Metamath Proof Explorer


Theorem subfacp1lem3

Description: Lemma for subfacp1 . In subfacp1lem6 we cut up the set of all derangements on 1 ... ( N + 1 ) first according to the value at 1 , and then by whether or not ( f( f1 ) ) = 1 . In this lemma, we show that the subset of all N + 1 derangements that satisfy this for fixed M = ( f1 ) is in bijection with N - 1 derangements, by simply dropping the x = 1 and x = M points from the function to get a derangement on K = ( 1 ... ( N - 1 ) ) \ { 1 , M } . (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
subfacp1lem1.n φN
subfacp1lem1.m φM2N+1
subfacp1lem1.x MV
subfacp1lem1.k K=2N+1M
subfacp1lem3.b B=gA|g1=MgM=1
subfacp1lem3.c C=f|f:K1-1 ontoKyKfyy
Assertion subfacp1lem3 φB=SN1

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
4 subfacp1lem1.n φN
5 subfacp1lem1.m φM2N+1
6 subfacp1lem1.x MV
7 subfacp1lem1.k K=2N+1M
8 subfacp1lem3.b B=gA|g1=MgM=1
9 subfacp1lem3.c C=f|f:K1-1 ontoKyKfyy
10 fzfi 1N+1Fin
11 deranglem 1N+1Finf|f:1N+11-1 onto1N+1y1N+1fyyFin
12 10 11 ax-mp f|f:1N+11-1 onto1N+1y1N+1fyyFin
13 3 12 eqeltri AFin
14 8 ssrab3 BA
15 ssfi AFinBABFin
16 13 14 15 mp2an BFin
17 16 elexi BV
18 17 a1i φBV
19 eqid bBbK=bBbK
20 simpr φbBbB
21 fveq1 g=bg1=b1
22 21 eqeq1d g=bg1=Mb1=M
23 fveq1 g=bgM=bM
24 23 eqeq1d g=bgM=1bM=1
25 22 24 anbi12d g=bg1=MgM=1b1=MbM=1
26 25 8 elrab2 bBbAb1=MbM=1
27 20 26 sylib φbBbAb1=MbM=1
28 27 simpld φbBbA
29 vex bV
30 f1oeq1 f=bf:1N+11-1 onto1N+1b:1N+11-1 onto1N+1
31 fveq1 f=bfy=by
32 31 neeq1d f=bfyybyy
33 32 ralbidv f=by1N+1fyyy1N+1byy
34 30 33 anbi12d f=bf:1N+11-1 onto1N+1y1N+1fyyb:1N+11-1 onto1N+1y1N+1byy
35 29 34 3 elab2 bAb:1N+11-1 onto1N+1y1N+1byy
36 28 35 sylib φbBb:1N+11-1 onto1N+1y1N+1byy
37 36 simpld φbBb:1N+11-1 onto1N+1
38 f1of1 b:1N+11-1 onto1N+1b:1N+11-11N+1
39 df-f1 b:1N+11-11N+1b:1N+11N+1Funb-1
40 39 simprbi b:1N+11-11N+1Funb-1
41 37 38 40 3syl φbBFunb-1
42 f1ofn b:1N+11-1 onto1N+1bFn1N+1
43 37 42 syl φbBbFn1N+1
44 fnresdm bFn1N+1b1N+1=b
45 f1oeq1 b1N+1=bb1N+1:1N+11-1 onto1N+1b:1N+11-1 onto1N+1
46 43 44 45 3syl φbBb1N+1:1N+11-1 onto1N+1b:1N+11-1 onto1N+1
47 37 46 mpbird φbBb1N+1:1N+11-1 onto1N+1
48 f1ofo b1N+1:1N+11-1 onto1N+1b1N+1:1N+1onto1N+1
49 47 48 syl φbBb1N+1:1N+1onto1N+1
50 ssun2 1MK1M
51 1 2 3 4 5 6 7 subfacp1lem1 φK1M=K1M=1N+1K=N1
52 51 simp2d φK1M=1N+1
53 50 52 sseqtrid φ1M1N+1
54 53 adantr φbB1M1N+1
55 43 54 fnssresd φbBb1MFn1M
56 27 simprd φbBb1=MbM=1
57 56 simpld φbBb1=M
58 6 prid2 M1M
59 57 58 eqeltrdi φbBb11M
60 56 simprd φbBbM=1
61 1ex 1V
62 61 prid1 11M
63 60 62 eqeltrdi φbBbM1M
64 fveq2 x=1bx=b1
65 64 eleq1d x=1bx1Mb11M
66 fveq2 x=Mbx=bM
67 66 eleq1d x=Mbx1MbM1M
68 61 6 65 67 ralpr x1Mbx1Mb11MbM1M
69 59 63 68 sylanbrc φbBx1Mbx1M
70 fvres x1Mb1Mx=bx
71 70 eleq1d x1Mb1Mx1Mbx1M
72 71 ralbiia x1Mb1Mx1Mx1Mbx1M
73 69 72 sylibr φbBx1Mb1Mx1M
74 ffnfv b1M:1M1Mb1MFn1Mx1Mb1Mx1M
75 55 73 74 sylanbrc φbBb1M:1M1M
76 fveqeq2 y=Mby=1bM=1
77 76 rspcev M1MbM=1y1Mby=1
78 58 60 77 sylancr φbBy1Mby=1
79 fveqeq2 y=1by=Mb1=M
80 79 rspcev 11Mb1=My1Mby=M
81 62 57 80 sylancr φbBy1Mby=M
82 eqeq2 x=1by=xby=1
83 82 rexbidv x=1y1Mby=xy1Mby=1
84 eqeq2 x=Mby=xby=M
85 84 rexbidv x=My1Mby=xy1Mby=M
86 61 6 83 85 ralpr x1My1Mby=xy1Mby=1y1Mby=M
87 78 81 86 sylanbrc φbBx1My1Mby=x
88 eqcom x=b1Myb1My=x
89 fvres y1Mb1My=by
90 89 eqeq1d y1Mb1My=xby=x
91 88 90 bitrid y1Mx=b1Myby=x
92 91 rexbiia y1Mx=b1Myy1Mby=x
93 92 ralbii x1My1Mx=b1Myx1My1Mby=x
94 87 93 sylibr φbBx1My1Mx=b1My
95 dffo3 b1M:1Monto1Mb1M:1M1Mx1My1Mx=b1My
96 75 94 95 sylanbrc φbBb1M:1Monto1M
97 resdif Funb-1b1N+1:1N+1onto1N+1b1M:1Monto1Mb1N+11M:1N+11M1-1 onto1N+11M
98 41 49 96 97 syl3anc φbBb1N+11M:1N+11M1-1 onto1N+11M
99 uncom 1MK=K1M
100 99 52 eqtrid φ1MK=1N+1
101 incom 1MK=K1M
102 51 simp1d φK1M=
103 101 102 eqtrid φ1MK=
104 uneqdifeq 1M1N+11MK=1MK=1N+11N+11M=K
105 53 103 104 syl2anc φ1MK=1N+11N+11M=K
106 100 105 mpbid φ1N+11M=K
107 106 adantr φbB1N+11M=K
108 reseq2 1N+11M=Kb1N+11M=bK
109 108 f1oeq1d 1N+11M=Kb1N+11M:1N+11M1-1 onto1N+11MbK:1N+11M1-1 onto1N+11M
110 f1oeq2 1N+11M=KbK:1N+11M1-1 onto1N+11MbK:K1-1 onto1N+11M
111 f1oeq3 1N+11M=KbK:K1-1 onto1N+11MbK:K1-1 ontoK
112 109 110 111 3bitrd 1N+11M=Kb1N+11M:1N+11M1-1 onto1N+11MbK:K1-1 ontoK
113 107 112 syl φbBb1N+11M:1N+11M1-1 onto1N+11MbK:K1-1 ontoK
114 98 113 mpbid φbBbK:K1-1 ontoK
115 ssun1 KK1M
116 115 52 sseqtrid φK1N+1
117 116 adantr φbBK1N+1
118 36 simprd φbBy1N+1byy
119 ssralv K1N+1y1N+1byyyKbyy
120 117 118 119 sylc φbByKbyy
121 29 resex bKV
122 f1oeq1 f=bKf:K1-1 ontoKbK:K1-1 ontoK
123 fveq1 f=bKfy=bKy
124 fvres yKbKy=by
125 123 124 sylan9eq f=bKyKfy=by
126 125 neeq1d f=bKyKfyybyy
127 126 ralbidva f=bKyKfyyyKbyy
128 122 127 anbi12d f=bKf:K1-1 ontoKyKfyybK:K1-1 ontoKyKbyy
129 121 128 9 elab2 bKCbK:K1-1 ontoKyKbyy
130 114 120 129 sylanbrc φbBbKC
131 4 adantr φcCN
132 5 adantr φcCM2N+1
133 eqid c1MM1=c1MM1
134 simpr φcCcC
135 vex cV
136 f1oeq1 f=cf:K1-1 ontoKc:K1-1 ontoK
137 fveq1 f=cfy=cy
138 137 neeq1d f=cfyycyy
139 138 ralbidv f=cyKfyyyKcyy
140 136 139 anbi12d f=cf:K1-1 ontoKyKfyyc:K1-1 ontoKyKcyy
141 135 140 9 elab2 cCc:K1-1 ontoKyKcyy
142 134 141 sylib φcCc:K1-1 ontoKyKcyy
143 142 simpld φcCc:K1-1 ontoK
144 1 2 3 131 132 6 7 133 143 subfacp1lem2a φcCc1MM1:1N+11-1 onto1N+1c1MM11=Mc1MM1M=1
145 144 simp1d φcCc1MM1:1N+11-1 onto1N+1
146 1 2 3 131 132 6 7 133 143 subfacp1lem2b φcCyKc1MM1y=cy
147 142 simprd φcCyKcyy
148 147 r19.21bi φcCyKcyy
149 146 148 eqnetrd φcCyKc1MM1yy
150 149 ralrimiva φcCyKc1MM1yy
151 144 simp2d φcCc1MM11=M
152 elfzuz M2N+1M2
153 eluz2b3 M2MM1
154 153 simprbi M2M1
155 5 152 154 3syl φM1
156 155 adantr φcCM1
157 151 156 eqnetrd φcCc1MM111
158 144 simp3d φcCc1MM1M=1
159 156 necomd φcC1M
160 158 159 eqnetrd φcCc1MM1MM
161 fveq2 y=1c1MM1y=c1MM11
162 id y=1y=1
163 161 162 neeq12d y=1c1MM1yyc1MM111
164 fveq2 y=Mc1MM1y=c1MM1M
165 id y=My=M
166 164 165 neeq12d y=Mc1MM1yyc1MM1MM
167 61 6 163 166 ralpr y1Mc1MM1yyc1MM111c1MM1MM
168 157 160 167 sylanbrc φcCy1Mc1MM1yy
169 ralunb yK1Mc1MM1yyyKc1MM1yyy1Mc1MM1yy
170 150 168 169 sylanbrc φcCyK1Mc1MM1yy
171 52 adantr φcCK1M=1N+1
172 171 raleqdv φcCyK1Mc1MM1yyy1N+1c1MM1yy
173 170 172 mpbid φcCy1N+1c1MM1yy
174 prex 1MM1V
175 135 174 unex c1MM1V
176 f1oeq1 f=c1MM1f:1N+11-1 onto1N+1c1MM1:1N+11-1 onto1N+1
177 fveq1 f=c1MM1fy=c1MM1y
178 177 neeq1d f=c1MM1fyyc1MM1yy
179 178 ralbidv f=c1MM1y1N+1fyyy1N+1c1MM1yy
180 176 179 anbi12d f=c1MM1f:1N+11-1 onto1N+1y1N+1fyyc1MM1:1N+11-1 onto1N+1y1N+1c1MM1yy
181 175 180 3 elab2 c1MM1Ac1MM1:1N+11-1 onto1N+1y1N+1c1MM1yy
182 145 173 181 sylanbrc φcCc1MM1A
183 151 158 jca φcCc1MM11=Mc1MM1M=1
184 fveq1 g=c1MM1g1=c1MM11
185 184 eqeq1d g=c1MM1g1=Mc1MM11=M
186 fveq1 g=c1MM1gM=c1MM1M
187 186 eqeq1d g=c1MM1gM=1c1MM1M=1
188 185 187 anbi12d g=c1MM1g1=MgM=1c1MM11=Mc1MM1M=1
189 188 8 elrab2 c1MM1Bc1MM1Ac1MM11=Mc1MM1M=1
190 182 183 189 sylanbrc φcCc1MM1B
191 57 adantrr φbBcCb1=M
192 151 adantrl φbBcCc1MM11=M
193 191 192 eqtr4d φbBcCb1=c1MM11
194 60 adantrr φbBcCbM=1
195 158 adantrl φbBcCc1MM1M=1
196 194 195 eqtr4d φbBcCbM=c1MM1M
197 fveq2 y=1by=b1
198 197 161 eqeq12d y=1by=c1MM1yb1=c1MM11
199 fveq2 y=Mby=bM
200 199 164 eqeq12d y=Mby=c1MM1ybM=c1MM1M
201 61 6 198 200 ralpr y1Mby=c1MM1yb1=c1MM11bM=c1MM1M
202 193 196 201 sylanbrc φbBcCy1Mby=c1MM1y
203 202 biantrud φbBcCyKby=c1MM1yyKby=c1MM1yy1Mby=c1MM1y
204 ralunb yK1Mby=c1MM1yyKby=c1MM1yy1Mby=c1MM1y
205 203 204 bitr4di φbBcCyKby=c1MM1yyK1Mby=c1MM1y
206 146 eqeq2d φcCyKby=c1MM1yby=cy
207 206 ralbidva φcCyKby=c1MM1yyKby=cy
208 207 adantrl φbBcCyKby=c1MM1yyKby=cy
209 52 adantr φbBcCK1M=1N+1
210 209 raleqdv φbBcCyK1Mby=c1MM1yy1N+1by=c1MM1y
211 205 208 210 3bitr3rd φbBcCy1N+1by=c1MM1yyKby=cy
212 124 eqeq2d yKcy=bKycy=by
213 eqcom cy=byby=cy
214 212 213 bitrdi yKcy=bKyby=cy
215 214 ralbiia yKcy=bKyyKby=cy
216 211 215 bitr4di φbBcCy1N+1by=c1MM1yyKcy=bKy
217 43 adantrr φbBcCbFn1N+1
218 145 adantrl φbBcCc1MM1:1N+11-1 onto1N+1
219 f1ofn c1MM1:1N+11-1 onto1N+1c1MM1Fn1N+1
220 218 219 syl φbBcCc1MM1Fn1N+1
221 eqfnfv bFn1N+1c1MM1Fn1N+1b=c1MM1y1N+1by=c1MM1y
222 217 220 221 syl2anc φbBcCb=c1MM1y1N+1by=c1MM1y
223 143 adantrl φbBcCc:K1-1 ontoK
224 f1ofn c:K1-1 ontoKcFnK
225 223 224 syl φbBcCcFnK
226 116 adantr φbBcCK1N+1
227 217 226 fnssresd φbBcCbKFnK
228 eqfnfv cFnKbKFnKc=bKyKcy=bKy
229 225 227 228 syl2anc φbBcCc=bKyKcy=bKy
230 216 222 229 3bitr4d φbBcCb=c1MM1c=bK
231 19 130 190 230 f1o2d φbBbK:B1-1 ontoC
232 18 231 hasheqf1od φB=C
233 9 fveq2i C=f|f:K1-1 ontoKyKfyy
234 fzfi 2N+1Fin
235 diffi 2N+1Fin2N+1MFin
236 234 235 ax-mp 2N+1MFin
237 7 236 eqeltri KFin
238 1 derangval KFinDK=f|f:K1-1 ontoKyKfyy
239 237 238 ax-mp DK=f|f:K1-1 ontoKyKfyy
240 1 2 derangen2 KFinDK=SK
241 237 240 ax-mp DK=SK
242 233 239 241 3eqtr2ri SK=C
243 51 simp3d φK=N1
244 243 fveq2d φSK=SN1
245 242 244 eqtr3id φC=SN1
246 232 245 eqtrd φB=SN1