcardaLimcarda
130 sseq2 carda=aωcardaωa
131 limeq carda=aLimcardaLima
132 130 131 bibi12d carda=aωcardaLimcardaωaLima
133 129 132 mpbii carda=aωaLima
134 128 133 sylbir aOnmamaωaLima
135 134 biimpa aOnmamaωaLima
136 22 125 127 135 syl21anc φLima
137 136 adantr φwa×aLima
138 limsuc LimaMasucMa
139 137 138 syl φwa×aMasucMa
140 123 139 mpbid φwa×asucMa
141 onelon aOnsucMasucMOn
142 22 140 141 syl2an2r φwa×asucMOn
143 142 3adant3 φwa×azQ-1wsucMOn
144 ssun1 1stz1stz2ndz
145 144 a1i φwa×azQ-1w1stz1stz2ndz
146 104 simplbi zQwzRw
147 df-br zRwzwR
148 2 eleq2i zwRzwzw|zOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
149 opabidw zwzw|zOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLwzOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
150 147 148 149 3bitri zRwzOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
151 150 simprbi zRw1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
152 simpl 1stz2ndz=1stw2ndwzLw1stz2ndz=1stw2ndw
153 152 orim2i 1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw1stz2ndz1stw2ndw1stz2ndz=1stw2ndw
154 151 153 syl zRw1stz2ndz1stw2ndw1stz2ndz=1stw2ndw
155 fvex 1stzV
156 fvex 2ndzV
157 155 156 unex 1stz2ndzV
158 157 elsuc 1stz2ndzsuc1stw2ndw1stz2ndz1stw2ndw1stz2ndz=1stw2ndw
159 154 158 sylibr zRw1stz2ndzsuc1stw2ndw
160 suceq M=1stw2ndwsucM=suc1stw2ndw
161 5 160 ax-mp sucM=suc1stw2ndw
162 159 161 eleqtrrdi zRw1stz2ndzsucM
163 101 146 162 3syl φwa×azQ-1w1stz2ndzsucM
164 ontr2 1stzOnsucMOn1stz1stz2ndz1stz2ndzsucM1stzsucM
165 164 imp 1stzOnsucMOn1stz1stz2ndz1stz2ndzsucM1stzsucM
166 115 143 145 163 165 syl22anc φwa×azQ-1w1stzsucM
167 xp2nd za×a2ndza
168 onelon aOn2ndza2ndzOn
169 167 168 sylan2 aOnza×a2ndzOn
170 111 108 169 syl2anc φwa×azQ-1w2ndzOn
171 ssun2 2ndz1stz2ndz
172 171 a1i φwa×azQ-1w2ndz1stz2ndz
173 ontr2 2ndzOnsucMOn2ndz1stz2ndz1stz2ndzsucM2ndzsucM
174 173 imp 2ndzOnsucMOn2ndz1stz2ndz1stz2ndzsucM2ndzsucM
175 170 143 172 163 174 syl22anc φwa×azQ-1w2ndzsucM
176 elxp7 zsucM×sucMzV×V1stzsucM2ndzsucM
177 176 biimpri zV×V1stzsucM2ndzsucMzsucM×sucM
178 109 166 175 177 syl12anc φwa×azQ-1wzsucM×sucM
179 178 3expia φwa×azQ-1wzsucM×sucM
180 179 ssrdv φwa×aQ-1wsucM×sucM
181 ssdomg sucM×sucMVQ-1wsucM×sucMQ-1wsucM×sucM
182 95 180 181 mpsyl φwa×aQ-1wsucM×sucM
183 127 adantr φwa×aωa
184 nnfi sucMωsucMFin
185 xpfi sucMFinsucMFinsucM×sucMFin
186 185 anidms sucMFinsucM×sucMFin
187 isfinite sucM×sucMFinsucM×sucMω
188 186 187 sylib sucMFinsucM×sucMω
189 184 188 syl sucMωsucM×sucMω
190 ssdomg aVωaωa
191 190 elv ωaωa
192 sdomdomtr sucM×sucMωωasucM×sucMa
193 189 191 192 syl2an sucMωωasucM×sucMa
194 193 expcom ωasucMωsucM×sucMa
195 183 194 syl φwa×asucMωsucM×sucMa
196 breq1 m=sucMmasucMa
197 125 adantr φwa×amama
198 196 197 140 rspcdva φwa×asucMa
199 omelon ωOn
200 ontri1 ωOnsucMOnωsucM¬sucMω
201 199 142 200 sylancr φwa×aωsucM¬sucMω
202 sseq2 m=sucMωmωsucM
203 xpeq12 m=sucMm=sucMm×m=sucM×sucM
204 203 anidms m=sucMm×m=sucM×sucM
205 id m=sucMm=sucM
206 204 205 breq12d m=sucMm×mmsucM×sucMsucM
207 202 206 imbi12d m=sucMωmm×mmωsucMsucM×sucMsucM
208 simplr aOnmaωmm×mmωamamamaωmm×mm
209 4 208 sylbi φmaωmm×mm
210 209 adantr φwa×amaωmm×mm
211 207 210 140 rspcdva φwa×aωsucMsucM×sucMsucM
212 201 211 sylbird φwa×a¬sucMωsucM×sucMsucM
213 ensdomtr sucM×sucMsucMsucMasucM×sucMa
214 213 expcom sucMasucM×sucMsucMsucM×sucMa
215 198 212 214 sylsyld φwa×a¬sucMωsucM×sucMa
216 195 215 pm2.61d φwa×asucM×sucMa
217 domsdomtr Q-1wsucM×sucMsucM×sucMaQ-1wa
218 182 216 217 syl2anc φwa×aQ-1wa
219 ensdomtr J-1wQ-1wQ-1waJ-1wa
220 89 218 219 syl2anc φwa×aJ-1wa
221 ordelon OrddomJJ-1wdomJJ-1wOn
222 77 80 221 sylancr φwa×aJ-1wOn
223 onenon aOnadomcard
224 110 223 syl φwa×aadomcard
225 cardsdomel J-1wOnadomcardJ-1waJ-1wcarda
226 222 224 225 syl2anc φwa×aJ-1waJ-1wcarda
227 220 226 mpbid φwa×aJ-1wcarda
228 eleq2 carda=aJ-1wcardaJ-1wa
229 128 228 sylbir aOnmamaJ-1wcardaJ-1wa
230 22 197 229 syl2an2r φwa×aJ-1wcardaJ-1wa
231 227 230 mpbid φwa×aJ-1wa
232 231 ralrimiva φwa×aJ-1wa
233 fnfvrnss J-1Fna×awa×aJ-1waranJ-1a
234 ssdomg aVranJ-1aranJ-1a
235 19 233 234 mpsyl J-1Fna×awa×aJ-1waranJ-1a
236 46 232 235 syl2anc φranJ-1a
237 endomtr a×aranJ-1ranJ-1aa×aa
238 44 236 237 syl2anc φa×aa
239 4 238 sylbir aOnmaωmm×mmωamamaa×aa
240 df1o2 1𝑜=
241 1onn 1𝑜ω
242 240 241 eqeltrri ω
243 nnsdom ωω
244 sdomdom ωω
245 242 243 244 mp2b ω
246 domtr ωωaa
247 245 191 246 sylancr ωaa
248 0ex V
249 19 248 xpsnen a×a
250 249 ensymi aa×
251 19 xpdom2 aa×a×a
252 endomtr aa×a×a×aaa×a
253 250 251 252 sylancr aaa×a
254 247 253 syl ωaaa×a
255 254 ad2antrl aOnmaωmm×mmωamamaaa×a
256 sbth a×aaaa×aa×aa
257 239 255 256 syl2anc aOnmaωmm×mmωamamaa×aa
258 257 expr aOnmaωmm×mmωamamaa×aa
259 simplr aOnmaωmm×mmωa¬mamamaωmm×mm
260 simpll aOnmaωmm×mmωa¬mamaaOn
261 simprr aOnmaωmm×mmωa¬mama¬mama
262 rexnal ma¬ma¬mama
263 onelss aOnmama
264 ssdomg aOnmama
265 263 264 syld aOnmama
266 bren2 mama¬ma
267 266 simplbi2 ma¬mama
268 265 267 syl6 aOnma¬mama
269 268 reximdvai aOnma¬mamama
270 262 269 biimtrrid aOn¬mamamama
271 260 261 270 sylc aOnmaωmm×mmωa¬mamamama
272 r19.29 maωmm×mmmamamaωmm×mmma
273 259 271 272 syl2anc aOnmaωmm×mmωa¬mamamaωmm×mmma
274 simprl aOnmaωmm×mmωa¬mamaωa
275 onelon aOnmamOn
276 ensym maam
277 domentr ωaamωm
278 191 276 277 syl2an ωamaωm
279 domnsym ωm¬mω
280 nnsdom mωmω
281 279 280 nsyl ωm¬mω
282 ontri1 ωOnmOnωm¬mω
283 199 282 mpan mOnωm¬mω
284 281 283 imbitrrid mOnωmωm
285 275 278 284 syl2im aOnmaωamaωm
286 285 expd aOnmaωamaωm
287 286 impcom ωaaOnmamaωm
288 287 imim1d ωaaOnmaωmm×mmmam×mm
289 288 imp32 ωaaOnmaωmm×mmmam×mm
290 entr m×mmmam×ma
291 290 ancoms mam×mmm×ma
292 xpen amama×am×m
293 292 anidms ama×am×m
294 entr a×am×mm×maa×aa
295 293 294 sylan amm×maa×aa
296 276 291 295 syl2an2r mam×mma×aa
297 296 ex mam×mma×aa
298 297 ad2antll ωaaOnmaωmm×mmmam×mma×aa
299 289 298 mpd ωaaOnmaωmm×mmmaa×aa
300 299 ex ωaaOnmaωmm×mmmaa×aa
301 300 expr ωaaOnmaωmm×mmmaa×aa
302 301 rexlimdv ωaaOnmaωmm×mmmaa×aa
303 274 260 302 syl2anc aOnmaωmm×mmωa¬mamamaωmm×mmmaa×aa
304 273 303 mpd aOnmaωmm×mmωa¬mamaa×aa
305 304 expr aOnmaωmm×mmωa¬mamaa×aa
306 258 305 pm2.61d aOnmaωmm×mmωaa×aa
307 306 exp31 aOnmaωmm×mmωaa×aa
308 12 18 307 tfis3 AOnωAA×AA
309 308 imp AOnωAA×AA