| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precsexlem.1 |
⊢ 𝐹 = rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
| 2 |
|
precsexlem.2 |
⊢ 𝐿 = ( 1st ∘ 𝐹 ) |
| 3 |
|
precsexlem.3 |
⊢ 𝑅 = ( 2nd ∘ 𝐹 ) |
| 4 |
|
precsexlem.4 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 5 |
|
precsexlem.5 |
⊢ ( 𝜑 → 0s <s 𝐴 ) |
| 6 |
|
precsexlem.6 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 7 |
|
precsexlem.7 |
⊢ 𝑌 = ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) |
| 8 |
|
lltropt |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |
| 9 |
4 5
|
0elleft |
⊢ ( 𝜑 → 0s ∈ ( L ‘ 𝐴 ) ) |
| 10 |
9
|
snssd |
⊢ ( 𝜑 → { 0s } ⊆ ( L ‘ 𝐴 ) ) |
| 11 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ ( L ‘ 𝐴 ) |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ ( L ‘ 𝐴 ) ) |
| 13 |
10 12
|
unssd |
⊢ ( 𝜑 → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ⊆ ( L ‘ 𝐴 ) ) |
| 14 |
|
sssslt1 |
⊢ ( ( ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ∧ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ⊆ ( L ‘ 𝐴 ) ) → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) <<s ( R ‘ 𝐴 ) ) |
| 15 |
8 13 14
|
sylancr |
⊢ ( 𝜑 → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) <<s ( R ‘ 𝐴 ) ) |
| 16 |
1 2 3 4 5 6
|
precsexlem10 |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) ) |
| 17 |
4 5
|
cutpos |
⊢ ( 𝜑 → 𝐴 = ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |s ( R ‘ 𝐴 ) ) ) |
| 18 |
7
|
a1i |
⊢ ( 𝜑 → 𝑌 = ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ) |
| 19 |
15 16 17 18
|
mulsunif |
⊢ ( 𝜑 → ( 𝐴 ·s 𝑌 ) = ( ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) |s ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) ) |
| 20 |
|
0sno |
⊢ 0s ∈ No |
| 21 |
20
|
elexi |
⊢ 0s ∈ V |
| 22 |
21
|
snid |
⊢ 0s ∈ { 0s } |
| 23 |
|
elun1 |
⊢ ( 0s ∈ { 0s } → 0s ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ) |
| 24 |
22 23
|
ax-mp |
⊢ 0s ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |
| 25 |
|
peano1 |
⊢ ∅ ∈ ω |
| 26 |
1 2 3
|
precsexlem1 |
⊢ ( 𝐿 ‘ ∅ ) = { 0s } |
| 27 |
22 26
|
eleqtrri |
⊢ 0s ∈ ( 𝐿 ‘ ∅ ) |
| 28 |
|
fveq2 |
⊢ ( 𝑏 = ∅ → ( 𝐿 ‘ 𝑏 ) = ( 𝐿 ‘ ∅ ) ) |
| 29 |
28
|
eleq2d |
⊢ ( 𝑏 = ∅ → ( 0s ∈ ( 𝐿 ‘ 𝑏 ) ↔ 0s ∈ ( 𝐿 ‘ ∅ ) ) ) |
| 30 |
29
|
rspcev |
⊢ ( ( ∅ ∈ ω ∧ 0s ∈ ( 𝐿 ‘ ∅ ) ) → ∃ 𝑏 ∈ ω 0s ∈ ( 𝐿 ‘ 𝑏 ) ) |
| 31 |
25 27 30
|
mp2an |
⊢ ∃ 𝑏 ∈ ω 0s ∈ ( 𝐿 ‘ 𝑏 ) |
| 32 |
|
eliun |
⊢ ( 0s ∈ ∪ 𝑏 ∈ ω ( 𝐿 ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ ω 0s ∈ ( 𝐿 ‘ 𝑏 ) ) |
| 33 |
31 32
|
mpbir |
⊢ 0s ∈ ∪ 𝑏 ∈ ω ( 𝐿 ‘ 𝑏 ) |
| 34 |
|
fo1st |
⊢ 1st : V –onto→ V |
| 35 |
|
fofun |
⊢ ( 1st : V –onto→ V → Fun 1st ) |
| 36 |
34 35
|
ax-mp |
⊢ Fun 1st |
| 37 |
|
rdgfun |
⊢ Fun rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
| 38 |
1
|
funeqi |
⊢ ( Fun 𝐹 ↔ Fun rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) |
| 39 |
37 38
|
mpbir |
⊢ Fun 𝐹 |
| 40 |
|
funco |
⊢ ( ( Fun 1st ∧ Fun 𝐹 ) → Fun ( 1st ∘ 𝐹 ) ) |
| 41 |
36 39 40
|
mp2an |
⊢ Fun ( 1st ∘ 𝐹 ) |
| 42 |
2
|
funeqi |
⊢ ( Fun 𝐿 ↔ Fun ( 1st ∘ 𝐹 ) ) |
| 43 |
41 42
|
mpbir |
⊢ Fun 𝐿 |
| 44 |
|
funiunfv |
⊢ ( Fun 𝐿 → ∪ 𝑏 ∈ ω ( 𝐿 ‘ 𝑏 ) = ∪ ( 𝐿 “ ω ) ) |
| 45 |
43 44
|
ax-mp |
⊢ ∪ 𝑏 ∈ ω ( 𝐿 ‘ 𝑏 ) = ∪ ( 𝐿 “ ω ) |
| 46 |
33 45
|
eleqtri |
⊢ 0s ∈ ∪ ( 𝐿 “ ω ) |
| 47 |
|
addsrid |
⊢ ( 0s ∈ No → ( 0s +s 0s ) = 0s ) |
| 48 |
20 47
|
ax-mp |
⊢ ( 0s +s 0s ) = 0s |
| 49 |
|
muls01 |
⊢ ( 0s ∈ No → ( 0s ·s 0s ) = 0s ) |
| 50 |
20 49
|
ax-mp |
⊢ ( 0s ·s 0s ) = 0s |
| 51 |
48 50
|
oveq12i |
⊢ ( ( 0s +s 0s ) -s ( 0s ·s 0s ) ) = ( 0s -s 0s ) |
| 52 |
|
subsid |
⊢ ( 0s ∈ No → ( 0s -s 0s ) = 0s ) |
| 53 |
20 52
|
ax-mp |
⊢ ( 0s -s 0s ) = 0s |
| 54 |
51 53
|
eqtr2i |
⊢ 0s = ( ( 0s +s 0s ) -s ( 0s ·s 0s ) ) |
| 55 |
16
|
scutcld |
⊢ ( 𝜑 → ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ∈ No ) |
| 56 |
7 55
|
eqeltrid |
⊢ ( 𝜑 → 𝑌 ∈ No ) |
| 57 |
|
muls02 |
⊢ ( 𝑌 ∈ No → ( 0s ·s 𝑌 ) = 0s ) |
| 58 |
56 57
|
syl |
⊢ ( 𝜑 → ( 0s ·s 𝑌 ) = 0s ) |
| 59 |
|
muls01 |
⊢ ( 𝐴 ∈ No → ( 𝐴 ·s 0s ) = 0s ) |
| 60 |
4 59
|
syl |
⊢ ( 𝜑 → ( 𝐴 ·s 0s ) = 0s ) |
| 61 |
58 60
|
oveq12d |
⊢ ( 𝜑 → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) = ( 0s +s 0s ) ) |
| 62 |
61
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) -s ( 0s ·s 0s ) ) = ( ( 0s +s 0s ) -s ( 0s ·s 0s ) ) ) |
| 63 |
54 62
|
eqtr4id |
⊢ ( 𝜑 → 0s = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) -s ( 0s ·s 0s ) ) ) |
| 64 |
|
oveq1 |
⊢ ( 𝑐 = 0s → ( 𝑐 ·s 𝑌 ) = ( 0s ·s 𝑌 ) ) |
| 65 |
64
|
oveq1d |
⊢ ( 𝑐 = 0s → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ) |
| 66 |
|
oveq1 |
⊢ ( 𝑐 = 0s → ( 𝑐 ·s 𝑑 ) = ( 0s ·s 𝑑 ) ) |
| 67 |
65 66
|
oveq12d |
⊢ ( 𝑐 = 0s → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) |
| 68 |
67
|
eqeq2d |
⊢ ( 𝑐 = 0s → ( 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ 0s = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) ) |
| 69 |
|
oveq2 |
⊢ ( 𝑑 = 0s → ( 𝐴 ·s 𝑑 ) = ( 𝐴 ·s 0s ) ) |
| 70 |
69
|
oveq2d |
⊢ ( 𝑑 = 0s → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) ) |
| 71 |
|
oveq2 |
⊢ ( 𝑑 = 0s → ( 0s ·s 𝑑 ) = ( 0s ·s 0s ) ) |
| 72 |
70 71
|
oveq12d |
⊢ ( 𝑑 = 0s → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) -s ( 0s ·s 0s ) ) ) |
| 73 |
72
|
eqeq2d |
⊢ ( 𝑑 = 0s → ( 0s = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ↔ 0s = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) -s ( 0s ·s 0s ) ) ) ) |
| 74 |
68 73
|
rspc2ev |
⊢ ( ( 0s ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 0s ∈ ∪ ( 𝐿 “ ω ) ∧ 0s = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) -s ( 0s ·s 0s ) ) ) → ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 75 |
24 46 63 74
|
mp3an12i |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 76 |
|
eqeq1 |
⊢ ( 𝑏 = 0s → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 77 |
76
|
2rexbidv |
⊢ ( 𝑏 = 0s → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 78 |
21 77
|
elab |
⊢ ( 0s ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 79 |
75 78
|
sylibr |
⊢ ( 𝜑 → 0s ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) |
| 80 |
|
elun1 |
⊢ ( 0s ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } → 0s ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) |
| 81 |
79 80
|
syl |
⊢ ( 𝜑 → 0s ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) |
| 82 |
|
eqid |
⊢ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 83 |
82
|
rnmpo |
⊢ ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } |
| 84 |
|
ssltex1 |
⊢ ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) <<s ( R ‘ 𝐴 ) → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∈ V ) |
| 85 |
15 84
|
syl |
⊢ ( 𝜑 → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∈ V ) |
| 86 |
|
ssltex1 |
⊢ ( ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) → ∪ ( 𝐿 “ ω ) ∈ V ) |
| 87 |
16 86
|
syl |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) ∈ V ) |
| 88 |
|
mpoexga |
⊢ ( ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∈ V ∧ ∪ ( 𝐿 “ ω ) ∈ V ) → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 89 |
85 87 88
|
syl2anc |
⊢ ( 𝜑 → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 90 |
|
rnexg |
⊢ ( ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V → ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 91 |
89 90
|
syl |
⊢ ( 𝜑 → ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 92 |
83 91
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∈ V ) |
| 93 |
|
eqid |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 94 |
93
|
rnmpo |
⊢ ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } |
| 95 |
|
fvex |
⊢ ( R ‘ 𝐴 ) ∈ V |
| 96 |
|
ssltex2 |
⊢ ( ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) → ∪ ( 𝑅 “ ω ) ∈ V ) |
| 97 |
16 96
|
syl |
⊢ ( 𝜑 → ∪ ( 𝑅 “ ω ) ∈ V ) |
| 98 |
|
mpoexga |
⊢ ( ( ( R ‘ 𝐴 ) ∈ V ∧ ∪ ( 𝑅 “ ω ) ∈ V ) → ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 99 |
95 97 98
|
sylancr |
⊢ ( 𝜑 → ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 100 |
|
rnexg |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V → ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 101 |
99 100
|
syl |
⊢ ( 𝜑 → ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 102 |
94 101
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∈ V ) |
| 103 |
92 102
|
unexd |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ∈ V ) |
| 104 |
|
snex |
⊢ { 1s } ∈ V |
| 105 |
104
|
a1i |
⊢ ( 𝜑 → { 1s } ∈ V ) |
| 106 |
|
ssltss1 |
⊢ ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) <<s ( R ‘ 𝐴 ) → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ⊆ No ) |
| 107 |
15 106
|
syl |
⊢ ( 𝜑 → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ⊆ No ) |
| 108 |
107
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ) → 𝑐 ∈ No ) |
| 109 |
108
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑐 ∈ No ) |
| 110 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 ∈ No ) |
| 111 |
109 110
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
| 112 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝐴 ∈ No ) |
| 113 |
|
ssltss1 |
⊢ ( ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) → ∪ ( 𝐿 “ ω ) ⊆ No ) |
| 114 |
16 113
|
syl |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) ⊆ No ) |
| 115 |
114
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → 𝑑 ∈ No ) |
| 116 |
115
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑑 ∈ No ) |
| 117 |
112 116
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
| 118 |
111 117
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
| 119 |
109 116
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
| 120 |
118 119
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
| 121 |
|
eleq1 |
⊢ ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → ( 𝑏 ∈ No ↔ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∈ No ) ) |
| 122 |
120 121
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
| 123 |
122
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
| 124 |
123
|
abssdv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ⊆ No ) |
| 125 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
| 126 |
125
|
a1i |
⊢ ( 𝜑 → ( R ‘ 𝐴 ) ⊆ No ) |
| 127 |
126
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 𝑐 ∈ No ) |
| 128 |
127
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑐 ∈ No ) |
| 129 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 ∈ No ) |
| 130 |
128 129
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
| 131 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝐴 ∈ No ) |
| 132 |
|
ssltss2 |
⊢ ( ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) → ∪ ( 𝑅 “ ω ) ⊆ No ) |
| 133 |
16 132
|
syl |
⊢ ( 𝜑 → ∪ ( 𝑅 “ ω ) ⊆ No ) |
| 134 |
133
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → 𝑑 ∈ No ) |
| 135 |
134
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑑 ∈ No ) |
| 136 |
131 135
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
| 137 |
130 136
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
| 138 |
128 135
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
| 139 |
137 138
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
| 140 |
139 121
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
| 141 |
140
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
| 142 |
141
|
abssdv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ⊆ No ) |
| 143 |
124 142
|
unssd |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ⊆ No ) |
| 144 |
|
1sno |
⊢ 1s ∈ No |
| 145 |
|
snssi |
⊢ ( 1s ∈ No → { 1s } ⊆ No ) |
| 146 |
144 145
|
mp1i |
⊢ ( 𝜑 → { 1s } ⊆ No ) |
| 147 |
|
elun |
⊢ ( 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∨ 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) |
| 148 |
|
vex |
⊢ 𝑒 ∈ V |
| 149 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑒 → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 150 |
149
|
2rexbidv |
⊢ ( 𝑏 = 𝑒 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 151 |
148 150
|
elab |
⊢ ( 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 152 |
149
|
2rexbidv |
⊢ ( 𝑏 = 𝑒 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 153 |
148 152
|
elab |
⊢ ( 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ↔ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 154 |
151 153
|
orbi12i |
⊢ ( ( 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∨ 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 155 |
147 154
|
bitri |
⊢ ( 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 156 |
|
elun |
⊢ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ↔ ( 𝑐 ∈ { 0s } ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ) |
| 157 |
|
velsn |
⊢ ( 𝑐 ∈ { 0s } ↔ 𝑐 = 0s ) |
| 158 |
157
|
orbi1i |
⊢ ( ( 𝑐 ∈ { 0s } ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ↔ ( 𝑐 = 0s ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ) |
| 159 |
156 158
|
bitri |
⊢ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ↔ ( 𝑐 = 0s ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ) |
| 160 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( 0s ·s 𝑌 ) = 0s ) |
| 161 |
160
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( 0s +s ( 𝐴 ·s 𝑑 ) ) ) |
| 162 |
|
muls02 |
⊢ ( 𝑑 ∈ No → ( 0s ·s 𝑑 ) = 0s ) |
| 163 |
115 162
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( 0s ·s 𝑑 ) = 0s ) |
| 164 |
161 163
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) = ( ( 0s +s ( 𝐴 ·s 𝑑 ) ) -s 0s ) ) |
| 165 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → 𝐴 ∈ No ) |
| 166 |
165 115
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
| 167 |
|
addslid |
⊢ ( ( 𝐴 ·s 𝑑 ) ∈ No → ( 0s +s ( 𝐴 ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
| 168 |
166 167
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( 0s +s ( 𝐴 ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
| 169 |
168
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( 0s +s ( 𝐴 ·s 𝑑 ) ) -s 0s ) = ( ( 𝐴 ·s 𝑑 ) -s 0s ) ) |
| 170 |
|
subsid1 |
⊢ ( ( 𝐴 ·s 𝑑 ) ∈ No → ( ( 𝐴 ·s 𝑑 ) -s 0s ) = ( 𝐴 ·s 𝑑 ) ) |
| 171 |
166 170
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( 𝐴 ·s 𝑑 ) -s 0s ) = ( 𝐴 ·s 𝑑 ) ) |
| 172 |
164 169 171
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
| 173 |
|
eliun |
⊢ ( 𝑑 ∈ ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) |
| 174 |
|
funiunfv |
⊢ ( Fun 𝐿 → ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) = ∪ ( 𝐿 “ ω ) ) |
| 175 |
43 174
|
ax-mp |
⊢ ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) = ∪ ( 𝐿 “ ω ) |
| 176 |
175
|
eleq2i |
⊢ ( 𝑑 ∈ ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) ↔ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) |
| 177 |
173 176
|
bitr3i |
⊢ ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ↔ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) |
| 178 |
1 2 3 4 5 6
|
precsexlem9 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ω ) → ( ∀ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑑 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
| 179 |
178
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ω ) → ∀ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑑 ) <s 1s ) |
| 180 |
|
rsp |
⊢ ( ∀ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑑 ) <s 1s → ( 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) → ( 𝐴 ·s 𝑑 ) <s 1s ) ) |
| 181 |
179 180
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ω ) → ( 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) → ( 𝐴 ·s 𝑑 ) <s 1s ) ) |
| 182 |
181
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) → ( 𝐴 ·s 𝑑 ) <s 1s ) ) |
| 183 |
177 182
|
biimtrrid |
⊢ ( 𝜑 → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( 𝐴 ·s 𝑑 ) <s 1s ) ) |
| 184 |
183
|
imp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( 𝐴 ·s 𝑑 ) <s 1s ) |
| 185 |
172 184
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) <s 1s ) |
| 186 |
185
|
ex |
⊢ ( 𝜑 → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) <s 1s ) ) |
| 187 |
67
|
breq1d |
⊢ ( 𝑐 = 0s → ( ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ↔ ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) <s 1s ) ) |
| 188 |
187
|
imbi2d |
⊢ ( 𝑐 = 0s → ( ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ↔ ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) <s 1s ) ) ) |
| 189 |
186 188
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑐 = 0s → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ) ) |
| 190 |
|
scutcut |
⊢ ( ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) → ( ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ∈ No ∧ ∪ ( 𝐿 “ ω ) <<s { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ∧ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } <<s ∪ ( 𝑅 “ ω ) ) ) |
| 191 |
16 190
|
syl |
⊢ ( 𝜑 → ( ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ∈ No ∧ ∪ ( 𝐿 “ ω ) <<s { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ∧ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } <<s ∪ ( 𝑅 “ ω ) ) ) |
| 192 |
191
|
simp3d |
⊢ ( 𝜑 → { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } <<s ∪ ( 𝑅 “ ω ) ) |
| 193 |
192
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } <<s ∪ ( 𝑅 “ ω ) ) |
| 194 |
|
ovex |
⊢ ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ∈ V |
| 195 |
194
|
snid |
⊢ ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } |
| 196 |
7 195
|
eqeltri |
⊢ 𝑌 ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } |
| 197 |
196
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
| 198 |
|
peano2 |
⊢ ( 𝑖 ∈ ω → suc 𝑖 ∈ ω ) |
| 199 |
198
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → suc 𝑖 ∈ ω ) |
| 200 |
|
eqid |
⊢ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) |
| 201 |
|
oveq1 |
⊢ ( 𝑥𝐿 = 𝑐 → ( 𝑥𝐿 -s 𝐴 ) = ( 𝑐 -s 𝐴 ) ) |
| 202 |
201
|
oveq1d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) |
| 203 |
202
|
oveq2d |
⊢ ( 𝑥𝐿 = 𝑐 → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) |
| 204 |
|
id |
⊢ ( 𝑥𝐿 = 𝑐 → 𝑥𝐿 = 𝑐 ) |
| 205 |
203 204
|
oveq12d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) ) |
| 206 |
205
|
eqeq2d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) ) ) |
| 207 |
|
oveq2 |
⊢ ( 𝑦𝐿 = 𝑑 → ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) |
| 208 |
207
|
oveq2d |
⊢ ( 𝑦𝐿 = 𝑑 → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
| 209 |
208
|
oveq1d |
⊢ ( 𝑦𝐿 = 𝑑 → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) |
| 210 |
209
|
eqeq2d |
⊢ ( 𝑦𝐿 = 𝑑 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) ) |
| 211 |
206 210
|
rspc2ev |
⊢ ( ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) |
| 212 |
200 211
|
mp3an3 |
⊢ ( ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) |
| 213 |
212
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) |
| 214 |
|
ovex |
⊢ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ V |
| 215 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
| 216 |
215
|
2rexbidv |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
| 217 |
214 216
|
elab |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) |
| 218 |
213 217
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ) |
| 219 |
|
elun1 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) |
| 220 |
|
elun2 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 221 |
218 219 220
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 222 |
1 2 3
|
precsexlem5 |
⊢ ( 𝑖 ∈ ω → ( 𝑅 ‘ suc 𝑖 ) = ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 223 |
222
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( 𝑅 ‘ suc 𝑖 ) = ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 224 |
221 223
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ suc 𝑖 ) ) |
| 225 |
|
fveq2 |
⊢ ( 𝑗 = suc 𝑖 → ( 𝑅 ‘ 𝑗 ) = ( 𝑅 ‘ suc 𝑖 ) ) |
| 226 |
225
|
eleq2d |
⊢ ( 𝑗 = suc 𝑖 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ suc 𝑖 ) ) ) |
| 227 |
226
|
rspcev |
⊢ ( ( suc 𝑖 ∈ ω ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ suc 𝑖 ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) |
| 228 |
199 224 227
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) |
| 229 |
228
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) ) |
| 230 |
|
eliun |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) |
| 231 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
| 232 |
|
fofun |
⊢ ( 2nd : V –onto→ V → Fun 2nd ) |
| 233 |
231 232
|
ax-mp |
⊢ Fun 2nd |
| 234 |
|
funco |
⊢ ( ( Fun 2nd ∧ Fun 𝐹 ) → Fun ( 2nd ∘ 𝐹 ) ) |
| 235 |
233 39 234
|
mp2an |
⊢ Fun ( 2nd ∘ 𝐹 ) |
| 236 |
3
|
funeqi |
⊢ ( Fun 𝑅 ↔ Fun ( 2nd ∘ 𝐹 ) ) |
| 237 |
235 236
|
mpbir |
⊢ Fun 𝑅 |
| 238 |
|
funiunfv |
⊢ ( Fun 𝑅 → ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) = ∪ ( 𝑅 “ ω ) ) |
| 239 |
237 238
|
ax-mp |
⊢ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) = ∪ ( 𝑅 “ ω ) |
| 240 |
239
|
eleq2i |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) |
| 241 |
230 240
|
bitr3i |
⊢ ( ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) |
| 242 |
229 177 241
|
3imtr3g |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) ) |
| 243 |
242
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) |
| 244 |
193 197 243
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 <s ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) |
| 245 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 ∈ No ) |
| 246 |
144
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 1s ∈ No ) |
| 247 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
| 248 |
11 247
|
sstri |
⊢ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ No |
| 249 |
248
|
sseli |
⊢ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 𝑐 ∈ No ) |
| 250 |
249
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑐 ∈ No ) |
| 251 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝐴 ∈ No ) |
| 252 |
250 251
|
subscld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
| 253 |
252
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
| 254 |
115
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑑 ∈ No ) |
| 255 |
253 254
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ∈ No ) |
| 256 |
246 255
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ∈ No ) |
| 257 |
249
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑐 ∈ No ) |
| 258 |
|
breq2 |
⊢ ( 𝑥 = 𝑐 → ( 0s <s 𝑥 ↔ 0s <s 𝑐 ) ) |
| 259 |
258
|
elrab |
⊢ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ↔ ( 𝑐 ∈ ( L ‘ 𝐴 ) ∧ 0s <s 𝑐 ) ) |
| 260 |
259
|
simprbi |
⊢ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 0s <s 𝑐 ) |
| 261 |
260
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 0s <s 𝑐 ) |
| 262 |
260
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 0s <s 𝑐 ) |
| 263 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑐 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑐 ) ) |
| 264 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑐 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑐 ·s 𝑦 ) ) |
| 265 |
264
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑐 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑐 ·s 𝑦 ) = 1s ) ) |
| 266 |
265
|
rexbidv |
⊢ ( 𝑥𝑂 = 𝑐 → ( ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) ) |
| 267 |
263 266
|
imbi12d |
⊢ ( 𝑥𝑂 = 𝑐 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑐 → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) ) ) |
| 268 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 269 |
|
ssun1 |
⊢ ( L ‘ 𝐴 ) ⊆ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) |
| 270 |
11 269
|
sstri |
⊢ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) |
| 271 |
270
|
sseli |
⊢ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 𝑐 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 272 |
271
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑐 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 273 |
267 268 272
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 0s <s 𝑐 → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) ) |
| 274 |
262 273
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
| 275 |
274
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
| 276 |
245 256 257 261 275
|
sltmuldiv2wd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) <s ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ↔ 𝑌 <s ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) ) |
| 277 |
244 276
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) <s ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
| 278 |
257 254
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
| 279 |
166
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
| 280 |
246 278 279
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 281 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝐴 ∈ No ) |
| 282 |
257 281 254
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) = ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) |
| 283 |
282
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 284 |
280 283
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
| 285 |
277 284
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) |
| 286 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑌 ∈ No ) |
| 287 |
250 286
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
| 288 |
287
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
| 289 |
288 279
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
| 290 |
289 278 246
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ↔ ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) <s ( 1s +s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 291 |
246 278
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
| 292 |
288 279 291
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) <s ( 1s +s ( 𝑐 ·s 𝑑 ) ) ↔ ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 293 |
290 292
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ↔ ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 294 |
285 293
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) |
| 295 |
294
|
exp32 |
⊢ ( 𝜑 → ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ) ) |
| 296 |
189 295
|
jaod |
⊢ ( 𝜑 → ( ( 𝑐 = 0s ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ) ) |
| 297 |
159 296
|
biimtrid |
⊢ ( 𝜑 → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ) ) |
| 298 |
297
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) |
| 299 |
|
breq1 |
⊢ ( 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → ( 𝑒 <s 1s ↔ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ) |
| 300 |
298 299
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑒 <s 1s ) ) |
| 301 |
300
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑒 <s 1s ) ) |
| 302 |
192
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } <<s ∪ ( 𝑅 “ ω ) ) |
| 303 |
196
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
| 304 |
198
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → suc 𝑖 ∈ ω ) |
| 305 |
|
oveq1 |
⊢ ( 𝑥𝑅 = 𝑐 → ( 𝑥𝑅 -s 𝐴 ) = ( 𝑐 -s 𝐴 ) ) |
| 306 |
305
|
oveq1d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) |
| 307 |
306
|
oveq2d |
⊢ ( 𝑥𝑅 = 𝑐 → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) |
| 308 |
|
id |
⊢ ( 𝑥𝑅 = 𝑐 → 𝑥𝑅 = 𝑐 ) |
| 309 |
307 308
|
oveq12d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) ) |
| 310 |
309
|
eqeq2d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) ) ) |
| 311 |
|
oveq2 |
⊢ ( 𝑦𝑅 = 𝑑 → ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) |
| 312 |
311
|
oveq2d |
⊢ ( 𝑦𝑅 = 𝑑 → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
| 313 |
312
|
oveq1d |
⊢ ( 𝑦𝑅 = 𝑑 → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) |
| 314 |
313
|
eqeq2d |
⊢ ( 𝑦𝑅 = 𝑑 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) ) |
| 315 |
310 314
|
rspc2ev |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) |
| 316 |
200 315
|
mp3an3 |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) |
| 317 |
316
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) |
| 318 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
| 319 |
318
|
2rexbidv |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
| 320 |
214 319
|
elab |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) |
| 321 |
317 320
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) |
| 322 |
|
elun2 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) |
| 323 |
321 322 220
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 324 |
222
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( 𝑅 ‘ suc 𝑖 ) = ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 325 |
323 324
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ suc 𝑖 ) ) |
| 326 |
304 325 227
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) |
| 327 |
326
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) ) |
| 328 |
|
eliun |
⊢ ( 𝑑 ∈ ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) |
| 329 |
|
funiunfv |
⊢ ( Fun 𝑅 → ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) = ∪ ( 𝑅 “ ω ) ) |
| 330 |
237 329
|
ax-mp |
⊢ ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) = ∪ ( 𝑅 “ ω ) |
| 331 |
330
|
eleq2i |
⊢ ( 𝑑 ∈ ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) ↔ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) |
| 332 |
328 331
|
bitr3i |
⊢ ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ↔ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) |
| 333 |
327 332 241
|
3imtr3g |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) ) |
| 334 |
333
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) |
| 335 |
302 303 334
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 <s ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) |
| 336 |
144
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 1s ∈ No ) |
| 337 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 𝐴 ∈ No ) |
| 338 |
127 337
|
subscld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
| 339 |
338
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
| 340 |
339 135
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ∈ No ) |
| 341 |
336 340
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ∈ No ) |
| 342 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 0s ∈ No ) |
| 343 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 0s <s 𝐴 ) |
| 344 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑐 → ( 𝐴 <s 𝑥𝑂 ↔ 𝐴 <s 𝑐 ) ) |
| 345 |
|
rightval |
⊢ ( R ‘ 𝐴 ) = { 𝑥𝑂 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑥𝑂 } |
| 346 |
344 345
|
elrab2 |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) ↔ ( 𝑐 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝐴 <s 𝑐 ) ) |
| 347 |
346
|
simprbi |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) → 𝐴 <s 𝑐 ) |
| 348 |
347
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 𝐴 <s 𝑐 ) |
| 349 |
342 337 127 343 348
|
slttrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 0s <s 𝑐 ) |
| 350 |
349
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 0s <s 𝑐 ) |
| 351 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 352 |
|
elun2 |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) → 𝑐 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 353 |
352
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 𝑐 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 354 |
267 351 353
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( 0s <s 𝑐 → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) ) |
| 355 |
349 354
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
| 356 |
355
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
| 357 |
129 341 128 350 356
|
sltmuldiv2wd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) <s ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ↔ 𝑌 <s ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) ) |
| 358 |
335 357
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) <s ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
| 359 |
336 138 136
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 360 |
128 131 135
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) = ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) |
| 361 |
360
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 362 |
359 361
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
| 363 |
358 362
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) |
| 364 |
137 138 336
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ↔ ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) <s ( 1s +s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 365 |
336 138
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
| 366 |
130 136 365
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) <s ( 1s +s ( 𝑐 ·s 𝑑 ) ) ↔ ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 367 |
364 366
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ↔ ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 368 |
363 367
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) |
| 369 |
368 299
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑒 <s 1s ) ) |
| 370 |
369
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑒 <s 1s ) ) |
| 371 |
301 370
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) → 𝑒 <s 1s ) ) |
| 372 |
155 371
|
biimtrid |
⊢ ( 𝜑 → ( 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 𝑒 <s 1s ) ) |
| 373 |
372
|
imp |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) → 𝑒 <s 1s ) |
| 374 |
|
velsn |
⊢ ( 𝑓 ∈ { 1s } ↔ 𝑓 = 1s ) |
| 375 |
|
breq2 |
⊢ ( 𝑓 = 1s → ( 𝑒 <s 𝑓 ↔ 𝑒 <s 1s ) ) |
| 376 |
374 375
|
sylbi |
⊢ ( 𝑓 ∈ { 1s } → ( 𝑒 <s 𝑓 ↔ 𝑒 <s 1s ) ) |
| 377 |
373 376
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) → ( 𝑓 ∈ { 1s } → 𝑒 <s 𝑓 ) ) |
| 378 |
377
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ∧ 𝑓 ∈ { 1s } ) → 𝑒 <s 𝑓 ) |
| 379 |
103 105 143 146 378
|
ssltd |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) <<s { 1s } ) |
| 380 |
|
eqid |
⊢ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 381 |
380
|
rnmpo |
⊢ ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } |
| 382 |
|
mpoexga |
⊢ ( ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∈ V ∧ ∪ ( 𝑅 “ ω ) ∈ V ) → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 383 |
85 97 382
|
syl2anc |
⊢ ( 𝜑 → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 384 |
|
rnexg |
⊢ ( ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V → ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 385 |
383 384
|
syl |
⊢ ( 𝜑 → ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 386 |
381 385
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∈ V ) |
| 387 |
|
eqid |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 388 |
387
|
rnmpo |
⊢ ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } |
| 389 |
|
mpoexga |
⊢ ( ( ( R ‘ 𝐴 ) ∈ V ∧ ∪ ( 𝐿 “ ω ) ∈ V ) → ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 390 |
95 87 389
|
sylancr |
⊢ ( 𝜑 → ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 391 |
|
rnexg |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V → ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 392 |
390 391
|
syl |
⊢ ( 𝜑 → ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
| 393 |
388 392
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∈ V ) |
| 394 |
386 393
|
unexd |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ∈ V ) |
| 395 |
108
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑐 ∈ No ) |
| 396 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 ∈ No ) |
| 397 |
395 396
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
| 398 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝐴 ∈ No ) |
| 399 |
134
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑑 ∈ No ) |
| 400 |
398 399
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
| 401 |
397 400
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
| 402 |
395 399
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
| 403 |
401 402
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
| 404 |
403 121
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
| 405 |
404
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
| 406 |
405
|
abssdv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ⊆ No ) |
| 407 |
127
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑐 ∈ No ) |
| 408 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 ∈ No ) |
| 409 |
407 408
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
| 410 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝐴 ∈ No ) |
| 411 |
115
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑑 ∈ No ) |
| 412 |
410 411
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
| 413 |
409 412
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
| 414 |
407 411
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
| 415 |
413 414
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
| 416 |
415 121
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
| 417 |
416
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
| 418 |
417
|
abssdv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ⊆ No ) |
| 419 |
406 418
|
unssd |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ⊆ No ) |
| 420 |
|
elun |
⊢ ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∨ 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) |
| 421 |
|
vex |
⊢ 𝑓 ∈ V |
| 422 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑓 → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 423 |
422
|
2rexbidv |
⊢ ( 𝑏 = 𝑓 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 424 |
421 423
|
elab |
⊢ ( 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 425 |
422
|
2rexbidv |
⊢ ( 𝑏 = 𝑓 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 426 |
421 425
|
elab |
⊢ ( 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ↔ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 427 |
424 426
|
orbi12i |
⊢ ( ( 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∨ 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 428 |
420 427
|
bitri |
⊢ ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 429 |
|
eliun |
⊢ ( 𝑑 ∈ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) ) |
| 430 |
239
|
eleq2i |
⊢ ( 𝑑 ∈ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) ↔ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) |
| 431 |
429 430
|
bitr3i |
⊢ ( ∃ 𝑗 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) ↔ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) |
| 432 |
1 2 3 4 5 6
|
precsexlem9 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ) → ( ∀ 𝑐 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑐 ) <s 1s ∧ ∀ 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑑 ) ) ) |
| 433 |
|
rsp |
⊢ ( ∀ 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑑 ) → ( 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) → 1s <s ( 𝐴 ·s 𝑑 ) ) ) |
| 434 |
432 433
|
simpl2im |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ) → ( 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) → 1s <s ( 𝐴 ·s 𝑑 ) ) ) |
| 435 |
434
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) → 1s <s ( 𝐴 ·s 𝑑 ) ) ) |
| 436 |
431 435
|
biimtrrid |
⊢ ( 𝜑 → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( 𝐴 ·s 𝑑 ) ) ) |
| 437 |
436
|
imp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → 1s <s ( 𝐴 ·s 𝑑 ) ) |
| 438 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → 𝑌 ∈ No ) |
| 439 |
57
|
oveq1d |
⊢ ( 𝑌 ∈ No → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( 0s +s ( 𝐴 ·s 𝑑 ) ) ) |
| 440 |
438 439
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( 0s +s ( 𝐴 ·s 𝑑 ) ) ) |
| 441 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → 𝐴 ∈ No ) |
| 442 |
441 134
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
| 443 |
442 167
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( 0s +s ( 𝐴 ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
| 444 |
440 443
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
| 445 |
134 162
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( 0s ·s 𝑑 ) = 0s ) |
| 446 |
444 445
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) = ( ( 𝐴 ·s 𝑑 ) -s 0s ) ) |
| 447 |
442 170
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( ( 𝐴 ·s 𝑑 ) -s 0s ) = ( 𝐴 ·s 𝑑 ) ) |
| 448 |
446 447
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
| 449 |
437 448
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → 1s <s ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) |
| 450 |
449
|
ex |
⊢ ( 𝜑 → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) ) |
| 451 |
67
|
breq2d |
⊢ ( 𝑐 = 0s → ( 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ 1s <s ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) ) |
| 452 |
451
|
imbi2d |
⊢ ( 𝑐 = 0s → ( ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ↔ ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) ) ) |
| 453 |
450 452
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑐 = 0s → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) ) |
| 454 |
144
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 1s ∈ No ) |
| 455 |
249
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑐 ∈ No ) |
| 456 |
134
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑑 ∈ No ) |
| 457 |
455 456
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
| 458 |
442
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
| 459 |
454 457 458
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 460 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝐴 ∈ No ) |
| 461 |
455 460 456
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) = ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) |
| 462 |
461
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 463 |
459 462
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
| 464 |
191
|
simp2d |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) <<s { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
| 465 |
464
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ∪ ( 𝐿 “ ω ) <<s { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
| 466 |
198
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → suc 𝑖 ∈ ω ) |
| 467 |
201
|
oveq1d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) |
| 468 |
467
|
oveq2d |
⊢ ( 𝑥𝐿 = 𝑐 → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) |
| 469 |
468 204
|
oveq12d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) ) |
| 470 |
469
|
eqeq2d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) ) ) |
| 471 |
470 314
|
rspc2ev |
⊢ ( ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) |
| 472 |
200 471
|
mp3an3 |
⊢ ( ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) |
| 473 |
472
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) |
| 474 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
| 475 |
474
|
2rexbidv |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
| 476 |
214 475
|
elab |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) |
| 477 |
473 476
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) |
| 478 |
|
elun2 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) |
| 479 |
|
elun2 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 480 |
477 478 479
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 481 |
1 2 3
|
precsexlem4 |
⊢ ( 𝑖 ∈ ω → ( 𝐿 ‘ suc 𝑖 ) = ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 482 |
481
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( 𝐿 ‘ suc 𝑖 ) = ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 483 |
480 482
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ suc 𝑖 ) ) |
| 484 |
|
fveq2 |
⊢ ( 𝑗 = suc 𝑖 → ( 𝐿 ‘ 𝑗 ) = ( 𝐿 ‘ suc 𝑖 ) ) |
| 485 |
484
|
eleq2d |
⊢ ( 𝑗 = suc 𝑖 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ suc 𝑖 ) ) ) |
| 486 |
485
|
rspcev |
⊢ ( ( suc 𝑖 ∈ ω ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ suc 𝑖 ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) |
| 487 |
466 483 486
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) |
| 488 |
487
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) ) |
| 489 |
|
eliun |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ 𝑗 ∈ ω ( 𝐿 ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) |
| 490 |
|
funiunfv |
⊢ ( Fun 𝐿 → ∪ 𝑗 ∈ ω ( 𝐿 ‘ 𝑗 ) = ∪ ( 𝐿 “ ω ) ) |
| 491 |
43 490
|
ax-mp |
⊢ ∪ 𝑗 ∈ ω ( 𝐿 ‘ 𝑗 ) = ∪ ( 𝐿 “ ω ) |
| 492 |
491
|
eleq2i |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ 𝑗 ∈ ω ( 𝐿 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) |
| 493 |
489 492
|
bitr3i |
⊢ ( ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) |
| 494 |
488 332 493
|
3imtr3g |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) ) |
| 495 |
494
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) |
| 496 |
196
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
| 497 |
465 495 496
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) <s 𝑌 ) |
| 498 |
252
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
| 499 |
498 456
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ∈ No ) |
| 500 |
454 499
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ∈ No ) |
| 501 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 ∈ No ) |
| 502 |
260
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 0s <s 𝑐 ) |
| 503 |
274
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
| 504 |
500 501 455 502 503
|
sltdivmulwd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) <s 𝑌 ↔ ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) ) |
| 505 |
497 504
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) |
| 506 |
463 505
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) |
| 507 |
454 457
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
| 508 |
287
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
| 509 |
507 458 508
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ↔ ( 1s +s ( 𝑐 ·s 𝑑 ) ) <s ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 510 |
508 458
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
| 511 |
454 457 510
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) <s ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ↔ 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 512 |
509 511
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ↔ 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 513 |
506 512
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 514 |
513
|
exp32 |
⊢ ( 𝜑 → ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) ) |
| 515 |
453 514
|
jaod |
⊢ ( 𝜑 → ( ( 𝑐 = 0s ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) ) |
| 516 |
159 515
|
biimtrid |
⊢ ( 𝜑 → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) ) |
| 517 |
516
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 518 |
|
breq2 |
⊢ ( 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → ( 1s <s 𝑓 ↔ 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 519 |
517 518
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 1s <s 𝑓 ) ) |
| 520 |
519
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 1s <s 𝑓 ) ) |
| 521 |
144
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 1s ∈ No ) |
| 522 |
521 414 412
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 523 |
407 410 411
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) = ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) |
| 524 |
523
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 525 |
522 524
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
| 526 |
464
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ∪ ( 𝐿 “ ω ) <<s { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
| 527 |
198
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → suc 𝑖 ∈ ω ) |
| 528 |
305
|
oveq1d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) |
| 529 |
528
|
oveq2d |
⊢ ( 𝑥𝑅 = 𝑐 → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) |
| 530 |
529 308
|
oveq12d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) ) |
| 531 |
530
|
eqeq2d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) ) ) |
| 532 |
531 210
|
rspc2ev |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) |
| 533 |
200 532
|
mp3an3 |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) |
| 534 |
533
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) |
| 535 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
| 536 |
535
|
2rexbidv |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
| 537 |
214 536
|
elab |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) |
| 538 |
534 537
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ) |
| 539 |
|
elun1 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) |
| 540 |
538 539 479
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 541 |
481
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( 𝐿 ‘ suc 𝑖 ) = ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 542 |
540 541
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ suc 𝑖 ) ) |
| 543 |
527 542 486
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) |
| 544 |
543
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) ) |
| 545 |
544 177 493
|
3imtr3g |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) ) |
| 546 |
545
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) |
| 547 |
196
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
| 548 |
526 546 547
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) <s 𝑌 ) |
| 549 |
338
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
| 550 |
549 411
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ∈ No ) |
| 551 |
521 550
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ∈ No ) |
| 552 |
349
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 0s <s 𝑐 ) |
| 553 |
355
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
| 554 |
551 408 407 552 553
|
sltdivmulwd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) <s 𝑌 ↔ ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) ) |
| 555 |
548 554
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) |
| 556 |
525 555
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) |
| 557 |
521 414
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
| 558 |
557 412 409
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ↔ ( 1s +s ( 𝑐 ·s 𝑑 ) ) <s ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ) ) |
| 559 |
521 414 413
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) <s ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ↔ 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 560 |
558 559
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ↔ 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
| 561 |
556 560
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
| 562 |
561 518
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 1s <s 𝑓 ) ) |
| 563 |
562
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 1s <s 𝑓 ) ) |
| 564 |
520 563
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) → 1s <s 𝑓 ) ) |
| 565 |
428 564
|
biimtrid |
⊢ ( 𝜑 → ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 1s <s 𝑓 ) ) |
| 566 |
|
velsn |
⊢ ( 𝑒 ∈ { 1s } ↔ 𝑒 = 1s ) |
| 567 |
|
breq1 |
⊢ ( 𝑒 = 1s → ( 𝑒 <s 𝑓 ↔ 1s <s 𝑓 ) ) |
| 568 |
567
|
imbi2d |
⊢ ( 𝑒 = 1s → ( ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 𝑒 <s 𝑓 ) ↔ ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 1s <s 𝑓 ) ) ) |
| 569 |
566 568
|
sylbi |
⊢ ( 𝑒 ∈ { 1s } → ( ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 𝑒 <s 𝑓 ) ↔ ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 1s <s 𝑓 ) ) ) |
| 570 |
565 569
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑒 ∈ { 1s } → ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 𝑒 <s 𝑓 ) ) ) |
| 571 |
570
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ { 1s } ∧ 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) → 𝑒 <s 𝑓 ) |
| 572 |
105 394 146 419 571
|
ssltd |
⊢ ( 𝜑 → { 1s } <<s ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) |
| 573 |
81 379 572
|
cuteq1 |
⊢ ( 𝜑 → ( ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) |s ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) = 1s ) |
| 574 |
19 573
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ·s 𝑌 ) = 1s ) |