| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniioombl.1 |
|
| 2 |
|
uniioombl.2 |
|
| 3 |
|
uniioombl.3 |
|
| 4 |
|
uniioombl.a |
|
| 5 |
|
uniioombl.e |
|
| 6 |
|
uniioombl.c |
|
| 7 |
|
uniioombl.g |
|
| 8 |
|
uniioombl.s |
|
| 9 |
|
uniioombl.t |
|
| 10 |
|
uniioombl.v |
|
| 11 |
|
nnuz |
|
| 12 |
|
1zzd |
|
| 13 |
|
eqidd |
|
| 14 |
|
eqidd |
|
| 15 |
|
eqid |
|
| 16 |
15
|
ovolfsf |
|
| 17 |
7 16
|
syl |
|
| 18 |
17
|
ffvelcdmda |
|
| 19 |
|
elrege0 |
|
| 20 |
18 19
|
sylib |
|
| 21 |
20
|
simpld |
|
| 22 |
20
|
simprd |
|
| 23 |
1 2 3 4 5 6 7 8 9 10
|
uniioombllem1 |
|
| 24 |
15 9
|
ovolsf |
|
| 25 |
7 24
|
syl |
|
| 26 |
25
|
frnd |
|
| 27 |
|
icossxr |
|
| 28 |
26 27
|
sstrdi |
|
| 29 |
|
supxrub |
|
| 30 |
28 29
|
sylan |
|
| 31 |
30
|
ralrimiva |
|
| 32 |
25
|
ffnd |
|
| 33 |
|
breq1 |
|
| 34 |
33
|
ralrn |
|
| 35 |
32 34
|
syl |
|
| 36 |
31 35
|
mpbid |
|
| 37 |
|
brralrspcev |
|
| 38 |
23 36 37
|
syl2anc |
|
| 39 |
11 9 12 14 21 22 38
|
isumsup2 |
|
| 40 |
|
rge0ssre |
|
| 41 |
26 40
|
sstrdi |
|
| 42 |
|
1nn |
|
| 43 |
25
|
fdmd |
|
| 44 |
42 43
|
eleqtrrid |
|
| 45 |
44
|
ne0d |
|
| 46 |
|
dm0rn0 |
|
| 47 |
46
|
necon3bii |
|
| 48 |
45 47
|
sylib |
|
| 49 |
|
brralrspcev |
|
| 50 |
23 31 49
|
syl2anc |
|
| 51 |
|
supxrre |
|
| 52 |
41 48 50 51
|
syl3anc |
|
| 53 |
39 52
|
breqtrrd |
|
| 54 |
11 12 6 13 53
|
climi2 |
|
| 55 |
11
|
r19.2uz |
|
| 56 |
54 55
|
syl |
|
| 57 |
|
1zzd |
|
| 58 |
6
|
ad2antrr |
|
| 59 |
|
simplrl |
|
| 60 |
59
|
nnrpd |
|
| 61 |
58 60
|
rpdivcld |
|
| 62 |
|
fvex |
|
| 63 |
62
|
inex1 |
|
| 64 |
63
|
rgenw |
|
| 65 |
|
eqid |
|
| 66 |
65
|
fnmpt |
|
| 67 |
64 66
|
mp1i |
|
| 68 |
|
elfznn |
|
| 69 |
|
fvco2 |
|
| 70 |
67 68 69
|
syl2an |
|
| 71 |
68
|
adantl |
|
| 72 |
|
2fveq3 |
|
| 73 |
72
|
ineq1d |
|
| 74 |
|
fvex |
|
| 75 |
74
|
inex1 |
|
| 76 |
73 65 75
|
fvmpt |
|
| 77 |
71 76
|
syl |
|
| 78 |
77
|
fveq2d |
|
| 79 |
70 78
|
eqtrd |
|
| 80 |
|
simpr |
|
| 81 |
80 11
|
eleqtrdi |
|
| 82 |
|
inss2 |
|
| 83 |
7
|
adantr |
|
| 84 |
|
elfznn |
|
| 85 |
|
ffvelcdm |
|
| 86 |
83 84 85
|
syl2an |
|
| 87 |
86
|
elin2d |
|
| 88 |
|
1st2nd2 |
|
| 89 |
87 88
|
syl |
|
| 90 |
89
|
fveq2d |
|
| 91 |
|
df-ov |
|
| 92 |
90 91
|
eqtr4di |
|
| 93 |
|
ioossre |
|
| 94 |
92 93
|
eqsstrdi |
|
| 95 |
94
|
ad2antrr |
|
| 96 |
92
|
fveq2d |
|
| 97 |
|
ovolfcl |
|
| 98 |
83 84 97
|
syl2an |
|
| 99 |
|
ovolioo |
|
| 100 |
98 99
|
syl |
|
| 101 |
96 100
|
eqtrd |
|
| 102 |
98
|
simp2d |
|
| 103 |
98
|
simp1d |
|
| 104 |
102 103
|
resubcld |
|
| 105 |
101 104
|
eqeltrd |
|
| 106 |
105
|
ad2antrr |
|
| 107 |
|
ovolsscl |
|
| 108 |
82 95 106 107
|
mp3an2i |
|
| 109 |
108
|
recnd |
|
| 110 |
79 81 109
|
fsumser |
|
| 111 |
110
|
eqcomd |
|
| 112 |
|
2fveq3 |
|
| 113 |
112
|
ineq1d |
|
| 114 |
113
|
cbvmptv |
|
| 115 |
|
eqeq1 |
|
| 116 |
|
infeq1 |
|
| 117 |
|
supeq1 |
|
| 118 |
116 117
|
opeq12d |
|
| 119 |
115 118
|
ifbieq2d |
|
| 120 |
119
|
cbvmptv |
|
| 121 |
1 2 3 4 5 6 7 8 9 10 114 120
|
uniioombllem2 |
|
| 122 |
84 121
|
sylan2 |
|
| 123 |
122
|
adantlr |
|
| 124 |
11 57 61 111 123
|
climi2 |
|
| 125 |
|
1z |
|
| 126 |
11
|
rexuz3 |
|
| 127 |
125 126
|
ax-mp |
|
| 128 |
124 127
|
sylib |
|
| 129 |
128
|
ralrimiva |
|
| 130 |
|
fzfi |
|
| 131 |
|
rexfiuz |
|
| 132 |
130 131
|
ax-mp |
|
| 133 |
129 132
|
sylibr |
|
| 134 |
11
|
rexuz3 |
|
| 135 |
125 134
|
ax-mp |
|
| 136 |
133 135
|
sylibr |
|
| 137 |
11
|
r19.2uz |
|
| 138 |
136 137
|
syl |
|
| 139 |
1
|
adantr |
|
| 140 |
2
|
adantr |
|
| 141 |
5
|
adantr |
|
| 142 |
6
|
adantr |
|
| 143 |
7
|
adantr |
|
| 144 |
8
|
adantr |
|
| 145 |
10
|
adantr |
|
| 146 |
|
simprll |
|
| 147 |
|
simprlr |
|
| 148 |
|
eqid |
|
| 149 |
|
simprrl |
|
| 150 |
|
simprrr |
|
| 151 |
|
2fveq3 |
|
| 152 |
151
|
ineq1d |
|
| 153 |
152
|
fveq2d |
|
| 154 |
153
|
cbvsumv |
|
| 155 |
|
2fveq3 |
|
| 156 |
155
|
ineq2d |
|
| 157 |
156
|
fveq2d |
|
| 158 |
157
|
sumeq2sdv |
|
| 159 |
154 158
|
eqtrid |
|
| 160 |
155
|
ineq1d |
|
| 161 |
160
|
fveq2d |
|
| 162 |
159 161
|
oveq12d |
|
| 163 |
162
|
fveq2d |
|
| 164 |
163
|
breq1d |
|
| 165 |
164
|
cbvralvw |
|
| 166 |
150 165
|
sylib |
|
| 167 |
|
eqid |
|
| 168 |
139 140 3 4 141 142 143 144 9 145 146 147 148 149 166 167
|
uniioombllem5 |
|
| 169 |
168
|
anassrs |
|
| 170 |
138 169
|
rexlimddv |
|
| 171 |
56 170
|
rexlimddv |
|