Metamath Proof Explorer


Theorem sylow2alem2

Description: Lemma for sylow2a . All the orbits which are not for fixed points have size | G | / | G x | (where G x is the stabilizer subgroup) and thus are powers of P . And since they are all nontrivial (because any orbit which is a singleton is a fixed point), they all divide P , and so does the sum of all of them. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Hypotheses sylow2a.x X=BaseG
sylow2a.m φ˙GGrpActY
sylow2a.p φPpGrpG
sylow2a.f φXFin
sylow2a.y φYFin
sylow2a.z Z=uY|hXh˙u=u
sylow2a.r ˙=xy|xyYgXg˙x=y
Assertion sylow2alem2 φPzY/˙𝒫Zz

Proof

Step Hyp Ref Expression
1 sylow2a.x X=BaseG
2 sylow2a.m φ˙GGrpActY
3 sylow2a.p φPpGrpG
4 sylow2a.f φXFin
5 sylow2a.y φYFin
6 sylow2a.z Z=uY|hXh˙u=u
7 sylow2a.r ˙=xy|xyYgXg˙x=y
8 pwfi YFin𝒫YFin
9 5 8 sylib φ𝒫YFin
10 7 1 gaorber ˙GGrpActY˙ErY
11 2 10 syl φ˙ErY
12 11 qsss φY/˙𝒫Y
13 9 12 ssfid φY/˙Fin
14 diffi Y/˙FinY/˙𝒫ZFin
15 13 14 syl φY/˙𝒫ZFin
16 gagrp ˙GGrpActYGGrp
17 2 16 syl φGGrp
18 1 pgpfi GGrpXFinPpGrpGPn0X=Pn
19 17 4 18 syl2anc φPpGrpGPn0X=Pn
20 3 19 mpbid φPn0X=Pn
21 20 simpld φP
22 prmz PP
23 21 22 syl φP
24 eldifi zY/˙𝒫ZzY/˙
25 5 adantr φzY/˙YFin
26 12 sselda φzY/˙z𝒫Y
27 26 elpwid φzY/˙zY
28 25 27 ssfid φzY/˙zFin
29 24 28 sylan2 φzY/˙𝒫ZzFin
30 hashcl zFinz0
31 29 30 syl φzY/˙𝒫Zz0
32 31 nn0zd φzY/˙𝒫Zz
33 eldif zY/˙𝒫ZzY/˙¬z𝒫Z
34 eqid Y/˙=Y/˙
35 sseq1 w˙=zw˙ZzZ
36 velpw z𝒫ZzZ
37 35 36 bitr4di w˙=zw˙Zz𝒫Z
38 37 notbid w˙=z¬w˙Z¬z𝒫Z
39 fveq2 w˙=zw˙=z
40 39 breq2d w˙=zPw˙Pz
41 38 40 imbi12d w˙=z¬w˙ZPw˙¬z𝒫ZPz
42 21 adantr φwYP
43 11 adantr φwY˙ErY
44 simpr φwYwY
45 43 44 erref φwYw˙w
46 vex wV
47 46 46 elec ww˙w˙w
48 45 47 sylibr φwYww˙
49 48 ne0d φwYw˙
50 11 ecss φw˙Y
51 5 50 ssfid φw˙Fin
52 51 adantr φwYw˙Fin
53 hashnncl w˙Finw˙w˙
54 52 53 syl φwYw˙w˙
55 49 54 mpbird φwYw˙
56 pceq0 Pw˙PpCntw˙=0¬Pw˙
57 42 55 56 syl2anc φwYPpCntw˙=0¬Pw˙
58 oveq2 PpCntw˙=0PPpCntw˙=P0
59 hashcl w˙Finw˙0
60 51 59 syl φw˙0
61 60 nn0zd φw˙
62 ssrab2 vX|v˙w=wX
63 ssfi XFinvX|v˙w=wXvX|v˙w=wFin
64 4 62 63 sylancl φvX|v˙w=wFin
65 hashcl vX|v˙w=wFinvX|v˙w=w0
66 64 65 syl φvX|v˙w=w0
67 66 nn0zd φvX|v˙w=w
68 dvdsmul1 w˙vX|v˙w=ww˙w˙vX|v˙w=w
69 61 67 68 syl2anc φw˙w˙vX|v˙w=w
70 69 adantr φwYw˙w˙vX|v˙w=w
71 2 adantr φwY˙GGrpActY
72 4 adantr φwYXFin
73 eqid vX|v˙w=w=vX|v˙w=w
74 eqid G~QGvX|v˙w=w=G~QGvX|v˙w=w
75 1 73 74 7 orbsta2 ˙GGrpActYwYXFinX=w˙vX|v˙w=w
76 71 44 72 75 syl21anc φwYX=w˙vX|v˙w=w
77 70 76 breqtrrd φwYw˙X
78 20 simprd φn0X=Pn
79 78 adantr φwYn0X=Pn
80 breq2 X=Pnw˙Xw˙Pn
81 80 biimpcd w˙XX=Pnw˙Pn
82 81 reximdv w˙Xn0X=Pnn0w˙Pn
83 77 79 82 sylc φwYn0w˙Pn
84 pcprmpw2 Pw˙n0w˙Pnw˙=PPpCntw˙
85 42 55 84 syl2anc φwYn0w˙Pnw˙=PPpCntw˙
86 83 85 mpbid φwYw˙=PPpCntw˙
87 86 eqcomd φwYPPpCntw˙=w˙
88 23 adantr φwYP
89 88 zcnd φwYP
90 89 exp0d φwYP0=1
91 hash1 1𝑜=1
92 90 91 eqtr4di φwYP0=1𝑜
93 87 92 eqeq12d φwYPPpCntw˙=P0w˙=1𝑜
94 df1o2 1𝑜=
95 snfi Fin
96 94 95 eqeltri 1𝑜Fin
97 hashen w˙Fin1𝑜Finw˙=1𝑜w˙1𝑜
98 52 96 97 sylancl φwYw˙=1𝑜w˙1𝑜
99 93 98 bitrd φwYPPpCntw˙=P0w˙1𝑜
100 en1b w˙1𝑜w˙=w˙
101 99 100 bitrdi φwYPPpCntw˙=P0w˙=w˙
102 44 adantr φwYhXw˙=w˙wY
103 2 ad2antrr φwYhXw˙=w˙˙GGrpActY
104 1 gaf ˙GGrpActY˙:X×YY
105 103 104 syl φwYhXw˙=w˙˙:X×YY
106 simprl φwYhXw˙=w˙hX
107 105 106 102 fovcdmd φwYhXw˙=w˙h˙wY
108 eqid h˙w=h˙w
109 oveq1 k=hk˙w=h˙w
110 109 eqeq1d k=hk˙w=h˙wh˙w=h˙w
111 110 rspcev hXh˙w=h˙wkXk˙w=h˙w
112 106 108 111 sylancl φwYhXw˙=w˙kXk˙w=h˙w
113 7 gaorb w˙h˙wwYh˙wYkXk˙w=h˙w
114 102 107 112 113 syl3anbrc φwYhXw˙=w˙w˙h˙w
115 ovex h˙wV
116 115 46 elec h˙ww˙w˙h˙w
117 114 116 sylibr φwYhXw˙=w˙h˙ww˙
118 simprr φwYhXw˙=w˙w˙=w˙
119 117 118 eleqtrd φwYhXw˙=w˙h˙ww˙
120 115 elsn h˙ww˙h˙w=w˙
121 119 120 sylib φwYhXw˙=w˙h˙w=w˙
122 48 adantr φwYhXw˙=w˙ww˙
123 122 118 eleqtrd φwYhXw˙=w˙ww˙
124 46 elsn ww˙w=w˙
125 123 124 sylib φwYhXw˙=w˙w=w˙
126 121 125 eqtr4d φwYhXw˙=w˙h˙w=w
127 126 expr φwYhXw˙=w˙h˙w=w
128 127 ralrimdva φwYw˙=w˙hXh˙w=w
129 101 128 sylbid φwYPPpCntw˙=P0hXh˙w=w
130 58 129 syl5 φwYPpCntw˙=0hXh˙w=w
131 57 130 sylbird φwY¬Pw˙hXh˙w=w
132 oveq2 u=wh˙u=h˙w
133 id u=wu=w
134 132 133 eqeq12d u=wh˙u=uh˙w=w
135 134 ralbidv u=whXh˙u=uhXh˙w=w
136 135 6 elrab2 wZwYhXh˙w=w
137 136 baib wYwZhXh˙w=w
138 137 adantl φwYwZhXh˙w=w
139 131 138 sylibrd φwY¬Pw˙wZ
140 1 2 3 4 5 6 7 sylow2alem1 φwZw˙=w
141 simpr φwZwZ
142 141 snssd φwZwZ
143 140 142 eqsstrd φwZw˙Z
144 143 ex φwZw˙Z
145 144 adantr φwYwZw˙Z
146 139 145 syld φwY¬Pw˙w˙Z
147 146 con1d φwY¬w˙ZPw˙
148 34 41 147 ectocld φzY/˙¬z𝒫ZPz
149 148 impr φzY/˙¬z𝒫ZPz
150 33 149 sylan2b φzY/˙𝒫ZPz
151 15 23 32 150 fsumdvds φPzY/˙𝒫Zz