Metamath Proof Explorer


Theorem loglesqrt

Description: An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016) (Proof shortened by AV, 2-Aug-2021)

Ref Expression
Assertion loglesqrt A0AlogA+1A

Proof

Step Hyp Ref Expression
1 0re 0
2 1 a1i A0A0
3 simpl A0AA
4 elicc2 0Ax0Ax0xxA
5 1 3 4 sylancr A0Ax0Ax0xxA
6 5 biimpa A0Ax0Ax0xxA
7 6 simp1d A0Ax0Ax
8 6 simp2d A0Ax0A0x
9 7 8 ge0p1rpd A0Ax0Ax+1+
10 9 fvresd A0Ax0Alog+x+1=logx+1
11 10 mpteq2dva A0Ax0Alog+x+1=x0Alogx+1
12 eqid TopOpenfld=TopOpenfld
13 12 cnfldtopon TopOpenfldTopOn
14 7 ex A0Ax0Ax
15 14 ssrdv A0A0A
16 ax-resscn
17 15 16 sstrdi A0A0A
18 resttopon TopOpenfldTopOn0ATopOpenfld𝑡0ATopOn0A
19 13 17 18 sylancr A0ATopOpenfld𝑡0ATopOn0A
20 9 fmpttd A0Ax0Ax+1:0A+
21 rpssre +
22 21 16 sstri +
23 12 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
24 23 a1i A0A+TopOpenfld×tTopOpenfldCnTopOpenfld
25 ssid
26 cncfmptid 0Ax0Ax:0Acn
27 17 25 26 sylancl A0Ax0Ax:0Acn
28 1cnd A0A1
29 25 a1i A0A
30 cncfmptc 10Ax0A1:0Acn
31 28 17 29 30 syl3anc A0Ax0A1:0Acn
32 12 24 27 31 cncfmpt2f A0Ax0Ax+1:0Acn
33 cncfcdm +x0Ax+1:0Acnx0Ax+1:0Acn+x0Ax+1:0A+
34 22 32 33 sylancr A0Ax0Ax+1:0Acn+x0Ax+1:0A+
35 20 34 mpbird A0Ax0Ax+1:0Acn+
36 eqid TopOpenfld𝑡0A=TopOpenfld𝑡0A
37 eqid TopOpenfld𝑡+=TopOpenfld𝑡+
38 12 36 37 cncfcn 0A+0Acn+=TopOpenfld𝑡0ACnTopOpenfld𝑡+
39 17 22 38 sylancl A0A0Acn+=TopOpenfld𝑡0ACnTopOpenfld𝑡+
40 35 39 eleqtrd A0Ax0Ax+1TopOpenfld𝑡0ACnTopOpenfld𝑡+
41 relogcn log+:+cn
42 eqid TopOpenfld𝑡=TopOpenfld𝑡
43 12 37 42 cncfcn ++cn=TopOpenfld𝑡+CnTopOpenfld𝑡
44 22 16 43 mp2an +cn=TopOpenfld𝑡+CnTopOpenfld𝑡
45 41 44 eleqtri log+TopOpenfld𝑡+CnTopOpenfld𝑡
46 45 a1i A0Alog+TopOpenfld𝑡+CnTopOpenfld𝑡
47 19 40 46 cnmpt11f A0Ax0Alog+x+1TopOpenfld𝑡0ACnTopOpenfld𝑡
48 12 36 42 cncfcn 0A0Acn=TopOpenfld𝑡0ACnTopOpenfld𝑡
49 17 16 48 sylancl A0A0Acn=TopOpenfld𝑡0ACnTopOpenfld𝑡
50 47 49 eleqtrrd A0Ax0Alog+x+1:0Acn
51 11 50 eqeltrrd A0Ax0Alogx+1:0Acn
52 reelprrecn
53 52 a1i A0A
54 simpr A0Ax+x+
55 1rp 1+
56 rpaddcl x+1+x+1+
57 54 55 56 sylancl A0Ax+x+1+
58 57 relogcld A0Ax+logx+1
59 58 recnd A0Ax+logx+1
60 57 rpreccld A0Ax+1x+1+
61 1cnd A0Ax+1
62 relogcl y+logy
63 62 adantl A0Ay+logy
64 63 recnd A0Ay+logy
65 rpreccl y+1y+
66 65 adantl A0Ay+1y+
67 peano2re xx+1
68 67 adantl A0Axx+1
69 68 recnd A0Axx+1
70 1cnd A0Ax1
71 16 a1i A0A
72 71 sselda A0Axx
73 53 dvmptid A0Adxxdx=x1
74 0cnd A0Ax0
75 53 28 dvmptc A0Adx1dx=x0
76 53 72 70 73 70 74 75 dvmptadd A0Adxx+1dx=x1+0
77 1p0e1 1+0=1
78 77 mpteq2i x1+0=x1
79 76 78 eqtrdi A0Adxx+1dx=x1
80 21 a1i A0A+
81 12 tgioo2 topGenran.=TopOpenfld𝑡
82 ioorp 0+∞=+
83 iooretop 0+∞topGenran.
84 82 83 eqeltrri +topGenran.
85 84 a1i A0A+topGenran.
86 53 69 70 79 80 81 12 85 dvmptres A0Adx+x+1dx=x+1
87 relogf1o log+:+1-1 onto
88 f1of log+:+1-1 ontolog+:+
89 87 88 mp1i A0Alog+:+
90 89 feqmptd A0Alog+=y+log+y
91 fvres y+log+y=logy
92 91 mpteq2ia y+log+y=y+logy
93 90 92 eqtrdi A0Alog+=y+logy
94 93 oveq2d A0ADlog+=dy+logydy
95 dvrelog Dlog+=y+1y
96 94 95 eqtr3di A0Ady+logydy=y+1y
97 fveq2 y=x+1logy=logx+1
98 oveq2 y=x+11y=1x+1
99 53 53 57 61 64 66 86 96 97 98 dvmptco A0Adx+logx+1dx=x+1x+11
100 60 rpcnd A0Ax+1x+1
101 100 mulridd A0Ax+1x+11=1x+1
102 101 mpteq2dva A0Ax+1x+11=x+1x+1
103 99 102 eqtrd A0Adx+logx+1dx=x+1x+1
104 ioossicc 0A0A
105 104 sseli x0Ax0A
106 105 7 sylan2 A0Ax0Ax
107 eliooord x0A0<xx<A
108 107 simpld x0A0<x
109 108 adantl A0Ax0A0<x
110 106 109 elrpd A0Ax0Ax+
111 110 ex A0Ax0Ax+
112 111 ssrdv A0A0A+
113 iooretop 0AtopGenran.
114 113 a1i A0A0AtopGenran.
115 53 59 60 103 112 81 12 114 dvmptres A0Adx0Alogx+1dx=x0A1x+1
116 elrege0 x0+∞x0x
117 7 8 116 sylanbrc A0Ax0Ax0+∞
118 117 ex A0Ax0Ax0+∞
119 118 ssrdv A0A0A0+∞
120 119 resabs1d A0A0+∞0A=0A
121 sqrtf :
122 121 a1i A0A:
123 122 17 feqresmpt A0A0A=x0Ax
124 120 123 eqtrd A0A0+∞0A=x0Ax
125 resqrtcn 0+∞:0+∞cn
126 rescncf 0A0+∞0+∞:0+∞cn0+∞0A:0Acn
127 119 125 126 mpisyl A0A0+∞0A:0Acn
128 124 127 eqeltrrd A0Ax0Ax:0Acn
129 rpcn x+x
130 129 adantl A0Ax+x
131 130 sqrtcld A0Ax+x
132 2rp 2+
133 rpsqrtcl x+x+
134 133 adantl A0Ax+x+
135 rpmulcl 2+x+2x+
136 132 134 135 sylancr A0Ax+2x+
137 136 rpreccld A0Ax+12x+
138 dvsqrt dx+xdx=x+12x
139 138 a1i A0Adx+xdx=x+12x
140 53 131 137 139 112 81 12 114 dvmptres A0Adx0Axdx=x0A12x
141 134 rpred A0Ax+x
142 1re 1
143 resubcl x1x1
144 141 142 143 sylancl A0Ax+x1
145 144 sqge0d A0Ax+0x12
146 130 sqsqrtd A0Ax+x2=x
147 146 oveq1d A0Ax+x22x=x2x
148 147 oveq1d A0Ax+x2-2x+1=x-2x+1
149 binom2sub1 xx12=x2-2x+1
150 131 149 syl A0Ax+x12=x2-2x+1
151 136 rpcnd A0Ax+2x
152 130 61 151 addsubd A0Ax+x+1-2x=x-2x+1
153 148 150 152 3eqtr4d A0Ax+x12=x+1-2x
154 145 153 breqtrd A0Ax+0x+1-2x
155 57 rpred A0Ax+x+1
156 136 rpred A0Ax+2x
157 155 156 subge0d A0Ax+0x+1-2x2xx+1
158 154 157 mpbid A0Ax+2xx+1
159 136 57 lerecd A0Ax+2xx+11x+112x
160 158 159 mpbid A0Ax+1x+112x
161 110 160 syldan A0Ax0A1x+112x
162 rexr AA*
163 0xr 0*
164 lbicc2 0*A*0A00A
165 163 164 mp3an1 A*0A00A
166 162 165 sylan A0A00A
167 ubicc2 0*A*0AA0A
168 163 167 mp3an1 A*0AA0A
169 162 168 sylan A0AA0A
170 simpr A0A0A
171 fv0p1e1 x=0logx+1=log1
172 log1 log1=0
173 171 172 eqtrdi x=0logx+1=0
174 fveq2 x=0x=0
175 sqrt0 0=0
176 174 175 eqtrdi x=0x=0
177 fvoveq1 x=Alogx+1=logA+1
178 fveq2 x=Ax=A
179 2 3 51 115 128 140 161 166 169 170 173 176 177 178 dvle A0AlogA+10A0
180 ge0p1rp A0AA+1+
181 180 relogcld A0AlogA+1
182 resqrtcl A0AA
183 181 182 2 lesub1d A0AlogA+1AlogA+10A0
184 179 183 mpbird A0AlogA+1A