Metamath Proof Explorer


Theorem uniioombllem6

Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypotheses uniioombl.1 φF:2
uniioombl.2 φDisjx.Fx
uniioombl.3 S=seq1+absF
uniioombl.a A=ran.F
uniioombl.e φvol*E
uniioombl.c φC+
uniioombl.g φG:2
uniioombl.s φEran.G
uniioombl.t T=seq1+absG
uniioombl.v φsupranT*<vol*E+C
Assertion uniioombllem6 φvol*EA+vol*EAvol*E+4C

Proof

Step Hyp Ref Expression
1 uniioombl.1 φF:2
2 uniioombl.2 φDisjx.Fx
3 uniioombl.3 S=seq1+absF
4 uniioombl.a A=ran.F
5 uniioombl.e φvol*E
6 uniioombl.c φC+
7 uniioombl.g φG:2
8 uniioombl.s φEran.G
9 uniioombl.t T=seq1+absG
10 uniioombl.v φsupranT*<vol*E+C
11 nnuz =1
12 1zzd φ1
13 eqidd φmTm=Tm
14 eqidd φaabsGa=absGa
15 eqid absG=absG
16 15 ovolfsf G:2absG:0+∞
17 7 16 syl φabsG:0+∞
18 17 ffvelcdmda φaabsGa0+∞
19 elrege0 absGa0+∞absGa0absGa
20 18 19 sylib φaabsGa0absGa
21 20 simpld φaabsGa
22 20 simprd φa0absGa
23 1 2 3 4 5 6 7 8 9 10 uniioombllem1 φsupranT*<
24 15 9 ovolsf G:2T:0+∞
25 7 24 syl φT:0+∞
26 25 frnd φranT0+∞
27 icossxr 0+∞*
28 26 27 sstrdi φranT*
29 supxrub ranT*xranTxsupranT*<
30 28 29 sylan φxranTxsupranT*<
31 30 ralrimiva φxranTxsupranT*<
32 25 ffnd φTFn
33 breq1 x=TmxsupranT*<TmsupranT*<
34 33 ralrn TFnxranTxsupranT*<mTmsupranT*<
35 32 34 syl φxranTxsupranT*<mTmsupranT*<
36 31 35 mpbid φmTmsupranT*<
37 brralrspcev supranT*<mTmsupranT*<xmTmx
38 23 36 37 syl2anc φxmTmx
39 11 9 12 14 21 22 38 isumsup2 φTsupranT<
40 rge0ssre 0+∞
41 26 40 sstrdi φranT
42 1nn 1
43 25 fdmd φdomT=
44 42 43 eleqtrrid φ1domT
45 44 ne0d φdomT
46 dm0rn0 domT=ranT=
47 46 necon3bii domTranT
48 45 47 sylib φranT
49 brralrspcev supranT*<xranTxsupranT*<yxranTxy
50 23 31 49 syl2anc φyxranTxy
51 supxrre ranTranTyxranTxysupranT*<=supranT<
52 41 48 50 51 syl3anc φsupranT*<=supranT<
53 39 52 breqtrrd φTsupranT*<
54 11 12 6 13 53 climi2 φjmjTmsupranT*<<C
55 11 r19.2uz jmjTmsupranT*<<CmTmsupranT*<<C
56 54 55 syl φmTmsupranT*<<C
57 1zzd φmTmsupranT*<<Cj1m1
58 6 ad2antrr φmTmsupranT*<<Cj1mC+
59 simplrl φmTmsupranT*<<Cj1mm
60 59 nnrpd φmTmsupranT*<<Cj1mm+
61 58 60 rpdivcld φmTmsupranT*<<Cj1mCm+
62 fvex .FzV
63 62 inex1 .Fz.GjV
64 63 rgenw z.Fz.GjV
65 eqid z.Fz.Gj=z.Fz.Gj
66 65 fnmpt z.Fz.GjVz.Fz.GjFn
67 64 66 mp1i φmTmsupranT*<<Cj1mnz.Fz.GjFn
68 elfznn i1ni
69 fvco2 z.Fz.GjFnivol*z.Fz.Gji=vol*z.Fz.Gji
70 67 68 69 syl2an φmTmsupranT*<<Cj1mni1nvol*z.Fz.Gji=vol*z.Fz.Gji
71 68 adantl φmTmsupranT*<<Cj1mni1ni
72 2fveq3 z=i.Fz=.Fi
73 72 ineq1d z=i.Fz.Gj=.Fi.Gj
74 fvex .FiV
75 74 inex1 .Fi.GjV
76 73 65 75 fvmpt iz.Fz.Gji=.Fi.Gj
77 71 76 syl φmTmsupranT*<<Cj1mni1nz.Fz.Gji=.Fi.Gj
78 77 fveq2d φmTmsupranT*<<Cj1mni1nvol*z.Fz.Gji=vol*.Fi.Gj
79 70 78 eqtrd φmTmsupranT*<<Cj1mni1nvol*z.Fz.Gji=vol*.Fi.Gj
80 simpr φmTmsupranT*<<Cj1mnn
81 80 11 eleqtrdi φmTmsupranT*<<Cj1mnn1
82 inss2 .Fi.Gj.Gj
83 7 adantr φmTmsupranT*<<CG:2
84 elfznn j1mj
85 ffvelcdm G:2jGj2
86 83 84 85 syl2an φmTmsupranT*<<Cj1mGj2
87 86 elin2d φmTmsupranT*<<Cj1mGj2
88 1st2nd2 Gj2Gj=1stGj2ndGj
89 87 88 syl φmTmsupranT*<<Cj1mGj=1stGj2ndGj
90 89 fveq2d φmTmsupranT*<<Cj1m.Gj=.1stGj2ndGj
91 df-ov 1stGj2ndGj=.1stGj2ndGj
92 90 91 eqtr4di φmTmsupranT*<<Cj1m.Gj=1stGj2ndGj
93 ioossre 1stGj2ndGj
94 92 93 eqsstrdi φmTmsupranT*<<Cj1m.Gj
95 94 ad2antrr φmTmsupranT*<<Cj1mni1n.Gj
96 92 fveq2d φmTmsupranT*<<Cj1mvol*.Gj=vol*1stGj2ndGj
97 ovolfcl G:2j1stGj2ndGj1stGj2ndGj
98 83 84 97 syl2an φmTmsupranT*<<Cj1m1stGj2ndGj1stGj2ndGj
99 ovolioo 1stGj2ndGj1stGj2ndGjvol*1stGj2ndGj=2ndGj1stGj
100 98 99 syl φmTmsupranT*<<Cj1mvol*1stGj2ndGj=2ndGj1stGj
101 96 100 eqtrd φmTmsupranT*<<Cj1mvol*.Gj=2ndGj1stGj
102 98 simp2d φmTmsupranT*<<Cj1m2ndGj
103 98 simp1d φmTmsupranT*<<Cj1m1stGj
104 102 103 resubcld φmTmsupranT*<<Cj1m2ndGj1stGj
105 101 104 eqeltrd φmTmsupranT*<<Cj1mvol*.Gj
106 105 ad2antrr φmTmsupranT*<<Cj1mni1nvol*.Gj
107 ovolsscl .Fi.Gj.Gj.Gjvol*.Gjvol*.Fi.Gj
108 82 95 106 107 mp3an2i φmTmsupranT*<<Cj1mni1nvol*.Fi.Gj
109 108 recnd φmTmsupranT*<<Cj1mni1nvol*.Fi.Gj
110 79 81 109 fsumser φmTmsupranT*<<Cj1mni=1nvol*.Fi.Gj=seq1+vol*z.Fz.Gjn
111 110 eqcomd φmTmsupranT*<<Cj1mnseq1+vol*z.Fz.Gjn=i=1nvol*.Fi.Gj
112 2fveq3 z=k.Fz=.Fk
113 112 ineq1d z=k.Fz.Gj=.Fk.Gj
114 113 cbvmptv z.Fz.Gj=k.Fk.Gj
115 eqeq1 z=xz=x=
116 infeq1 z=xsupz*<=supx*<
117 supeq1 z=xsupz*<=supx*<
118 116 117 opeq12d z=xsupz*<supz*<=supx*<supx*<
119 115 118 ifbieq2d z=xifz=00supz*<supz*<=ifx=00supx*<supx*<
120 119 cbvmptv zran.ifz=00supz*<supz*<=xran.ifx=00supx*<supx*<
121 1 2 3 4 5 6 7 8 9 10 114 120 uniioombllem2 φjseq1+vol*z.Fz.Gjvol*.GjA
122 84 121 sylan2 φj1mseq1+vol*z.Fz.Gjvol*.GjA
123 122 adantlr φmTmsupranT*<<Cj1mseq1+vol*z.Fz.Gjvol*.GjA
124 11 57 61 111 123 climi2 φmTmsupranT*<<Cj1manai=1nvol*.Fi.Gjvol*.GjA<Cm
125 1z 1
126 11 rexuz3 1anai=1nvol*.Fi.Gjvol*.GjA<Cmanai=1nvol*.Fi.Gjvol*.GjA<Cm
127 125 126 ax-mp anai=1nvol*.Fi.Gjvol*.GjA<Cmanai=1nvol*.Fi.Gjvol*.GjA<Cm
128 124 127 sylib φmTmsupranT*<<Cj1manai=1nvol*.Fi.Gjvol*.GjA<Cm
129 128 ralrimiva φmTmsupranT*<<Cj1manai=1nvol*.Fi.Gjvol*.GjA<Cm
130 fzfi 1mFin
131 rexfiuz 1mFinanaj1mi=1nvol*.Fi.Gjvol*.GjA<Cmj1manai=1nvol*.Fi.Gjvol*.GjA<Cm
132 130 131 ax-mp anaj1mi=1nvol*.Fi.Gjvol*.GjA<Cmj1manai=1nvol*.Fi.Gjvol*.GjA<Cm
133 129 132 sylibr φmTmsupranT*<<Canaj1mi=1nvol*.Fi.Gjvol*.GjA<Cm
134 11 rexuz3 1anaj1mi=1nvol*.Fi.Gjvol*.GjA<Cmanaj1mi=1nvol*.Fi.Gjvol*.GjA<Cm
135 125 134 ax-mp anaj1mi=1nvol*.Fi.Gjvol*.GjA<Cmanaj1mi=1nvol*.Fi.Gjvol*.GjA<Cm
136 133 135 sylibr φmTmsupranT*<<Canaj1mi=1nvol*.Fi.Gjvol*.GjA<Cm
137 11 r19.2uz anaj1mi=1nvol*.Fi.Gjvol*.GjA<Cmnj1mi=1nvol*.Fi.Gjvol*.GjA<Cm
138 136 137 syl φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<Cm
139 1 adantr φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<CmF:2
140 2 adantr φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<CmDisjx.Fx
141 5 adantr φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<Cmvol*E
142 6 adantr φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<CmC+
143 7 adantr φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<CmG:2
144 8 adantr φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<CmEran.G
145 10 adantr φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<CmsupranT*<vol*E+C
146 simprll φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<Cmm
147 simprlr φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<CmTmsupranT*<<C
148 eqid .G1m=.G1m
149 simprrl φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<Cmn
150 simprrr φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<Cmj1mi=1nvol*.Fi.Gjvol*.GjA<Cm
151 2fveq3 i=z.Fi=.Fz
152 151 ineq1d i=z.Fi.Gj=.Fz.Gj
153 152 fveq2d i=zvol*.Fi.Gj=vol*.Fz.Gj
154 153 cbvsumv i=1nvol*.Fi.Gj=z=1nvol*.Fz.Gj
155 2fveq3 j=k.Gj=.Gk
156 155 ineq2d j=k.Fz.Gj=.Fz.Gk
157 156 fveq2d j=kvol*.Fz.Gj=vol*.Fz.Gk
158 157 sumeq2sdv j=kz=1nvol*.Fz.Gj=z=1nvol*.Fz.Gk
159 154 158 eqtrid j=ki=1nvol*.Fi.Gj=z=1nvol*.Fz.Gk
160 155 ineq1d j=k.GjA=.GkA
161 160 fveq2d j=kvol*.GjA=vol*.GkA
162 159 161 oveq12d j=ki=1nvol*.Fi.Gjvol*.GjA=z=1nvol*.Fz.Gkvol*.GkA
163 162 fveq2d j=ki=1nvol*.Fi.Gjvol*.GjA=z=1nvol*.Fz.Gkvol*.GkA
164 163 breq1d j=ki=1nvol*.Fi.Gjvol*.GjA<Cmz=1nvol*.Fz.Gkvol*.GkA<Cm
165 164 cbvralvw j1mi=1nvol*.Fi.Gjvol*.GjA<Cmk1mz=1nvol*.Fz.Gkvol*.GkA<Cm
166 150 165 sylib φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<Cmk1mz=1nvol*.Fz.Gkvol*.GkA<Cm
167 eqid .F1n=.F1n
168 139 140 3 4 141 142 143 144 9 145 146 147 148 149 166 167 uniioombllem5 φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<Cmvol*EA+vol*EAvol*E+4C
169 168 anassrs φmTmsupranT*<<Cnj1mi=1nvol*.Fi.Gjvol*.GjA<Cmvol*EA+vol*EAvol*E+4C
170 138 169 rexlimddv φmTmsupranT*<<Cvol*EA+vol*EAvol*E+4C
171 56 170 rexlimddv φvol*EA+vol*EAvol*E+4C