Metamath Proof Explorer


Theorem ioodvbdlimc1lem1

Description: If F has bounded derivative on ( A (,) B ) then a sequence of points in its image converges to its limsup . (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses ioodvbdlimc1lem1.a φA
ioodvbdlimc1lem1.b φB
ioodvbdlimc1lem1.altb φA<B
ioodvbdlimc1lem1.f φF:ABcn
ioodvbdlimc1lem1.dmdv φdomF=AB
ioodvbdlimc1lem1.dvbd φyxABFxy
ioodvbdlimc1lem1.m φM
ioodvbdlimc1lem1.r φR:MAB
ioodvbdlimc1lem1.s S=jMFRj
ioodvbdlimc1lem1.rcnv φRdom
ioodvbdlimc1lem1.k K=supkM|ikRiRk<xsupranzABFz<+1<
Assertion ioodvbdlimc1lem1 φSlim supS

Proof

Step Hyp Ref Expression
1 ioodvbdlimc1lem1.a φA
2 ioodvbdlimc1lem1.b φB
3 ioodvbdlimc1lem1.altb φA<B
4 ioodvbdlimc1lem1.f φF:ABcn
5 ioodvbdlimc1lem1.dmdv φdomF=AB
6 ioodvbdlimc1lem1.dvbd φyxABFxy
7 ioodvbdlimc1lem1.m φM
8 ioodvbdlimc1lem1.r φR:MAB
9 ioodvbdlimc1lem1.s S=jMFRj
10 ioodvbdlimc1lem1.rcnv φRdom
11 ioodvbdlimc1lem1.k K=supkM|ikRiRk<xsupranzABFz<+1<
12 eqid M=M
13 cncff F:ABcnF:AB
14 4 13 syl φF:AB
15 14 adantr φjMF:AB
16 8 ffvelcdmda φjMRjAB
17 15 16 ffvelcdmd φjMFRj
18 17 9 fmptd φS:M
19 ssrab2 kM|ikRiRk<xsupranzABFz<+1M
20 rpre x+x
21 20 adantl φx+x
22 2fveq3 z=xFz=Fx
23 22 cbvmptv zABFz=xABFx
24 23 rneqi ranzABFz=ranxABFx
25 24 supeq1i supranzABFz<=supranxABFx<
26 ioomidp ABA<BA+B2AB
27 1 2 3 26 syl3anc φA+B2AB
28 27 ne0d φAB
29 ioossre AB
30 29 a1i φAB
31 dvfre F:ABABF:domF
32 14 30 31 syl2anc φF:domF
33 5 feq2d φF:domFF:AB
34 32 33 mpbid φF:AB
35 ax-resscn
36 35 a1i φ
37 34 36 fssd φF:AB
38 37 ffvelcdmda φxABFx
39 38 abscld φxABFx
40 eqid xABFx=xABFx
41 eqid supranxABFx<=supranxABFx<
42 28 39 6 40 41 suprnmpt φsupranxABFx<xABFxsupranxABFx<
43 42 simpld φsupranxABFx<
44 25 43 eqeltrid φsupranzABFz<
45 44 adantr φx+supranzABFz<
46 peano2re supranzABFz<supranzABFz<+1
47 45 46 syl φx+supranzABFz<+1
48 0red φ0
49 1red φ1
50 48 49 readdcld φ0+1
51 44 46 syl φsupranzABFz<+1
52 48 ltp1d φ0<0+1
53 37 27 ffvelcdmd φFA+B2
54 53 abscld φFA+B2
55 53 absge0d φ0FA+B2
56 42 simprd φxABFxsupranxABFx<
57 2fveq3 y=xFy=Fx
58 25 a1i y=xsupranzABFz<=supranxABFx<
59 57 58 breq12d y=xFysupranzABFz<FxsupranxABFx<
60 59 cbvralvw yABFysupranzABFz<xABFxsupranxABFx<
61 56 60 sylibr φyABFysupranzABFz<
62 2fveq3 y=A+B2Fy=FA+B2
63 62 breq1d y=A+B2FysupranzABFz<FA+B2supranzABFz<
64 63 rspcva A+B2AByABFysupranzABFz<FA+B2supranzABFz<
65 27 61 64 syl2anc φFA+B2supranzABFz<
66 48 54 44 55 65 letrd φ0supranzABFz<
67 48 44 49 66 leadd1dd φ0+1supranzABFz<+1
68 48 50 51 52 67 ltletrd φ0<supranzABFz<+1
69 68 gt0ne0d φsupranzABFz<+10
70 69 adantr φx+supranzABFz<+10
71 21 47 70 redivcld φx+xsupranzABFz<+1
72 rpgt0 x+0<x
73 72 adantl φx+0<x
74 68 adantr φx+0<supranzABFz<+1
75 21 47 73 74 divgt0d φx+0<xsupranzABFz<+1
76 71 75 elrpd φx+xsupranzABFz<+1+
77 7 adantr φx+M
78 10 adantr φx+Rdom
79 12 climcau MRdomw+kMikRiRk<w
80 77 78 79 syl2anc φx+w+kMikRiRk<w
81 breq2 w=xsupranzABFz<+1RiRk<wRiRk<xsupranzABFz<+1
82 81 rexralbidv w=xsupranzABFz<+1kMikRiRk<wkMikRiRk<xsupranzABFz<+1
83 82 rspcva xsupranzABFz<+1+w+kMikRiRk<wkMikRiRk<xsupranzABFz<+1
84 76 80 83 syl2anc φx+kMikRiRk<xsupranzABFz<+1
85 rabn0 kM|ikRiRk<xsupranzABFz<+1kMikRiRk<xsupranzABFz<+1
86 84 85 sylibr φx+kM|ikRiRk<xsupranzABFz<+1
87 infssuzcl kM|ikRiRk<xsupranzABFz<+1MkM|ikRiRk<xsupranzABFz<+1supkM|ikRiRk<xsupranzABFz<+1<kM|ikRiRk<xsupranzABFz<+1
88 19 86 87 sylancr φx+supkM|ikRiRk<xsupranzABFz<+1<kM|ikRiRk<xsupranzABFz<+1
89 11 88 eqeltrid φx+KkM|ikRiRk<xsupranzABFz<+1
90 19 89 sselid φx+KM
91 2fveq3 j=iFRj=FRi
92 uzss KMKM
93 90 92 syl φx+KM
94 93 sselda φx+iKiM
95 14 ad2antrr φx+iKF:AB
96 8 ad2antrr φx+iKR:MAB
97 96 94 ffvelcdmd φx+iKRiAB
98 95 97 ffvelcdmd φx+iKFRi
99 9 91 94 98 fvmptd3 φx+iKSi=FRi
100 2fveq3 j=KFRj=FRK
101 90 adantr φx+iKKM
102 96 101 ffvelcdmd φx+iKRKAB
103 95 102 ffvelcdmd φx+iKFRK
104 9 100 101 103 fvmptd3 φx+iKSK=FRK
105 99 104 oveq12d φx+iKSiSK=FRiFRK
106 105 fveq2d φx+iKSiSK=FRiFRK
107 98 recnd φx+iKFRi
108 103 recnd φx+iKFRK
109 107 108 subcld φx+iKFRiFRK
110 109 abscld φx+iKFRiFRK
111 110 adantr φx+iKRi<RKFRiFRK
112 44 ad2antrr φx+iKsupranzABFz<
113 112 adantr φx+iKRi<RKsupranzABFz<
114 8 adantr φx+R:MAB
115 114 90 ffvelcdmd φx+RKAB
116 29 115 sselid φx+RK
117 116 ad2antrr φx+iKRi<RKRK
118 29 97 sselid φx+iKRi
119 118 adantr φx+iKRi<RKRi
120 117 119 resubcld φx+iKRi<RKRKRi
121 113 120 remulcld φx+iKRi<RKsupranzABFz<RKRi
122 20 ad3antlr φx+iKRi<RKx
123 107 adantr φx+iKRi<RKFRi
124 108 adantr φx+iKRi<RKFRK
125 123 124 abssubd φx+iKRi<RKFRiFRK=FRKFRi
126 1 ad3antrrr φx+iKRi<RKA
127 2 ad3antrrr φx+iKRi<RKB
128 95 adantr φx+iKRi<RKF:AB
129 5 ad3antrrr φx+iKRi<RKdomF=AB
130 61 ad3antrrr φx+iKRi<RKyABFysupranzABFz<
131 97 adantr φx+iKRi<RKRiAB
132 118 rexrd φx+iKRi*
133 132 adantr φx+iKRi<RKRi*
134 2 rexrd φB*
135 134 ad2antrr φx+iKB*
136 135 adantr φx+iKRi<RKB*
137 simpr φx+iKRi<RKRi<RK
138 1 rexrd φA*
139 138 adantr φx+A*
140 134 adantr φx+B*
141 iooltub A*B*RKABRK<B
142 139 140 115 141 syl3anc φx+RK<B
143 142 ad2antrr φx+iKRi<RKRK<B
144 133 136 117 137 143 eliood φx+iKRi<RKRKRiB
145 126 127 128 129 113 130 131 144 dvbdfbdioolem1 φx+iKRi<RKFRKFRisupranzABFz<RKRiFRKFRisupranzABFz<BA
146 145 simpld φx+iKRi<RKFRKFRisupranzABFz<RKRi
147 125 146 eqbrtrd φx+iKRi<RKFRiFRKsupranzABFz<RKRi
148 113 46 syl φx+iKRi<RKsupranzABFz<+1
149 148 120 remulcld φx+iKRi<RKsupranzABFz<+1RKRi
150 119 117 posdifd φx+iKRi<RKRi<RK0<RKRi
151 137 150 mpbid φx+iKRi<RK0<RKRi
152 120 151 elrpd φx+iKRi<RKRKRi+
153 113 ltp1d φx+iKRi<RKsupranzABFz<<supranzABFz<+1
154 113 148 152 153 ltmul1dd φx+iKRi<RKsupranzABFz<RKRi<supranzABFz<+1RKRi
155 29 102 sselid φx+iKRK
156 118 155 resubcld φx+iKRiRK
157 156 recnd φx+iKRiRK
158 157 abscld φx+iKRiRK
159 158 adantr φx+iKRi<RKRiRK
160 71 ad2antrr φx+iKRi<RKxsupranzABFz<+1
161 120 leabsd φx+iKRi<RKRKRiRKRi
162 117 recnd φx+iKRi<RKRK
163 118 recnd φx+iKRi
164 163 adantr φx+iKRi<RKRi
165 162 164 abssubd φx+iKRi<RKRKRi=RiRK
166 161 165 breqtrd φx+iKRi<RKRKRiRiRK
167 fveq2 k=Kk=K
168 fveq2 k=KRk=RK
169 168 oveq2d k=KRiRk=RiRK
170 169 fveq2d k=KRiRk=RiRK
171 170 breq1d k=KRiRk<xsupranzABFz<+1RiRK<xsupranzABFz<+1
172 167 171 raleqbidv k=KikRiRk<xsupranzABFz<+1iKRiRK<xsupranzABFz<+1
173 172 elrab KkM|ikRiRk<xsupranzABFz<+1KMiKRiRK<xsupranzABFz<+1
174 89 173 sylib φx+KMiKRiRK<xsupranzABFz<+1
175 174 simprd φx+iKRiRK<xsupranzABFz<+1
176 175 r19.21bi φx+iKRiRK<xsupranzABFz<+1
177 176 adantr φx+iKRi<RKRiRK<xsupranzABFz<+1
178 120 159 160 166 177 lelttrd φx+iKRi<RKRKRi<xsupranzABFz<+1
179 51 68 elrpd φsupranzABFz<+1+
180 179 ad3antrrr φx+iKRi<RKsupranzABFz<+1+
181 120 122 180 ltmuldiv2d φx+iKRi<RKsupranzABFz<+1RKRi<xRKRi<xsupranzABFz<+1
182 178 181 mpbird φx+iKRi<RKsupranzABFz<+1RKRi<x
183 121 149 122 154 182 lttrd φx+iKRi<RKsupranzABFz<RKRi<x
184 111 121 122 147 183 lelttrd φx+iKRi<RKFRiFRK<x
185 fveq2 Ri=RKFRi=FRK
186 185 oveq1d Ri=RKFRiFRK=FRKFRK
187 108 subidd φx+iKFRKFRK=0
188 186 187 sylan9eqr φx+iKRi=RKFRiFRK=0
189 188 abs00bd φx+iKRi=RKFRiFRK=0
190 72 ad3antlr φx+iKRi=RK0<x
191 189 190 eqbrtrd φx+iKRi=RKFRiFRK<x
192 191 adantlr φx+iK¬Ri<RKRi=RKFRiFRK<x
193 simpll φx+iK¬Ri<RK¬Ri=RKφx+iK
194 155 ad2antrr φx+iK¬Ri<RK¬Ri=RKRK
195 118 ad2antrr φx+iK¬Ri<RK¬Ri=RKRi
196 id RK=RiRK=Ri
197 196 eqcomd RK=RiRi=RK
198 197 necon3bi ¬Ri=RKRKRi
199 198 adantl φx+iK¬Ri<RK¬Ri=RKRKRi
200 simplr φx+iK¬Ri<RK¬Ri=RK¬Ri<RK
201 194 195 199 200 lttri5d φx+iK¬Ri<RK¬Ri=RKRK<Ri
202 110 adantr φx+iKRK<RiFRiFRK
203 112 156 remulcld φx+iKsupranzABFz<RiRK
204 203 adantr φx+iKRK<RisupranzABFz<RiRK
205 20 ad3antlr φx+iKRK<Rix
206 1 ad3antrrr φx+iKRK<RiA
207 2 ad3antrrr φx+iKRK<RiB
208 95 adantr φx+iKRK<RiF:AB
209 5 ad3antrrr φx+iKRK<RidomF=AB
210 44 ad3antrrr φx+iKRK<RisupranzABFz<
211 61 ad3antrrr φx+iKRK<RiyABFysupranzABFz<
212 102 adantr φx+iKRK<RiRKAB
213 116 rexrd φx+RK*
214 213 ad2antrr φx+iKRK<RiRK*
215 207 rexrd φx+iKRK<RiB*
216 118 adantr φx+iKRK<RiRi
217 simpr φx+iKRK<RiRK<Ri
218 138 ad2antrr φx+iKA*
219 iooltub A*B*RiABRi<B
220 218 135 97 219 syl3anc φx+iKRi<B
221 220 adantr φx+iKRK<RiRi<B
222 214 215 216 217 221 eliood φx+iKRK<RiRiRKB
223 206 207 208 209 210 211 212 222 dvbdfbdioolem1 φx+iKRK<RiFRiFRKsupranzABFz<RiRKFRiFRKsupranzABFz<BA
224 223 simpld φx+iKRK<RiFRiFRKsupranzABFz<RiRK
225 1red φx+iKRK<Ri1
226 210 225 readdcld φx+iKRK<RisupranzABFz<+1
227 155 adantr φx+iKRK<RiRK
228 216 227 resubcld φx+iKRK<RiRiRK
229 226 228 remulcld φx+iKRK<RisupranzABFz<+1RiRK
230 210 46 syl φx+iKRK<RisupranzABFz<+1
231 227 216 posdifd φx+iKRK<RiRK<Ri0<RiRK
232 217 231 mpbid φx+iKRK<Ri0<RiRK
233 228 232 elrpd φx+iKRK<RiRiRK+
234 210 ltp1d φx+iKRK<RisupranzABFz<<supranzABFz<+1
235 210 230 233 234 ltmul1dd φx+iKRK<RisupranzABFz<RiRK<supranzABFz<+1RiRK
236 158 adantr φx+iKRK<RiRiRK
237 71 ad2antrr φx+iKRK<RixsupranzABFz<+1
238 228 leabsd φx+iKRK<RiRiRKRiRK
239 176 adantr φx+iKRK<RiRiRK<xsupranzABFz<+1
240 228 236 237 238 239 lelttrd φx+iKRK<RiRiRK<xsupranzABFz<+1
241 179 ad3antrrr φx+iKRK<RisupranzABFz<+1+
242 228 205 241 ltmuldiv2d φx+iKRK<RisupranzABFz<+1RiRK<xRiRK<xsupranzABFz<+1
243 240 242 mpbird φx+iKRK<RisupranzABFz<+1RiRK<x
244 204 229 205 235 243 lttrd φx+iKRK<RisupranzABFz<RiRK<x
245 202 204 205 224 244 lelttrd φx+iKRK<RiFRiFRK<x
246 193 201 245 syl2anc φx+iK¬Ri<RK¬Ri=RKFRiFRK<x
247 192 246 pm2.61dan φx+iK¬Ri<RKFRiFRK<x
248 184 247 pm2.61dan φx+iKFRiFRK<x
249 106 248 eqbrtrd φx+iKSiSK<x
250 249 ralrimiva φx+iKSiSK<x
251 fveq2 k=KSk=SK
252 251 oveq2d k=KSiSk=SiSK
253 252 fveq2d k=KSiSk=SiSK
254 253 breq1d k=KSiSk<xSiSK<x
255 167 254 raleqbidv k=KikSiSk<xiKSiSK<x
256 255 rspcev KMiKSiSK<xkMikSiSk<x
257 90 250 256 syl2anc φx+kMikSiSk<x
258 257 ralrimiva φx+kMikSiSk<x
259 12 18 258 caurcvg φSlim supS