Metamath Proof Explorer


Theorem precsexlem11

Description: Lemma for surreal reciprocal. Show that the cut of the left and right sets is a multiplicative inverse for A . (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses precsexlem.1
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. )
precsexlem.2
|- L = ( 1st o. F )
precsexlem.3
|- R = ( 2nd o. F )
precsexlem.4
|- ( ph -> A e. No )
precsexlem.5
|- ( ph -> 0s 
precsexlem.6
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s  E. y e. No ( xO x.s y ) = 1s ) )
precsexlem.7
|- Y = ( U. ( L " _om ) |s U. ( R " _om ) )
Assertion precsexlem11
|- ( ph -> ( A x.s Y ) = 1s )

Proof

Step Hyp Ref Expression
1 precsexlem.1
 |-  F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. )
2 precsexlem.2
 |-  L = ( 1st o. F )
3 precsexlem.3
 |-  R = ( 2nd o. F )
4 precsexlem.4
 |-  ( ph -> A e. No )
5 precsexlem.5
 |-  ( ph -> 0s 
6 precsexlem.6
 |-  ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s  E. y e. No ( xO x.s y ) = 1s ) )
7 precsexlem.7
 |-  Y = ( U. ( L " _om ) |s U. ( R " _om ) )
8 lltropt
 |-  ( _Left ` A ) <
9 4 5 0elleft
 |-  ( ph -> 0s e. ( _Left ` A ) )
10 9 snssd
 |-  ( ph -> { 0s } C_ ( _Left ` A ) )
11 ssrab2
 |-  { x e. ( _Left ` A ) | 0s 
12 11 a1i
 |-  ( ph -> { x e. ( _Left ` A ) | 0s 
13 10 12 unssd
 |-  ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s 
14 sssslt1
 |-  ( ( ( _Left ` A ) < ( { 0s } u. { x e. ( _Left ` A ) | 0s 
15 8 13 14 sylancr
 |-  ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s 
16 1 2 3 4 5 6 precsexlem10
 |-  ( ph -> U. ( L " _om ) <
17 4 5 cutpos
 |-  ( ph -> A = ( ( { 0s } u. { x e. ( _Left ` A ) | 0s 
18 7 a1i
 |-  ( ph -> Y = ( U. ( L " _om ) |s U. ( R " _om ) ) )
19 15 16 17 18 mulsunif
 |-  ( ph -> ( A x.s Y ) = ( ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
20 0sno
 |-  0s e. No
21 20 elexi
 |-  0s e. _V
22 21 snid
 |-  0s e. { 0s }
23 elun1
 |-  ( 0s e. { 0s } -> 0s e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
24 22 23 ax-mp
 |-  0s e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
25 peano1
 |-  (/) e. _om
26 1 2 3 precsexlem1
 |-  ( L ` (/) ) = { 0s }
27 22 26 eleqtrri
 |-  0s e. ( L ` (/) )
28 fveq2
 |-  ( b = (/) -> ( L ` b ) = ( L ` (/) ) )
29 28 eleq2d
 |-  ( b = (/) -> ( 0s e. ( L ` b ) <-> 0s e. ( L ` (/) ) ) )
30 29 rspcev
 |-  ( ( (/) e. _om /\ 0s e. ( L ` (/) ) ) -> E. b e. _om 0s e. ( L ` b ) )
31 25 27 30 mp2an
 |-  E. b e. _om 0s e. ( L ` b )
32 eliun
 |-  ( 0s e. U_ b e. _om ( L ` b ) <-> E. b e. _om 0s e. ( L ` b ) )
33 31 32 mpbir
 |-  0s e. U_ b e. _om ( L ` b )
34 fo1st
 |-  1st : _V -onto-> _V
35 fofun
 |-  ( 1st : _V -onto-> _V -> Fun 1st )
36 34 35 ax-mp
 |-  Fun 1st
37 rdgfun
 |-  Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. )
38 1 funeqi
 |-  ( Fun F <-> Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) )
39 37 38 mpbir
 |-  Fun F
40 funco
 |-  ( ( Fun 1st /\ Fun F ) -> Fun ( 1st o. F ) )
41 36 39 40 mp2an
 |-  Fun ( 1st o. F )
42 2 funeqi
 |-  ( Fun L <-> Fun ( 1st o. F ) )
43 41 42 mpbir
 |-  Fun L
44 funiunfv
 |-  ( Fun L -> U_ b e. _om ( L ` b ) = U. ( L " _om ) )
45 43 44 ax-mp
 |-  U_ b e. _om ( L ` b ) = U. ( L " _om )
46 33 45 eleqtri
 |-  0s e. U. ( L " _om )
47 addsrid
 |-  ( 0s e. No -> ( 0s +s 0s ) = 0s )
48 20 47 ax-mp
 |-  ( 0s +s 0s ) = 0s
49 muls01
 |-  ( 0s e. No -> ( 0s x.s 0s ) = 0s )
50 20 49 ax-mp
 |-  ( 0s x.s 0s ) = 0s
51 48 50 oveq12i
 |-  ( ( 0s +s 0s ) -s ( 0s x.s 0s ) ) = ( 0s -s 0s )
52 subsid
 |-  ( 0s e. No -> ( 0s -s 0s ) = 0s )
53 20 52 ax-mp
 |-  ( 0s -s 0s ) = 0s
54 51 53 eqtr2i
 |-  0s = ( ( 0s +s 0s ) -s ( 0s x.s 0s ) )
55 16 scutcld
 |-  ( ph -> ( U. ( L " _om ) |s U. ( R " _om ) ) e. No )
56 7 55 eqeltrid
 |-  ( ph -> Y e. No )
57 muls02
 |-  ( Y e. No -> ( 0s x.s Y ) = 0s )
58 56 57 syl
 |-  ( ph -> ( 0s x.s Y ) = 0s )
59 muls01
 |-  ( A e. No -> ( A x.s 0s ) = 0s )
60 4 59 syl
 |-  ( ph -> ( A x.s 0s ) = 0s )
61 58 60 oveq12d
 |-  ( ph -> ( ( 0s x.s Y ) +s ( A x.s 0s ) ) = ( 0s +s 0s ) )
62 61 oveq1d
 |-  ( ph -> ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) = ( ( 0s +s 0s ) -s ( 0s x.s 0s ) ) )
63 54 62 eqtr4id
 |-  ( ph -> 0s = ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) )
64 oveq1
 |-  ( c = 0s -> ( c x.s Y ) = ( 0s x.s Y ) )
65 64 oveq1d
 |-  ( c = 0s -> ( ( c x.s Y ) +s ( A x.s d ) ) = ( ( 0s x.s Y ) +s ( A x.s d ) ) )
66 oveq1
 |-  ( c = 0s -> ( c x.s d ) = ( 0s x.s d ) )
67 65 66 oveq12d
 |-  ( c = 0s -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) = ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) )
68 67 eqeq2d
 |-  ( c = 0s -> ( 0s = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> 0s = ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) ) )
69 oveq2
 |-  ( d = 0s -> ( A x.s d ) = ( A x.s 0s ) )
70 69 oveq2d
 |-  ( d = 0s -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( ( 0s x.s Y ) +s ( A x.s 0s ) ) )
71 oveq2
 |-  ( d = 0s -> ( 0s x.s d ) = ( 0s x.s 0s ) )
72 70 71 oveq12d
 |-  ( d = 0s -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) )
73 72 eqeq2d
 |-  ( d = 0s -> ( 0s = ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) <-> 0s = ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) ) )
74 68 73 rspc2ev
 |-  ( ( 0s e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
75 24 46 63 74 mp3an12i
 |-  ( ph -> E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
76 eqeq1
 |-  ( b = 0s -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> 0s = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) )
77 76 2rexbidv
 |-  ( b = 0s -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
78 21 77 elab
 |-  ( 0s e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
79 75 78 sylibr
 |-  ( ph -> 0s e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
80 elun1
 |-  ( 0s e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  0s e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
81 79 80 syl
 |-  ( ph -> 0s e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
82 eqid
 |-  ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) )
83 82 rnmpo
 |-  ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
84 ssltex1
 |-  ( ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( { 0s } u. { x e. ( _Left ` A ) | 0s 
85 15 84 syl
 |-  ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s 
86 ssltex1
 |-  ( U. ( L " _om ) < U. ( L " _om ) e. _V )
87 16 86 syl
 |-  ( ph -> U. ( L " _om ) e. _V )
88 mpoexga
 |-  ( ( ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
89 85 87 88 syl2anc
 |-  ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
90 rnexg
 |-  ( ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
91 89 90 syl
 |-  ( ph -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
92 83 91 eqeltrrid
 |-  ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
93 eqid
 |-  ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) )
94 93 rnmpo
 |-  ran ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) }
95 fvex
 |-  ( _Right ` A ) e. _V
96 ssltex2
 |-  ( U. ( L " _om ) < U. ( R " _om ) e. _V )
97 16 96 syl
 |-  ( ph -> U. ( R " _om ) e. _V )
98 mpoexga
 |-  ( ( ( _Right ` A ) e. _V /\ U. ( R " _om ) e. _V ) -> ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
99 95 97 98 sylancr
 |-  ( ph -> ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
100 rnexg
 |-  ( ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
101 99 100 syl
 |-  ( ph -> ran ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
102 94 101 eqeltrrid
 |-  ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } e. _V )
103 92 102 unexd
 |-  ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
104 snex
 |-  { 1s } e. _V
105 104 a1i
 |-  ( ph -> { 1s } e. _V )
106 ssltss1
 |-  ( ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( { 0s } u. { x e. ( _Left ` A ) | 0s 
107 15 106 syl
 |-  ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s 
108 107 sselda
 |-  ( ( ph /\ c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  c e. No )
109 108 adantrr
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  c e. No )
110 56 adantr
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  Y e. No )
111 109 110 mulscld
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( c x.s Y ) e. No )
112 4 adantr
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  A e. No )
113 ssltss1
 |-  ( U. ( L " _om ) < U. ( L " _om ) C_ No )
114 16 113 syl
 |-  ( ph -> U. ( L " _om ) C_ No )
115 114 sselda
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> d e. No )
116 115 adantrl
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  d e. No )
117 112 116 mulscld
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( A x.s d ) e. No )
118 111 117 addscld
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( c x.s Y ) +s ( A x.s d ) ) e. No )
119 109 116 mulscld
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( c x.s d ) e. No )
120 118 119 subscld
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No )
121 eleq1
 |-  ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> ( b e. No <-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) )
122 120 121 syl5ibrcom
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) )
123 122 rexlimdvva
 |-  ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  b e. No ) )
124 123 abssdv
 |-  ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
125 rightssno
 |-  ( _Right ` A ) C_ No
126 125 a1i
 |-  ( ph -> ( _Right ` A ) C_ No )
127 126 sselda
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> c e. No )
128 127 adantrr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> c e. No )
129 56 adantr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> Y e. No )
130 128 129 mulscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s Y ) e. No )
131 4 adantr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> A e. No )
132 ssltss2
 |-  ( U. ( L " _om ) < U. ( R " _om ) C_ No )
133 16 132 syl
 |-  ( ph -> U. ( R " _om ) C_ No )
134 133 sselda
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> d e. No )
135 134 adantrl
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> d e. No )
136 131 135 mulscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( A x.s d ) e. No )
137 130 136 addscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c x.s Y ) +s ( A x.s d ) ) e. No )
138 128 135 mulscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s d ) e. No )
139 137 138 subscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No )
140 139 121 syl5ibrcom
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) )
141 140 rexlimdvva
 |-  ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) )
142 141 abssdv
 |-  ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } C_ No )
143 124 142 unssd
 |-  ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
144 1sno
 |-  1s e. No
145 snssi
 |-  ( 1s e. No -> { 1s } C_ No )
146 144 145 mp1i
 |-  ( ph -> { 1s } C_ No )
147 elun
 |-  ( e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( e e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
148 vex
 |-  e e. _V
149 eqeq1
 |-  ( b = e -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) )
150 149 2rexbidv
 |-  ( b = e -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
151 148 150 elab
 |-  ( e e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
152 149 2rexbidv
 |-  ( b = e -> ( E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) )
153 148 152 elab
 |-  ( e e. { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } <-> E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) )
154 151 153 orbi12i
 |-  ( ( e e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
155 147 154 bitri
 |-  ( e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
156 elun
 |-  ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( c e. { 0s } \/ c e. { x e. ( _Left ` A ) | 0s 
157 velsn
 |-  ( c e. { 0s } <-> c = 0s )
158 157 orbi1i
 |-  ( ( c e. { 0s } \/ c e. { x e. ( _Left ` A ) | 0s  ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s 
159 156 158 bitri
 |-  ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s 
160 58 adantr
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( 0s x.s Y ) = 0s )
161 160 oveq1d
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( 0s +s ( A x.s d ) ) )
162 muls02
 |-  ( d e. No -> ( 0s x.s d ) = 0s )
163 115 162 syl
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( 0s x.s d ) = 0s )
164 161 163 oveq12d
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( ( 0s +s ( A x.s d ) ) -s 0s ) )
165 4 adantr
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> A e. No )
166 165 115 mulscld
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( A x.s d ) e. No )
167 addslid
 |-  ( ( A x.s d ) e. No -> ( 0s +s ( A x.s d ) ) = ( A x.s d ) )
168 166 167 syl
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( 0s +s ( A x.s d ) ) = ( A x.s d ) )
169 168 oveq1d
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( 0s +s ( A x.s d ) ) -s 0s ) = ( ( A x.s d ) -s 0s ) )
170 subsid1
 |-  ( ( A x.s d ) e. No -> ( ( A x.s d ) -s 0s ) = ( A x.s d ) )
171 166 170 syl
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( A x.s d ) -s 0s ) = ( A x.s d ) )
172 164 169 171 3eqtrd
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( A x.s d ) )
173 eliun
 |-  ( d e. U_ i e. _om ( L ` i ) <-> E. i e. _om d e. ( L ` i ) )
174 funiunfv
 |-  ( Fun L -> U_ i e. _om ( L ` i ) = U. ( L " _om ) )
175 43 174 ax-mp
 |-  U_ i e. _om ( L ` i ) = U. ( L " _om )
176 175 eleq2i
 |-  ( d e. U_ i e. _om ( L ` i ) <-> d e. U. ( L " _om ) )
177 173 176 bitr3i
 |-  ( E. i e. _om d e. ( L ` i ) <-> d e. U. ( L " _om ) )
178 1 2 3 4 5 6 precsexlem9
 |-  ( ( ph /\ i e. _om ) -> ( A. d e. ( L ` i ) ( A x.s d ) 
179 178 simpld
 |-  ( ( ph /\ i e. _om ) -> A. d e. ( L ` i ) ( A x.s d ) 
180 rsp
 |-  ( A. d e. ( L ` i ) ( A x.s d )  ( d e. ( L ` i ) -> ( A x.s d ) 
181 179 180 syl
 |-  ( ( ph /\ i e. _om ) -> ( d e. ( L ` i ) -> ( A x.s d ) 
182 181 rexlimdva
 |-  ( ph -> ( E. i e. _om d e. ( L ` i ) -> ( A x.s d ) 
183 177 182 biimtrrid
 |-  ( ph -> ( d e. U. ( L " _om ) -> ( A x.s d ) 
184 183 imp
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( A x.s d ) 
185 172 184 eqbrtrd
 |-  ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) 
186 185 ex
 |-  ( ph -> ( d e. U. ( L " _om ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) 
187 67 breq1d
 |-  ( c = 0s -> ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) )  ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) 
188 187 imbi2d
 |-  ( c = 0s -> ( ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) )  ( d e. U. ( L " _om ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) 
189 186 188 syl5ibrcom
 |-  ( ph -> ( c = 0s -> ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) 
190 scutcut
 |-  ( U. ( L " _om ) < ( ( U. ( L " _om ) |s U. ( R " _om ) ) e. No /\ U. ( L " _om ) <
191 16 190 syl
 |-  ( ph -> ( ( U. ( L " _om ) |s U. ( R " _om ) ) e. No /\ U. ( L " _om ) <
192 191 simp3d
 |-  ( ph -> { ( U. ( L " _om ) |s U. ( R " _om ) ) } <
193 192 adantr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  { ( U. ( L " _om ) |s U. ( R " _om ) ) } <
194 ovex
 |-  ( U. ( L " _om ) |s U. ( R " _om ) ) e. _V
195 194 snid
 |-  ( U. ( L " _om ) |s U. ( R " _om ) ) e. { ( U. ( L " _om ) |s U. ( R " _om ) ) }
196 7 195 eqeltri
 |-  Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) }
197 196 a1i
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } )
198 peano2
 |-  ( i e. _om -> suc i e. _om )
199 198 ad2antrl
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  suc i e. _om )
200 eqid
 |-  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c )
201 oveq1
 |-  ( xL = c -> ( xL -s A ) = ( c -s A ) )
202 201 oveq1d
 |-  ( xL = c -> ( ( xL -s A ) x.s yL ) = ( ( c -s A ) x.s yL ) )
203 202 oveq2d
 |-  ( xL = c -> ( 1s +s ( ( xL -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s yL ) ) )
204 id
 |-  ( xL = c -> xL = c )
205 203 204 oveq12d
 |-  ( xL = c -> ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) )
206 205 eqeq2d
 |-  ( xL = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) )
207 oveq2
 |-  ( yL = d -> ( ( c -s A ) x.s yL ) = ( ( c -s A ) x.s d ) )
208 207 oveq2d
 |-  ( yL = d -> ( 1s +s ( ( c -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) )
209 208 oveq1d
 |-  ( yL = d -> ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) )
210 209 eqeq2d
 |-  ( yL = d -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) )
211 206 210 rspc2ev
 |-  ( ( c e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s 
212 200 211 mp3an3
 |-  ( ( c e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s 
213 212 ad2ant2l
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s 
214 ovex
 |-  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. _V
215 eqeq1
 |-  ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) )
216 215 2rexbidv
 |-  ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s 
217 214 216 elab
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s 
218 213 217 sylibr
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s 
219 elun1
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s 
220 elun2
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s 
221 218 219 220 3syl
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s 
222 1 2 3 precsexlem5
 |-  ( i e. _om -> ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s 
223 222 ad2antrl
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s 
224 221 223 eleqtrrd
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) )
225 fveq2
 |-  ( j = suc i -> ( R ` j ) = ( R ` suc i ) )
226 225 eleq2d
 |-  ( j = suc i -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) ) )
227 226 rspcev
 |-  ( ( suc i e. _om /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) )
228 199 224 227 syl2anc
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) )
229 228 rexlimdvaa
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( E. i e. _om d e. ( L ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) )
230 eliun
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( R ` j ) <-> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) )
231 fo2nd
 |-  2nd : _V -onto-> _V
232 fofun
 |-  ( 2nd : _V -onto-> _V -> Fun 2nd )
233 231 232 ax-mp
 |-  Fun 2nd
234 funco
 |-  ( ( Fun 2nd /\ Fun F ) -> Fun ( 2nd o. F ) )
235 233 39 234 mp2an
 |-  Fun ( 2nd o. F )
236 3 funeqi
 |-  ( Fun R <-> Fun ( 2nd o. F ) )
237 235 236 mpbir
 |-  Fun R
238 funiunfv
 |-  ( Fun R -> U_ j e. _om ( R ` j ) = U. ( R " _om ) )
239 237 238 ax-mp
 |-  U_ j e. _om ( R ` j ) = U. ( R " _om )
240 239 eleq2i
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( R ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) )
241 230 240 bitr3i
 |-  ( E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) )
242 229 177 241 3imtr3g
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( d e. U. ( L " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) )
243 242 impr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) )
244 193 197 243 ssltsepcd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  Y 
245 56 adantr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  Y e. No )
246 144 a1i
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  1s e. No )
247 leftssno
 |-  ( _Left ` A ) C_ No
248 11 247 sstri
 |-  { x e. ( _Left ` A ) | 0s 
249 248 sseli
 |-  ( c e. { x e. ( _Left ` A ) | 0s  c e. No )
250 249 adantl
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  c e. No )
251 4 adantr
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  A e. No )
252 250 251 subscld
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( c -s A ) e. No )
253 252 adantrr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( c -s A ) e. No )
254 115 adantrl
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  d e. No )
255 253 254 mulscld
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( c -s A ) x.s d ) e. No )
256 246 255 addscld
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( 1s +s ( ( c -s A ) x.s d ) ) e. No )
257 249 ad2antrl
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  c e. No )
258 breq2
 |-  ( x = c -> ( 0s  0s 
259 258 elrab
 |-  ( c e. { x e. ( _Left ` A ) | 0s  ( c e. ( _Left ` A ) /\ 0s 
260 259 simprbi
 |-  ( c e. { x e. ( _Left ` A ) | 0s  0s 
261 260 ad2antrl
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  0s 
262 260 adantl
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  0s 
263 breq2
 |-  ( xO = c -> ( 0s  0s 
264 oveq1
 |-  ( xO = c -> ( xO x.s y ) = ( c x.s y ) )
265 264 eqeq1d
 |-  ( xO = c -> ( ( xO x.s y ) = 1s <-> ( c x.s y ) = 1s ) )
266 265 rexbidv
 |-  ( xO = c -> ( E. y e. No ( xO x.s y ) = 1s <-> E. y e. No ( c x.s y ) = 1s ) )
267 263 266 imbi12d
 |-  ( xO = c -> ( ( 0s  E. y e. No ( xO x.s y ) = 1s ) <-> ( 0s  E. y e. No ( c x.s y ) = 1s ) ) )
268 6 adantr
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s  E. y e. No ( xO x.s y ) = 1s ) )
269 ssun1
 |-  ( _Left ` A ) C_ ( ( _Left ` A ) u. ( _Right ` A ) )
270 11 269 sstri
 |-  { x e. ( _Left ` A ) | 0s 
271 270 sseli
 |-  ( c e. { x e. ( _Left ` A ) | 0s  c e. ( ( _Left ` A ) u. ( _Right ` A ) ) )
272 271 adantl
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  c e. ( ( _Left ` A ) u. ( _Right ` A ) ) )
273 267 268 272 rspcdva
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( 0s  E. y e. No ( c x.s y ) = 1s ) )
274 262 273 mpd
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  E. y e. No ( c x.s y ) = 1s )
275 274 adantrr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  E. y e. No ( c x.s y ) = 1s )
276 245 256 257 261 275 sltmuldiv2wd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( c x.s Y )  Y 
277 244 276 mpbird
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( c x.s Y ) 
278 257 254 mulscld
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( c x.s d ) e. No )
279 166 adantrl
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( A x.s d ) e. No )
280 246 278 279 addsubsassd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) )
281 4 adantr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  A e. No )
282 257 281 254 subsdird
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) )
283 282 oveq2d
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) )
284 280 283 eqtr4d
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) )
285 277 284 breqtrrd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( c x.s Y ) 
286 56 adantr
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  Y e. No )
287 250 286 mulscld
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( c x.s Y ) e. No )
288 287 adantrr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( c x.s Y ) e. No )
289 288 279 addscld
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( c x.s Y ) +s ( A x.s d ) ) e. No )
290 289 278 246 sltsubaddd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) )  ( ( c x.s Y ) +s ( A x.s d ) ) 
291 246 278 addscld
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( 1s +s ( c x.s d ) ) e. No )
292 288 279 291 sltaddsubd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) )  ( c x.s Y ) 
293 290 292 bitrd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) )  ( c x.s Y ) 
294 285 293 mpbird
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) 
295 294 exp32
 |-  ( ph -> ( c e. { x e. ( _Left ` A ) | 0s  ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) 
296 189 295 jaod
 |-  ( ph -> ( ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s  ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) 
297 159 296 biimtrid
 |-  ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) 
298 297 imp32
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) 
299 breq1
 |-  ( e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> ( e  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) 
300 298 299 syl5ibrcom
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> e 
301 300 rexlimdvva
 |-  ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  e 
302 192 adantr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> { ( U. ( L " _om ) |s U. ( R " _om ) ) } <
303 196 a1i
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } )
304 198 ad2antrl
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> suc i e. _om )
305 oveq1
 |-  ( xR = c -> ( xR -s A ) = ( c -s A ) )
306 305 oveq1d
 |-  ( xR = c -> ( ( xR -s A ) x.s yR ) = ( ( c -s A ) x.s yR ) )
307 306 oveq2d
 |-  ( xR = c -> ( 1s +s ( ( xR -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s yR ) ) )
308 id
 |-  ( xR = c -> xR = c )
309 307 308 oveq12d
 |-  ( xR = c -> ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) )
310 309 eqeq2d
 |-  ( xR = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) )
311 oveq2
 |-  ( yR = d -> ( ( c -s A ) x.s yR ) = ( ( c -s A ) x.s d ) )
312 311 oveq2d
 |-  ( yR = d -> ( 1s +s ( ( c -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) )
313 312 oveq1d
 |-  ( yR = d -> ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) )
314 313 eqeq2d
 |-  ( yR = d -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) )
315 310 314 rspc2ev
 |-  ( ( c e. ( _Right ` A ) /\ d e. ( R ` i ) /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) )
316 200 315 mp3an3
 |-  ( ( c e. ( _Right ` A ) /\ d e. ( R ` i ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) )
317 316 ad2ant2l
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) )
318 eqeq1
 |-  ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) )
319 318 2rexbidv
 |-  ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) )
320 214 319 elab
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) )
321 317 320 sylibr
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } )
322 elun2
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s 
323 321 322 220 3syl
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s 
324 222 ad2antrl
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s 
325 323 324 eleqtrrd
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) )
326 304 325 227 syl2anc
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) )
327 326 rexlimdvaa
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> ( E. i e. _om d e. ( R ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) )
328 eliun
 |-  ( d e. U_ i e. _om ( R ` i ) <-> E. i e. _om d e. ( R ` i ) )
329 funiunfv
 |-  ( Fun R -> U_ i e. _om ( R ` i ) = U. ( R " _om ) )
330 237 329 ax-mp
 |-  U_ i e. _om ( R ` i ) = U. ( R " _om )
331 330 eleq2i
 |-  ( d e. U_ i e. _om ( R ` i ) <-> d e. U. ( R " _om ) )
332 328 331 bitr3i
 |-  ( E. i e. _om d e. ( R ` i ) <-> d e. U. ( R " _om ) )
333 327 332 241 3imtr3g
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> ( d e. U. ( R " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) )
334 333 impr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) )
335 302 303 334 ssltsepcd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> Y 
336 144 a1i
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> 1s e. No )
337 4 adantr
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> A e. No )
338 127 337 subscld
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> ( c -s A ) e. No )
339 338 adantrr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c -s A ) e. No )
340 339 135 mulscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c -s A ) x.s d ) e. No )
341 336 340 addscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) e. No )
342 20 a1i
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> 0s e. No )
343 5 adantr
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> 0s 
344 breq2
 |-  ( xO = c -> ( A  A 
345 rightval
 |-  ( _Right ` A ) = { xO e. ( _Old ` ( bday ` A ) ) | A 
346 344 345 elrab2
 |-  ( c e. ( _Right ` A ) <-> ( c e. ( _Old ` ( bday ` A ) ) /\ A 
347 346 simprbi
 |-  ( c e. ( _Right ` A ) -> A 
348 347 adantl
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> A 
349 342 337 127 343 348 slttrd
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> 0s 
350 349 adantrr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> 0s 
351 6 adantr
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s  E. y e. No ( xO x.s y ) = 1s ) )
352 elun2
 |-  ( c e. ( _Right ` A ) -> c e. ( ( _Left ` A ) u. ( _Right ` A ) ) )
353 352 adantl
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> c e. ( ( _Left ` A ) u. ( _Right ` A ) ) )
354 267 351 353 rspcdva
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> ( 0s  E. y e. No ( c x.s y ) = 1s ) )
355 349 354 mpd
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> E. y e. No ( c x.s y ) = 1s )
356 355 adantrr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> E. y e. No ( c x.s y ) = 1s )
357 129 341 128 350 356 sltmuldiv2wd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c x.s Y )  Y 
358 335 357 mpbird
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s Y ) 
359 336 138 136 addsubsassd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) )
360 128 131 135 subsdird
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) )
361 360 oveq2d
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) )
362 359 361 eqtr4d
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) )
363 358 362 breqtrrd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s Y ) 
364 137 138 336 sltsubaddd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) )  ( ( c x.s Y ) +s ( A x.s d ) ) 
365 336 138 addscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( 1s +s ( c x.s d ) ) e. No )
366 130 136 365 sltaddsubd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) )  ( c x.s Y ) 
367 364 366 bitrd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) )  ( c x.s Y ) 
368 363 367 mpbird
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) 
369 368 299 syl5ibrcom
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> e 
370 369 rexlimdvva
 |-  ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> e 
371 301 370 jaod
 |-  ( ph -> ( ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  e 
372 155 371 biimtrid
 |-  ( ph -> ( e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  e 
373 372 imp
 |-  ( ( ph /\ e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  e 
374 velsn
 |-  ( f e. { 1s } <-> f = 1s )
375 breq2
 |-  ( f = 1s -> ( e  e 
376 374 375 sylbi
 |-  ( f e. { 1s } -> ( e  e 
377 373 376 syl5ibrcom
 |-  ( ( ph /\ e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( f e. { 1s } -> e 
378 377 3impia
 |-  ( ( ph /\ e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  e 
379 103 105 143 146 378 ssltd
 |-  ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
380 eqid
 |-  ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) )
381 380 rnmpo
 |-  ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
382 mpoexga
 |-  ( ( ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
383 85 97 382 syl2anc
 |-  ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
384 rnexg
 |-  ( ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
385 383 384 syl
 |-  ( ph -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
386 381 385 eqeltrrid
 |-  ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
387 eqid
 |-  ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) )
388 387 rnmpo
 |-  ran ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) }
389 mpoexga
 |-  ( ( ( _Right ` A ) e. _V /\ U. ( L " _om ) e. _V ) -> ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
390 95 87 389 sylancr
 |-  ( ph -> ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
391 rnexg
 |-  ( ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
392 390 391 syl
 |-  ( ph -> ran ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V )
393 388 392 eqeltrrid
 |-  ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } e. _V )
394 386 393 unexd
 |-  ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
395 108 adantrr
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  c e. No )
396 56 adantr
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  Y e. No )
397 395 396 mulscld
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( c x.s Y ) e. No )
398 4 adantr
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  A e. No )
399 134 adantrl
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  d e. No )
400 398 399 mulscld
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( A x.s d ) e. No )
401 397 400 addscld
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( c x.s Y ) +s ( A x.s d ) ) e. No )
402 395 399 mulscld
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( c x.s d ) e. No )
403 401 402 subscld
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No )
404 403 121 syl5ibrcom
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) )
405 404 rexlimdvva
 |-  ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  b e. No ) )
406 405 abssdv
 |-  ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
407 127 adantrr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> c e. No )
408 56 adantr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> Y e. No )
409 407 408 mulscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( c x.s Y ) e. No )
410 4 adantr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> A e. No )
411 115 adantrl
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> d e. No )
412 410 411 mulscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( A x.s d ) e. No )
413 409 412 addscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( c x.s Y ) +s ( A x.s d ) ) e. No )
414 407 411 mulscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( c x.s d ) e. No )
415 413 414 subscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No )
416 415 121 syl5ibrcom
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) )
417 416 rexlimdvva
 |-  ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) )
418 417 abssdv
 |-  ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } C_ No )
419 406 418 unssd
 |-  ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
420 elun
 |-  ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( f e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
421 vex
 |-  f e. _V
422 eqeq1
 |-  ( b = f -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) )
423 422 2rexbidv
 |-  ( b = f -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
424 421 423 elab
 |-  ( f e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
425 422 2rexbidv
 |-  ( b = f -> ( E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) )
426 421 425 elab
 |-  ( f e. { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } <-> E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) )
427 424 426 orbi12i
 |-  ( ( f e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
428 420 427 bitri
 |-  ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
429 eliun
 |-  ( d e. U_ j e. _om ( R ` j ) <-> E. j e. _om d e. ( R ` j ) )
430 239 eleq2i
 |-  ( d e. U_ j e. _om ( R ` j ) <-> d e. U. ( R " _om ) )
431 429 430 bitr3i
 |-  ( E. j e. _om d e. ( R ` j ) <-> d e. U. ( R " _om ) )
432 1 2 3 4 5 6 precsexlem9
 |-  ( ( ph /\ j e. _om ) -> ( A. c e. ( L ` j ) ( A x.s c ) 
433 rsp
 |-  ( A. d e. ( R ` j ) 1s  ( d e. ( R ` j ) -> 1s 
434 432 433 simpl2im
 |-  ( ( ph /\ j e. _om ) -> ( d e. ( R ` j ) -> 1s 
435 434 rexlimdva
 |-  ( ph -> ( E. j e. _om d e. ( R ` j ) -> 1s 
436 431 435 biimtrrid
 |-  ( ph -> ( d e. U. ( R " _om ) -> 1s 
437 436 imp
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> 1s 
438 56 adantr
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> Y e. No )
439 57 oveq1d
 |-  ( Y e. No -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( 0s +s ( A x.s d ) ) )
440 438 439 syl
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( 0s +s ( A x.s d ) ) )
441 4 adantr
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> A e. No )
442 441 134 mulscld
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> ( A x.s d ) e. No )
443 442 167 syl
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> ( 0s +s ( A x.s d ) ) = ( A x.s d ) )
444 440 443 eqtrd
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( A x.s d ) )
445 134 162 syl
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> ( 0s x.s d ) = 0s )
446 444 445 oveq12d
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( ( A x.s d ) -s 0s ) )
447 442 170 syl
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( A x.s d ) -s 0s ) = ( A x.s d ) )
448 446 447 eqtrd
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( A x.s d ) )
449 437 448 breqtrrd
 |-  ( ( ph /\ d e. U. ( R " _om ) ) -> 1s 
450 449 ex
 |-  ( ph -> ( d e. U. ( R " _om ) -> 1s 
451 67 breq2d
 |-  ( c = 0s -> ( 1s  1s 
452 451 imbi2d
 |-  ( c = 0s -> ( ( d e. U. ( R " _om ) -> 1s  ( d e. U. ( R " _om ) -> 1s 
453 450 452 syl5ibrcom
 |-  ( ph -> ( c = 0s -> ( d e. U. ( R " _om ) -> 1s 
454 144 a1i
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  1s e. No )
455 249 ad2antrl
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  c e. No )
456 134 adantrl
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  d e. No )
457 455 456 mulscld
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( c x.s d ) e. No )
458 442 adantrl
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( A x.s d ) e. No )
459 454 457 458 addsubsassd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) )
460 4 adantr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  A e. No )
461 455 460 456 subsdird
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) )
462 461 oveq2d
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) )
463 459 462 eqtr4d
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) )
464 191 simp2d
 |-  ( ph -> U. ( L " _om ) <
465 464 adantr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  U. ( L " _om ) <
466 198 ad2antrl
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  suc i e. _om )
467 201 oveq1d
 |-  ( xL = c -> ( ( xL -s A ) x.s yR ) = ( ( c -s A ) x.s yR ) )
468 467 oveq2d
 |-  ( xL = c -> ( 1s +s ( ( xL -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s yR ) ) )
469 468 204 oveq12d
 |-  ( xL = c -> ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) )
470 469 eqeq2d
 |-  ( xL = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) )
471 470 314 rspc2ev
 |-  ( ( c e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s 
472 200 471 mp3an3
 |-  ( ( c e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s 
473 472 ad2ant2l
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s 
474 eqeq1
 |-  ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) )
475 474 2rexbidv
 |-  ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s 
476 214 475 elab
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s  E. xL e. { x e. ( _Left ` A ) | 0s 
477 473 476 sylibr
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s 
478 elun2
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s 
479 elun2
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s 
480 477 478 479 3syl
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s 
481 1 2 3 precsexlem4
 |-  ( i e. _om -> ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s 
482 481 ad2antrl
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s 
483 480 482 eleqtrrd
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) )
484 fveq2
 |-  ( j = suc i -> ( L ` j ) = ( L ` suc i ) )
485 484 eleq2d
 |-  ( j = suc i -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) ) )
486 485 rspcev
 |-  ( ( suc i e. _om /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) )
487 466 483 486 syl2anc
 |-  ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) )
488 487 rexlimdvaa
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( E. i e. _om d e. ( R ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) )
489 eliun
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( L ` j ) <-> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) )
490 funiunfv
 |-  ( Fun L -> U_ j e. _om ( L ` j ) = U. ( L " _om ) )
491 43 490 ax-mp
 |-  U_ j e. _om ( L ` j ) = U. ( L " _om )
492 491 eleq2i
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( L ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) )
493 489 492 bitr3i
 |-  ( E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) )
494 488 332 493 3imtr3g
 |-  ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s  ( d e. U. ( R " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) )
495 494 impr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) )
496 196 a1i
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } )
497 465 495 496 ssltsepcd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) 
498 252 adantrr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( c -s A ) e. No )
499 498 456 mulscld
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( c -s A ) x.s d ) e. No )
500 454 499 addscld
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( 1s +s ( ( c -s A ) x.s d ) ) e. No )
501 56 adantr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  Y e. No )
502 260 ad2antrl
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  0s 
503 274 adantrr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  E. y e. No ( c x.s y ) = 1s )
504 500 501 455 502 503 sltdivmulwd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c )  ( 1s +s ( ( c -s A ) x.s d ) ) 
505 497 504 mpbid
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( 1s +s ( ( c -s A ) x.s d ) ) 
506 463 505 eqbrtrd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) 
507 454 457 addscld
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( 1s +s ( c x.s d ) ) e. No )
508 287 adantrr
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( c x.s Y ) e. No )
509 507 458 508 sltsubaddd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) )  ( 1s +s ( c x.s d ) ) 
510 508 458 addscld
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( c x.s Y ) +s ( A x.s d ) ) e. No )
511 454 457 510 sltaddsubd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( 1s +s ( c x.s d ) )  1s 
512 509 511 bitrd
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) )  1s 
513 506 512 mpbid
 |-  ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s  1s 
514 513 exp32
 |-  ( ph -> ( c e. { x e. ( _Left ` A ) | 0s  ( d e. U. ( R " _om ) -> 1s 
515 453 514 jaod
 |-  ( ph -> ( ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s  ( d e. U. ( R " _om ) -> 1s 
516 159 515 biimtrid
 |-  ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( d e. U. ( R " _om ) -> 1s 
517 516 imp32
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  1s 
518 breq2
 |-  ( f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> ( 1s  1s 
519 517 518 syl5ibrcom
 |-  ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  ( f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> 1s 
520 519 rexlimdvva
 |-  ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  1s 
521 144 a1i
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> 1s e. No )
522 521 414 412 addsubsassd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) )
523 407 410 411 subsdird
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) )
524 523 oveq2d
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) )
525 522 524 eqtr4d
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) )
526 464 adantr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> U. ( L " _om ) <
527 198 ad2antrl
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> suc i e. _om )
528 305 oveq1d
 |-  ( xR = c -> ( ( xR -s A ) x.s yL ) = ( ( c -s A ) x.s yL ) )
529 528 oveq2d
 |-  ( xR = c -> ( 1s +s ( ( xR -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s yL ) ) )
530 529 308 oveq12d
 |-  ( xR = c -> ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) )
531 530 eqeq2d
 |-  ( xR = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) )
532 531 210 rspc2ev
 |-  ( ( c e. ( _Right ` A ) /\ d e. ( L ` i ) /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) )
533 200 532 mp3an3
 |-  ( ( c e. ( _Right ` A ) /\ d e. ( L ` i ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) )
534 533 ad2ant2l
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) )
535 eqeq1
 |-  ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) )
536 535 2rexbidv
 |-  ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) )
537 214 536 elab
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) )
538 534 537 sylibr
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } )
539 elun1
 |-  ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s 
540 538 539 479 3syl
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s 
541 481 ad2antrl
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s 
542 540 541 eleqtrrd
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) )
543 527 542 486 syl2anc
 |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) )
544 543 rexlimdvaa
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> ( E. i e. _om d e. ( L ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) )
545 544 177 493 3imtr3g
 |-  ( ( ph /\ c e. ( _Right ` A ) ) -> ( d e. U. ( L " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) )
546 545 impr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) )
547 196 a1i
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } )
548 526 546 547 ssltsepcd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) 
549 338 adantrr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( c -s A ) e. No )
550 549 411 mulscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( c -s A ) x.s d ) e. No )
551 521 550 addscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) e. No )
552 349 adantrr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> 0s 
553 355 adantrr
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> E. y e. No ( c x.s y ) = 1s )
554 551 408 407 552 553 sltdivmulwd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c )  ( 1s +s ( ( c -s A ) x.s d ) ) 
555 548 554 mpbid
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) 
556 525 555 eqbrtrd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) 
557 521 414 addscld
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( c x.s d ) ) e. No )
558 557 412 409 sltsubaddd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) )  ( 1s +s ( c x.s d ) ) 
559 521 414 413 sltaddsubd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) )  1s 
560 558 559 bitrd
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) )  1s 
561 556 560 mpbid
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> 1s 
562 561 518 syl5ibrcom
 |-  ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> 1s 
563 562 rexlimdvva
 |-  ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> 1s 
564 520 563 jaod
 |-  ( ph -> ( ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  1s 
565 428 564 biimtrid
 |-  ( ph -> ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  1s 
566 velsn
 |-  ( e e. { 1s } <-> e = 1s )
567 breq1
 |-  ( e = 1s -> ( e  1s 
568 567 imbi2d
 |-  ( e = 1s -> ( ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  e  ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  1s 
569 566 568 sylbi
 |-  ( e e. { 1s } -> ( ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  e  ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  1s 
570 565 569 syl5ibrcom
 |-  ( ph -> ( e e. { 1s } -> ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  e 
571 570 3imp
 |-  ( ( ph /\ e e. { 1s } /\ f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s  e 
572 105 394 146 419 571 ssltd
 |-  ( ph -> { 1s } <
573 81 379 572 cuteq1
 |-  ( ph -> ( ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 
574 19 573 eqtrd
 |-  ( ph -> ( A x.s Y ) = 1s )