Metamath Proof Explorer


Theorem pgpssslw

Description: Every P -subgroup is contained in a Sylow P -subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypotheses pgpssslw.1 X=BaseG
pgpssslw.2 S=G𝑠H
pgpssslw.3 F=xySubGrpG|PpGrpG𝑠yHyx
Assertion pgpssslw HSubGrpGXFinPpGrpSkPpSylGHk

Proof

Step Hyp Ref Expression
1 pgpssslw.1 X=BaseG
2 pgpssslw.2 S=G𝑠H
3 pgpssslw.3 F=xySubGrpG|PpGrpG𝑠yHyx
4 simp2 HSubGrpGXFinPpGrpSXFin
5 elrabi xySubGrpG|PpGrpG𝑠yHyxSubGrpG
6 1 subgss xSubGrpGxX
7 5 6 syl xySubGrpG|PpGrpG𝑠yHyxX
8 ssfi XFinxXxFin
9 4 7 8 syl2an HSubGrpGXFinPpGrpSxySubGrpG|PpGrpG𝑠yHyxFin
10 hashcl xFinx0
11 9 10 syl HSubGrpGXFinPpGrpSxySubGrpG|PpGrpG𝑠yHyx0
12 11 nn0zd HSubGrpGXFinPpGrpSxySubGrpG|PpGrpG𝑠yHyx
13 12 3 fmptd HSubGrpGXFinPpGrpSF:ySubGrpG|PpGrpG𝑠yHy
14 13 frnd HSubGrpGXFinPpGrpSranF
15 fvex xV
16 15 3 fnmpti FFnySubGrpG|PpGrpG𝑠yHy
17 eqimss2 y=HHy
18 17 biantrud y=HPpGrpG𝑠yPpGrpG𝑠yHy
19 oveq2 y=HG𝑠y=G𝑠H
20 19 2 eqtr4di y=HG𝑠y=S
21 20 breq2d y=HPpGrpG𝑠yPpGrpS
22 18 21 bitr3d y=HPpGrpG𝑠yHyPpGrpS
23 simp1 HSubGrpGXFinPpGrpSHSubGrpG
24 simp3 HSubGrpGXFinPpGrpSPpGrpS
25 22 23 24 elrabd HSubGrpGXFinPpGrpSHySubGrpG|PpGrpG𝑠yHy
26 fnfvelrn FFnySubGrpG|PpGrpG𝑠yHyHySubGrpG|PpGrpG𝑠yHyFHranF
27 16 25 26 sylancr HSubGrpGXFinPpGrpSFHranF
28 27 ne0d HSubGrpGXFinPpGrpSranF
29 hashcl XFinX0
30 4 29 syl HSubGrpGXFinPpGrpSX0
31 30 nn0red HSubGrpGXFinPpGrpSX
32 fveq2 x=mx=m
33 fvex mV
34 32 3 33 fvmpt mySubGrpG|PpGrpG𝑠yHyFm=m
35 34 adantl HSubGrpGXFinPpGrpSmySubGrpG|PpGrpG𝑠yHyFm=m
36 oveq2 y=mG𝑠y=G𝑠m
37 36 breq2d y=mPpGrpG𝑠yPpGrpG𝑠m
38 sseq2 y=mHyHm
39 37 38 anbi12d y=mPpGrpG𝑠yHyPpGrpG𝑠mHm
40 39 elrab mySubGrpG|PpGrpG𝑠yHymSubGrpGPpGrpG𝑠mHm
41 4 adantr HSubGrpGXFinPpGrpSmSubGrpGPpGrpG𝑠mHmXFin
42 1 subgss mSubGrpGmX
43 42 ad2antrl HSubGrpGXFinPpGrpSmSubGrpGPpGrpG𝑠mHmmX
44 ssdomg XFinmXmX
45 41 43 44 sylc HSubGrpGXFinPpGrpSmSubGrpGPpGrpG𝑠mHmmX
46 41 43 ssfid HSubGrpGXFinPpGrpSmSubGrpGPpGrpG𝑠mHmmFin
47 hashdom mFinXFinmXmX
48 46 41 47 syl2anc HSubGrpGXFinPpGrpSmSubGrpGPpGrpG𝑠mHmmXmX
49 45 48 mpbird HSubGrpGXFinPpGrpSmSubGrpGPpGrpG𝑠mHmmX
50 40 49 sylan2b HSubGrpGXFinPpGrpSmySubGrpG|PpGrpG𝑠yHymX
51 35 50 eqbrtrd HSubGrpGXFinPpGrpSmySubGrpG|PpGrpG𝑠yHyFmX
52 51 ralrimiva HSubGrpGXFinPpGrpSmySubGrpG|PpGrpG𝑠yHyFmX
53 breq1 w=FmwXFmX
54 53 ralrn FFnySubGrpG|PpGrpG𝑠yHywranFwXmySubGrpG|PpGrpG𝑠yHyFmX
55 16 54 ax-mp wranFwXmySubGrpG|PpGrpG𝑠yHyFmX
56 52 55 sylibr HSubGrpGXFinPpGrpSwranFwX
57 brralrspcev XwranFwXzwranFwz
58 31 56 57 syl2anc HSubGrpGXFinPpGrpSzwranFwz
59 suprzcl ranFranFzwranFwzsupranF<ranF
60 14 28 58 59 syl3anc HSubGrpGXFinPpGrpSsupranF<ranF
61 fvelrnb FFnySubGrpG|PpGrpG𝑠yHysupranF<ranFkySubGrpG|PpGrpG𝑠yHyFk=supranF<
62 16 61 ax-mp supranF<ranFkySubGrpG|PpGrpG𝑠yHyFk=supranF<
63 60 62 sylib HSubGrpGXFinPpGrpSkySubGrpG|PpGrpG𝑠yHyFk=supranF<
64 oveq2 y=kG𝑠y=G𝑠k
65 64 breq2d y=kPpGrpG𝑠yPpGrpG𝑠k
66 sseq2 y=kHyHk
67 65 66 anbi12d y=kPpGrpG𝑠yHyPpGrpG𝑠kHk
68 67 rexrab kySubGrpG|PpGrpG𝑠yHyFk=supranF<kSubGrpGPpGrpG𝑠kHkFk=supranF<
69 63 68 sylib HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<
70 simpl3 HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<PpGrpS
71 pgpprm PpGrpSP
72 70 71 syl HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<P
73 simprl HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<kSubGrpG
74 zssre
75 14 74 sstrdi HSubGrpGXFinPpGrpSranF
76 75 ad2antrr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mranF
77 28 ad2antrr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mranF
78 58 ad2antrr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mzwranFwz
79 simprl HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mmSubGrpG
80 simprrr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mPpGrpG𝑠m
81 simprrl HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<PpGrpG𝑠kHk
82 81 adantr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mPpGrpG𝑠kHk
83 82 simprd HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mHk
84 simprrl HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mkm
85 83 84 sstrd HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mHm
86 80 85 jca HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mPpGrpG𝑠mHm
87 39 79 86 elrabd HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mmySubGrpG|PpGrpG𝑠yHy
88 87 34 syl HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mFm=m
89 fnfvelrn FFnySubGrpG|PpGrpG𝑠yHymySubGrpG|PpGrpG𝑠yHyFmranF
90 16 87 89 sylancr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mFmranF
91 88 90 eqeltrrd HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mmranF
92 76 77 78 91 suprubd HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mmsupranF<
93 simprrr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<Fk=supranF<
94 93 adantr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mFk=supranF<
95 73 adantr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mkSubGrpG
96 67 95 82 elrabd HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mkySubGrpG|PpGrpG𝑠yHy
97 fveq2 x=kx=k
98 fvex kV
99 97 3 98 fvmpt kySubGrpG|PpGrpG𝑠yHyFk=k
100 96 99 syl HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mFk=k
101 94 100 eqtr3d HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠msupranF<=k
102 92 101 breqtrd HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mmk
103 simpll2 HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mXFin
104 42 ad2antrl HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mmX
105 103 104 ssfid HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mmFin
106 105 84 ssfid HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mkFin
107 hashcl mFinm0
108 hashcl kFink0
109 nn0re m0m
110 nn0re k0k
111 lenlt mkmk¬k<m
112 109 110 111 syl2an m0k0mk¬k<m
113 107 108 112 syl2an mFinkFinmk¬k<m
114 105 106 113 syl2anc HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mmk¬k<m
115 102 114 mpbid HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠m¬k<m
116 php3 mFinkmkm
117 116 ex mFinkmkm
118 105 117 syl HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mkmkm
119 hashsdom kFinmFink<mkm
120 106 105 119 syl2anc HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mk<mkm
121 118 120 sylibrd HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mkmk<m
122 115 121 mtod HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠m¬km
123 sspss kmkmk=m
124 84 123 sylib HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mkmk=m
125 124 ord HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠m¬kmk=m
126 122 125 mpd HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mk=m
127 126 expr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mk=m
128 81 simpld HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<PpGrpG𝑠k
129 128 adantr HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGPpGrpG𝑠k
130 oveq2 k=mG𝑠k=G𝑠m
131 130 breq2d k=mPpGrpG𝑠kPpGrpG𝑠m
132 eqimss k=mkm
133 132 biantrurd k=mPpGrpG𝑠mkmPpGrpG𝑠m
134 131 133 bitrd k=mPpGrpG𝑠kkmPpGrpG𝑠m
135 129 134 syl5ibcom HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGk=mkmPpGrpG𝑠m
136 127 135 impbid HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mk=m
137 136 ralrimiva HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<mSubGrpGkmPpGrpG𝑠mk=m
138 isslw kPpSylGPkSubGrpGmSubGrpGkmPpGrpG𝑠mk=m
139 72 73 137 138 syl3anbrc HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<kPpSylG
140 81 simprd HSubGrpGXFinPpGrpSkSubGrpGPpGrpG𝑠kHkFk=supranF<Hk
141 69 139 140 reximssdv HSubGrpGXFinPpGrpSkPpSylGHk