| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precsexlem.1 |
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
| 2 |
|
precsexlem.2 |
|- L = ( 1st o. F ) |
| 3 |
|
precsexlem.3 |
|- R = ( 2nd o. F ) |
| 4 |
|
precsexlem.4 |
|- ( ph -> A e. No ) |
| 5 |
|
precsexlem.5 |
|- ( ph -> 0s |
| 6 |
|
precsexlem.6 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
| 7 |
|
precsexlem.7 |
|- Y = ( U. ( L " _om ) |s U. ( R " _om ) ) |
| 8 |
|
lltropt |
|- ( _Left ` A ) < |
| 9 |
4 5
|
0elleft |
|- ( ph -> 0s e. ( _Left ` A ) ) |
| 10 |
9
|
snssd |
|- ( ph -> { 0s } C_ ( _Left ` A ) ) |
| 11 |
|
ssrab2 |
|- { x e. ( _Left ` A ) | 0s |
| 12 |
11
|
a1i |
|- ( ph -> { x e. ( _Left ` A ) | 0s |
| 13 |
10 12
|
unssd |
|- ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 14 |
|
sssslt1 |
|- ( ( ( _Left ` A ) < ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 15 |
8 13 14
|
sylancr |
|- ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 16 |
1 2 3 4 5 6
|
precsexlem10 |
|- ( ph -> U. ( L " _om ) < |
| 17 |
4 5
|
cutpos |
|- ( ph -> A = ( ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 18 |
7
|
a1i |
|- ( ph -> Y = ( U. ( L " _om ) |s U. ( R " _om ) ) ) |
| 19 |
15 16 17 18
|
mulsunif |
|- ( ph -> ( A x.s Y ) = ( ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 20 |
|
0sno |
|- 0s e. No |
| 21 |
20
|
elexi |
|- 0s e. _V |
| 22 |
21
|
snid |
|- 0s e. { 0s } |
| 23 |
|
elun1 |
|- ( 0s e. { 0s } -> 0s e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 24 |
22 23
|
ax-mp |
|- 0s e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 25 |
|
peano1 |
|- (/) e. _om |
| 26 |
1 2 3
|
precsexlem1 |
|- ( L ` (/) ) = { 0s } |
| 27 |
22 26
|
eleqtrri |
|- 0s e. ( L ` (/) ) |
| 28 |
|
fveq2 |
|- ( b = (/) -> ( L ` b ) = ( L ` (/) ) ) |
| 29 |
28
|
eleq2d |
|- ( b = (/) -> ( 0s e. ( L ` b ) <-> 0s e. ( L ` (/) ) ) ) |
| 30 |
29
|
rspcev |
|- ( ( (/) e. _om /\ 0s e. ( L ` (/) ) ) -> E. b e. _om 0s e. ( L ` b ) ) |
| 31 |
25 27 30
|
mp2an |
|- E. b e. _om 0s e. ( L ` b ) |
| 32 |
|
eliun |
|- ( 0s e. U_ b e. _om ( L ` b ) <-> E. b e. _om 0s e. ( L ` b ) ) |
| 33 |
31 32
|
mpbir |
|- 0s e. U_ b e. _om ( L ` b ) |
| 34 |
|
fo1st |
|- 1st : _V -onto-> _V |
| 35 |
|
fofun |
|- ( 1st : _V -onto-> _V -> Fun 1st ) |
| 36 |
34 35
|
ax-mp |
|- Fun 1st |
| 37 |
|
rdgfun |
|- Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
| 38 |
1
|
funeqi |
|- ( Fun F <-> Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ) |
| 39 |
37 38
|
mpbir |
|- Fun F |
| 40 |
|
funco |
|- ( ( Fun 1st /\ Fun F ) -> Fun ( 1st o. F ) ) |
| 41 |
36 39 40
|
mp2an |
|- Fun ( 1st o. F ) |
| 42 |
2
|
funeqi |
|- ( Fun L <-> Fun ( 1st o. F ) ) |
| 43 |
41 42
|
mpbir |
|- Fun L |
| 44 |
|
funiunfv |
|- ( Fun L -> U_ b e. _om ( L ` b ) = U. ( L " _om ) ) |
| 45 |
43 44
|
ax-mp |
|- U_ b e. _om ( L ` b ) = U. ( L " _om ) |
| 46 |
33 45
|
eleqtri |
|- 0s e. U. ( L " _om ) |
| 47 |
|
addsrid |
|- ( 0s e. No -> ( 0s +s 0s ) = 0s ) |
| 48 |
20 47
|
ax-mp |
|- ( 0s +s 0s ) = 0s |
| 49 |
|
muls01 |
|- ( 0s e. No -> ( 0s x.s 0s ) = 0s ) |
| 50 |
20 49
|
ax-mp |
|- ( 0s x.s 0s ) = 0s |
| 51 |
48 50
|
oveq12i |
|- ( ( 0s +s 0s ) -s ( 0s x.s 0s ) ) = ( 0s -s 0s ) |
| 52 |
|
subsid |
|- ( 0s e. No -> ( 0s -s 0s ) = 0s ) |
| 53 |
20 52
|
ax-mp |
|- ( 0s -s 0s ) = 0s |
| 54 |
51 53
|
eqtr2i |
|- 0s = ( ( 0s +s 0s ) -s ( 0s x.s 0s ) ) |
| 55 |
16
|
scutcld |
|- ( ph -> ( U. ( L " _om ) |s U. ( R " _om ) ) e. No ) |
| 56 |
7 55
|
eqeltrid |
|- ( ph -> Y e. No ) |
| 57 |
|
muls02 |
|- ( Y e. No -> ( 0s x.s Y ) = 0s ) |
| 58 |
56 57
|
syl |
|- ( ph -> ( 0s x.s Y ) = 0s ) |
| 59 |
|
muls01 |
|- ( A e. No -> ( A x.s 0s ) = 0s ) |
| 60 |
4 59
|
syl |
|- ( ph -> ( A x.s 0s ) = 0s ) |
| 61 |
58 60
|
oveq12d |
|- ( ph -> ( ( 0s x.s Y ) +s ( A x.s 0s ) ) = ( 0s +s 0s ) ) |
| 62 |
61
|
oveq1d |
|- ( ph -> ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) = ( ( 0s +s 0s ) -s ( 0s x.s 0s ) ) ) |
| 63 |
54 62
|
eqtr4id |
|- ( ph -> 0s = ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) ) |
| 64 |
|
oveq1 |
|- ( c = 0s -> ( c x.s Y ) = ( 0s x.s Y ) ) |
| 65 |
64
|
oveq1d |
|- ( c = 0s -> ( ( c x.s Y ) +s ( A x.s d ) ) = ( ( 0s x.s Y ) +s ( A x.s d ) ) ) |
| 66 |
|
oveq1 |
|- ( c = 0s -> ( c x.s d ) = ( 0s x.s d ) ) |
| 67 |
65 66
|
oveq12d |
|- ( c = 0s -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) = ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) ) |
| 68 |
67
|
eqeq2d |
|- ( c = 0s -> ( 0s = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> 0s = ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) ) ) |
| 69 |
|
oveq2 |
|- ( d = 0s -> ( A x.s d ) = ( A x.s 0s ) ) |
| 70 |
69
|
oveq2d |
|- ( d = 0s -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( ( 0s x.s Y ) +s ( A x.s 0s ) ) ) |
| 71 |
|
oveq2 |
|- ( d = 0s -> ( 0s x.s d ) = ( 0s x.s 0s ) ) |
| 72 |
70 71
|
oveq12d |
|- ( d = 0s -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) ) |
| 73 |
72
|
eqeq2d |
|- ( d = 0s -> ( 0s = ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) <-> 0s = ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) ) ) |
| 74 |
68 73
|
rspc2ev |
|- ( ( 0s e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 75 |
24 46 63 74
|
mp3an12i |
|- ( ph -> E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 76 |
|
eqeq1 |
|- ( b = 0s -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> 0s = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) ) |
| 77 |
76
|
2rexbidv |
|- ( b = 0s -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 78 |
21 77
|
elab |
|- ( 0s e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 79 |
75 78
|
sylibr |
|- ( ph -> 0s e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 80 |
|
elun1 |
|- ( 0s e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 0s e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 81 |
79 80
|
syl |
|- ( ph -> 0s e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 82 |
|
eqid |
|- ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
| 83 |
82
|
rnmpo |
|- ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 84 |
|
ssltex1 |
|- ( ( { 0s } u. { x e. ( _Left ` A ) | 0s ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 85 |
15 84
|
syl |
|- ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 86 |
|
ssltex1 |
|- ( U. ( L " _om ) < U. ( L " _om ) e. _V ) |
| 87 |
16 86
|
syl |
|- ( ph -> U. ( L " _om ) e. _V ) |
| 88 |
|
mpoexga |
|- ( ( ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 89 |
85 87 88
|
syl2anc |
|- ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 90 |
|
rnexg |
|- ( ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 91 |
89 90
|
syl |
|- ( ph -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 92 |
83 91
|
eqeltrrid |
|- ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 93 |
|
eqid |
|- ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
| 94 |
93
|
rnmpo |
|- ran ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } |
| 95 |
|
fvex |
|- ( _Right ` A ) e. _V |
| 96 |
|
ssltex2 |
|- ( U. ( L " _om ) < U. ( R " _om ) e. _V ) |
| 97 |
16 96
|
syl |
|- ( ph -> U. ( R " _om ) e. _V ) |
| 98 |
|
mpoexga |
|- ( ( ( _Right ` A ) e. _V /\ U. ( R " _om ) e. _V ) -> ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 99 |
95 97 98
|
sylancr |
|- ( ph -> ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 100 |
|
rnexg |
|- ( ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 101 |
99 100
|
syl |
|- ( ph -> ran ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 102 |
94 101
|
eqeltrrid |
|- ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } e. _V ) |
| 103 |
92 102
|
unexd |
|- ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 104 |
|
snex |
|- { 1s } e. _V |
| 105 |
104
|
a1i |
|- ( ph -> { 1s } e. _V ) |
| 106 |
|
ssltss1 |
|- ( ( { 0s } u. { x e. ( _Left ` A ) | 0s ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 107 |
15 106
|
syl |
|- ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 108 |
107
|
sselda |
|- ( ( ph /\ c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s c e. No ) |
| 109 |
108
|
adantrr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s c e. No ) |
| 110 |
56
|
adantr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s Y e. No ) |
| 111 |
109 110
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c x.s Y ) e. No ) |
| 112 |
4
|
adantr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s A e. No ) |
| 113 |
|
ssltss1 |
|- ( U. ( L " _om ) < U. ( L " _om ) C_ No ) |
| 114 |
16 113
|
syl |
|- ( ph -> U. ( L " _om ) C_ No ) |
| 115 |
114
|
sselda |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> d e. No ) |
| 116 |
115
|
adantrl |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s d e. No ) |
| 117 |
112 116
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( A x.s d ) e. No ) |
| 118 |
111 117
|
addscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
| 119 |
109 116
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c x.s d ) e. No ) |
| 120 |
118 119
|
subscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) |
| 121 |
|
eleq1 |
|- ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> ( b e. No <-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) ) |
| 122 |
120 121
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
| 123 |
122
|
rexlimdvva |
|- ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s b e. No ) ) |
| 124 |
123
|
abssdv |
|- ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 125 |
|
rightssno |
|- ( _Right ` A ) C_ No |
| 126 |
125
|
a1i |
|- ( ph -> ( _Right ` A ) C_ No ) |
| 127 |
126
|
sselda |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> c e. No ) |
| 128 |
127
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> c e. No ) |
| 129 |
56
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> Y e. No ) |
| 130 |
128 129
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s Y ) e. No ) |
| 131 |
4
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> A e. No ) |
| 132 |
|
ssltss2 |
|- ( U. ( L " _om ) < U. ( R " _om ) C_ No ) |
| 133 |
16 132
|
syl |
|- ( ph -> U. ( R " _om ) C_ No ) |
| 134 |
133
|
sselda |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> d e. No ) |
| 135 |
134
|
adantrl |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> d e. No ) |
| 136 |
131 135
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( A x.s d ) e. No ) |
| 137 |
130 136
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
| 138 |
128 135
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s d ) e. No ) |
| 139 |
137 138
|
subscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) |
| 140 |
139 121
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
| 141 |
140
|
rexlimdvva |
|- ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
| 142 |
141
|
abssdv |
|- ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } C_ No ) |
| 143 |
124 142
|
unssd |
|- ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 144 |
|
1sno |
|- 1s e. No |
| 145 |
|
snssi |
|- ( 1s e. No -> { 1s } C_ No ) |
| 146 |
144 145
|
mp1i |
|- ( ph -> { 1s } C_ No ) |
| 147 |
|
elun |
|- ( e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( e e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 148 |
|
vex |
|- e e. _V |
| 149 |
|
eqeq1 |
|- ( b = e -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) ) |
| 150 |
149
|
2rexbidv |
|- ( b = e -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 151 |
148 150
|
elab |
|- ( e e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 152 |
149
|
2rexbidv |
|- ( b = e -> ( E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) ) |
| 153 |
148 152
|
elab |
|- ( e e. { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } <-> E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
| 154 |
151 153
|
orbi12i |
|- ( ( e e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 155 |
147 154
|
bitri |
|- ( e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 156 |
|
elun |
|- ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c e. { 0s } \/ c e. { x e. ( _Left ` A ) | 0s |
| 157 |
|
velsn |
|- ( c e. { 0s } <-> c = 0s ) |
| 158 |
157
|
orbi1i |
|- ( ( c e. { 0s } \/ c e. { x e. ( _Left ` A ) | 0s ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s |
| 159 |
156 158
|
bitri |
|- ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s |
| 160 |
58
|
adantr |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( 0s x.s Y ) = 0s ) |
| 161 |
160
|
oveq1d |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( 0s +s ( A x.s d ) ) ) |
| 162 |
|
muls02 |
|- ( d e. No -> ( 0s x.s d ) = 0s ) |
| 163 |
115 162
|
syl |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( 0s x.s d ) = 0s ) |
| 164 |
161 163
|
oveq12d |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( ( 0s +s ( A x.s d ) ) -s 0s ) ) |
| 165 |
4
|
adantr |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> A e. No ) |
| 166 |
165 115
|
mulscld |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( A x.s d ) e. No ) |
| 167 |
|
addslid |
|- ( ( A x.s d ) e. No -> ( 0s +s ( A x.s d ) ) = ( A x.s d ) ) |
| 168 |
166 167
|
syl |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( 0s +s ( A x.s d ) ) = ( A x.s d ) ) |
| 169 |
168
|
oveq1d |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( 0s +s ( A x.s d ) ) -s 0s ) = ( ( A x.s d ) -s 0s ) ) |
| 170 |
|
subsid1 |
|- ( ( A x.s d ) e. No -> ( ( A x.s d ) -s 0s ) = ( A x.s d ) ) |
| 171 |
166 170
|
syl |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( A x.s d ) -s 0s ) = ( A x.s d ) ) |
| 172 |
164 169 171
|
3eqtrd |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( A x.s d ) ) |
| 173 |
|
eliun |
|- ( d e. U_ i e. _om ( L ` i ) <-> E. i e. _om d e. ( L ` i ) ) |
| 174 |
|
funiunfv |
|- ( Fun L -> U_ i e. _om ( L ` i ) = U. ( L " _om ) ) |
| 175 |
43 174
|
ax-mp |
|- U_ i e. _om ( L ` i ) = U. ( L " _om ) |
| 176 |
175
|
eleq2i |
|- ( d e. U_ i e. _om ( L ` i ) <-> d e. U. ( L " _om ) ) |
| 177 |
173 176
|
bitr3i |
|- ( E. i e. _om d e. ( L ` i ) <-> d e. U. ( L " _om ) ) |
| 178 |
1 2 3 4 5 6
|
precsexlem9 |
|- ( ( ph /\ i e. _om ) -> ( A. d e. ( L ` i ) ( A x.s d ) |
| 179 |
178
|
simpld |
|- ( ( ph /\ i e. _om ) -> A. d e. ( L ` i ) ( A x.s d ) |
| 180 |
|
rsp |
|- ( A. d e. ( L ` i ) ( A x.s d ) ( d e. ( L ` i ) -> ( A x.s d ) |
| 181 |
179 180
|
syl |
|- ( ( ph /\ i e. _om ) -> ( d e. ( L ` i ) -> ( A x.s d ) |
| 182 |
181
|
rexlimdva |
|- ( ph -> ( E. i e. _om d e. ( L ` i ) -> ( A x.s d ) |
| 183 |
177 182
|
biimtrrid |
|- ( ph -> ( d e. U. ( L " _om ) -> ( A x.s d ) |
| 184 |
183
|
imp |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( A x.s d ) |
| 185 |
172 184
|
eqbrtrd |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) |
| 186 |
185
|
ex |
|- ( ph -> ( d e. U. ( L " _om ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) |
| 187 |
67
|
breq1d |
|- ( c = 0s -> ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) |
| 188 |
187
|
imbi2d |
|- ( c = 0s -> ( ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( d e. U. ( L " _om ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) |
| 189 |
186 188
|
syl5ibrcom |
|- ( ph -> ( c = 0s -> ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
| 190 |
|
scutcut |
|- ( U. ( L " _om ) < ( ( U. ( L " _om ) |s U. ( R " _om ) ) e. No /\ U. ( L " _om ) < |
| 191 |
16 190
|
syl |
|- ( ph -> ( ( U. ( L " _om ) |s U. ( R " _om ) ) e. No /\ U. ( L " _om ) < |
| 192 |
191
|
simp3d |
|- ( ph -> { ( U. ( L " _om ) |s U. ( R " _om ) ) } < |
| 193 |
192
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s { ( U. ( L " _om ) |s U. ( R " _om ) ) } < |
| 194 |
|
ovex |
|- ( U. ( L " _om ) |s U. ( R " _om ) ) e. _V |
| 195 |
194
|
snid |
|- ( U. ( L " _om ) |s U. ( R " _om ) ) e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } |
| 196 |
7 195
|
eqeltri |
|- Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } |
| 197 |
196
|
a1i |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } ) |
| 198 |
|
peano2 |
|- ( i e. _om -> suc i e. _om ) |
| 199 |
198
|
ad2antrl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s suc i e. _om ) |
| 200 |
|
eqid |
|- ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) |
| 201 |
|
oveq1 |
|- ( xL = c -> ( xL -s A ) = ( c -s A ) ) |
| 202 |
201
|
oveq1d |
|- ( xL = c -> ( ( xL -s A ) x.s yL ) = ( ( c -s A ) x.s yL ) ) |
| 203 |
202
|
oveq2d |
|- ( xL = c -> ( 1s +s ( ( xL -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s yL ) ) ) |
| 204 |
|
id |
|- ( xL = c -> xL = c ) |
| 205 |
203 204
|
oveq12d |
|- ( xL = c -> ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) |
| 206 |
205
|
eqeq2d |
|- ( xL = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) ) |
| 207 |
|
oveq2 |
|- ( yL = d -> ( ( c -s A ) x.s yL ) = ( ( c -s A ) x.s d ) ) |
| 208 |
207
|
oveq2d |
|- ( yL = d -> ( 1s +s ( ( c -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
| 209 |
208
|
oveq1d |
|- ( yL = d -> ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) |
| 210 |
209
|
eqeq2d |
|- ( yL = d -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) ) |
| 211 |
206 210
|
rspc2ev |
|- ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 212 |
200 211
|
mp3an3 |
|- ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 213 |
212
|
ad2ant2l |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 214 |
|
ovex |
|- ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. _V |
| 215 |
|
eqeq1 |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) |
| 216 |
215
|
2rexbidv |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 217 |
214 216
|
elab |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 218 |
213 217
|
sylibr |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 219 |
|
elun1 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 220 |
|
elun2 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 221 |
218 219 220
|
3syl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 222 |
1 2 3
|
precsexlem5 |
|- ( i e. _om -> ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 223 |
222
|
ad2antrl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 224 |
221 223
|
eleqtrrd |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) ) |
| 225 |
|
fveq2 |
|- ( j = suc i -> ( R ` j ) = ( R ` suc i ) ) |
| 226 |
225
|
eleq2d |
|- ( j = suc i -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) ) ) |
| 227 |
226
|
rspcev |
|- ( ( suc i e. _om /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) |
| 228 |
199 224 227
|
syl2anc |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) |
| 229 |
228
|
rexlimdvaa |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( E. i e. _om d e. ( L ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) ) |
| 230 |
|
eliun |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( R ` j ) <-> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) |
| 231 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
| 232 |
|
fofun |
|- ( 2nd : _V -onto-> _V -> Fun 2nd ) |
| 233 |
231 232
|
ax-mp |
|- Fun 2nd |
| 234 |
|
funco |
|- ( ( Fun 2nd /\ Fun F ) -> Fun ( 2nd o. F ) ) |
| 235 |
233 39 234
|
mp2an |
|- Fun ( 2nd o. F ) |
| 236 |
3
|
funeqi |
|- ( Fun R <-> Fun ( 2nd o. F ) ) |
| 237 |
235 236
|
mpbir |
|- Fun R |
| 238 |
|
funiunfv |
|- ( Fun R -> U_ j e. _om ( R ` j ) = U. ( R " _om ) ) |
| 239 |
237 238
|
ax-mp |
|- U_ j e. _om ( R ` j ) = U. ( R " _om ) |
| 240 |
239
|
eleq2i |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( R ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) |
| 241 |
230 240
|
bitr3i |
|- ( E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) |
| 242 |
229 177 241
|
3imtr3g |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( L " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) ) |
| 243 |
242
|
impr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) |
| 244 |
193 197 243
|
ssltsepcd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s Y |
| 245 |
56
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s Y e. No ) |
| 246 |
144
|
a1i |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s 1s e. No ) |
| 247 |
|
leftssno |
|- ( _Left ` A ) C_ No |
| 248 |
11 247
|
sstri |
|- { x e. ( _Left ` A ) | 0s |
| 249 |
248
|
sseli |
|- ( c e. { x e. ( _Left ` A ) | 0s c e. No ) |
| 250 |
249
|
adantl |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s c e. No ) |
| 251 |
4
|
adantr |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s A e. No ) |
| 252 |
250 251
|
subscld |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( c -s A ) e. No ) |
| 253 |
252
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c -s A ) e. No ) |
| 254 |
115
|
adantrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s d e. No ) |
| 255 |
253 254
|
mulscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c -s A ) x.s d ) e. No ) |
| 256 |
246 255
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( ( c -s A ) x.s d ) ) e. No ) |
| 257 |
249
|
ad2antrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s c e. No ) |
| 258 |
|
breq2 |
|- ( x = c -> ( 0s 0s |
| 259 |
258
|
elrab |
|- ( c e. { x e. ( _Left ` A ) | 0s ( c e. ( _Left ` A ) /\ 0s |
| 260 |
259
|
simprbi |
|- ( c e. { x e. ( _Left ` A ) | 0s 0s |
| 261 |
260
|
ad2antrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s 0s |
| 262 |
260
|
adantl |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s 0s |
| 263 |
|
breq2 |
|- ( xO = c -> ( 0s 0s |
| 264 |
|
oveq1 |
|- ( xO = c -> ( xO x.s y ) = ( c x.s y ) ) |
| 265 |
264
|
eqeq1d |
|- ( xO = c -> ( ( xO x.s y ) = 1s <-> ( c x.s y ) = 1s ) ) |
| 266 |
265
|
rexbidv |
|- ( xO = c -> ( E. y e. No ( xO x.s y ) = 1s <-> E. y e. No ( c x.s y ) = 1s ) ) |
| 267 |
263 266
|
imbi12d |
|- ( xO = c -> ( ( 0s E. y e. No ( xO x.s y ) = 1s ) <-> ( 0s E. y e. No ( c x.s y ) = 1s ) ) ) |
| 268 |
6
|
adantr |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
| 269 |
|
ssun1 |
|- ( _Left ` A ) C_ ( ( _Left ` A ) u. ( _Right ` A ) ) |
| 270 |
11 269
|
sstri |
|- { x e. ( _Left ` A ) | 0s |
| 271 |
270
|
sseli |
|- ( c e. { x e. ( _Left ` A ) | 0s c e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 272 |
271
|
adantl |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s c e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 273 |
267 268 272
|
rspcdva |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( 0s E. y e. No ( c x.s y ) = 1s ) ) |
| 274 |
262 273
|
mpd |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. y e. No ( c x.s y ) = 1s ) |
| 275 |
274
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s E. y e. No ( c x.s y ) = 1s ) |
| 276 |
245 256 257 261 275
|
sltmuldiv2wd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c x.s Y ) Y |
| 277 |
244 276
|
mpbird |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s Y ) |
| 278 |
257 254
|
mulscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s d ) e. No ) |
| 279 |
166
|
adantrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( A x.s d ) e. No ) |
| 280 |
246 278 279
|
addsubsassd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
| 281 |
4
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s A e. No ) |
| 282 |
257 281 254
|
subsdird |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) ) |
| 283 |
282
|
oveq2d |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
| 284 |
280 283
|
eqtr4d |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
| 285 |
277 284
|
breqtrrd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s Y ) |
| 286 |
56
|
adantr |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s Y e. No ) |
| 287 |
250 286
|
mulscld |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( c x.s Y ) e. No ) |
| 288 |
287
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s Y ) e. No ) |
| 289 |
288 279
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
| 290 |
289 278 246
|
sltsubaddd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( ( c x.s Y ) +s ( A x.s d ) ) |
| 291 |
246 278
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( c x.s d ) ) e. No ) |
| 292 |
288 279 291
|
sltaddsubd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) ( c x.s Y ) |
| 293 |
290 292
|
bitrd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( c x.s Y ) |
| 294 |
285 293
|
mpbird |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
| 295 |
294
|
exp32 |
|- ( ph -> ( c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
| 296 |
189 295
|
jaod |
|- ( ph -> ( ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
| 297 |
159 296
|
biimtrid |
|- ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
| 298 |
297
|
imp32 |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
| 299 |
|
breq1 |
|- ( e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> ( e ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
| 300 |
298 299
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> e |
| 301 |
300
|
rexlimdvva |
|- ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
| 302 |
192
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> { ( U. ( L " _om ) |s U. ( R " _om ) ) } < |
| 303 |
196
|
a1i |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } ) |
| 304 |
198
|
ad2antrl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> suc i e. _om ) |
| 305 |
|
oveq1 |
|- ( xR = c -> ( xR -s A ) = ( c -s A ) ) |
| 306 |
305
|
oveq1d |
|- ( xR = c -> ( ( xR -s A ) x.s yR ) = ( ( c -s A ) x.s yR ) ) |
| 307 |
306
|
oveq2d |
|- ( xR = c -> ( 1s +s ( ( xR -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s yR ) ) ) |
| 308 |
|
id |
|- ( xR = c -> xR = c ) |
| 309 |
307 308
|
oveq12d |
|- ( xR = c -> ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) |
| 310 |
309
|
eqeq2d |
|- ( xR = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) ) |
| 311 |
|
oveq2 |
|- ( yR = d -> ( ( c -s A ) x.s yR ) = ( ( c -s A ) x.s d ) ) |
| 312 |
311
|
oveq2d |
|- ( yR = d -> ( 1s +s ( ( c -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
| 313 |
312
|
oveq1d |
|- ( yR = d -> ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) |
| 314 |
313
|
eqeq2d |
|- ( yR = d -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) ) |
| 315 |
310 314
|
rspc2ev |
|- ( ( c e. ( _Right ` A ) /\ d e. ( R ` i ) /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) |
| 316 |
200 315
|
mp3an3 |
|- ( ( c e. ( _Right ` A ) /\ d e. ( R ` i ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) |
| 317 |
316
|
ad2ant2l |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) |
| 318 |
|
eqeq1 |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
| 319 |
318
|
2rexbidv |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
| 320 |
214 319
|
elab |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) |
| 321 |
317 320
|
sylibr |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } ) |
| 322 |
|
elun2 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 323 |
321 322 220
|
3syl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 324 |
222
|
ad2antrl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 325 |
323 324
|
eleqtrrd |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) ) |
| 326 |
304 325 227
|
syl2anc |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) |
| 327 |
326
|
rexlimdvaa |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( E. i e. _om d e. ( R ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) ) |
| 328 |
|
eliun |
|- ( d e. U_ i e. _om ( R ` i ) <-> E. i e. _om d e. ( R ` i ) ) |
| 329 |
|
funiunfv |
|- ( Fun R -> U_ i e. _om ( R ` i ) = U. ( R " _om ) ) |
| 330 |
237 329
|
ax-mp |
|- U_ i e. _om ( R ` i ) = U. ( R " _om ) |
| 331 |
330
|
eleq2i |
|- ( d e. U_ i e. _om ( R ` i ) <-> d e. U. ( R " _om ) ) |
| 332 |
328 331
|
bitr3i |
|- ( E. i e. _om d e. ( R ` i ) <-> d e. U. ( R " _om ) ) |
| 333 |
327 332 241
|
3imtr3g |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( d e. U. ( R " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) ) |
| 334 |
333
|
impr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) |
| 335 |
302 303 334
|
ssltsepcd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> Y |
| 336 |
144
|
a1i |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> 1s e. No ) |
| 337 |
4
|
adantr |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> A e. No ) |
| 338 |
127 337
|
subscld |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( c -s A ) e. No ) |
| 339 |
338
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c -s A ) e. No ) |
| 340 |
339 135
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c -s A ) x.s d ) e. No ) |
| 341 |
336 340
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) e. No ) |
| 342 |
20
|
a1i |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> 0s e. No ) |
| 343 |
5
|
adantr |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> 0s |
| 344 |
|
breq2 |
|- ( xO = c -> ( A A |
| 345 |
|
rightval |
|- ( _Right ` A ) = { xO e. ( _Old ` ( bday ` A ) ) | A |
| 346 |
344 345
|
elrab2 |
|- ( c e. ( _Right ` A ) <-> ( c e. ( _Old ` ( bday ` A ) ) /\ A |
| 347 |
346
|
simprbi |
|- ( c e. ( _Right ` A ) -> A |
| 348 |
347
|
adantl |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> A |
| 349 |
342 337 127 343 348
|
slttrd |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> 0s |
| 350 |
349
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> 0s |
| 351 |
6
|
adantr |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
| 352 |
|
elun2 |
|- ( c e. ( _Right ` A ) -> c e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 353 |
352
|
adantl |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> c e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 354 |
267 351 353
|
rspcdva |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( 0s E. y e. No ( c x.s y ) = 1s ) ) |
| 355 |
349 354
|
mpd |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> E. y e. No ( c x.s y ) = 1s ) |
| 356 |
355
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> E. y e. No ( c x.s y ) = 1s ) |
| 357 |
129 341 128 350 356
|
sltmuldiv2wd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c x.s Y ) Y |
| 358 |
335 357
|
mpbird |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s Y ) |
| 359 |
336 138 136
|
addsubsassd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
| 360 |
128 131 135
|
subsdird |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) ) |
| 361 |
360
|
oveq2d |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
| 362 |
359 361
|
eqtr4d |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
| 363 |
358 362
|
breqtrrd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s Y ) |
| 364 |
137 138 336
|
sltsubaddd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( ( c x.s Y ) +s ( A x.s d ) ) |
| 365 |
336 138
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( 1s +s ( c x.s d ) ) e. No ) |
| 366 |
130 136 365
|
sltaddsubd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) ( c x.s Y ) |
| 367 |
364 366
|
bitrd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( c x.s Y ) |
| 368 |
363 367
|
mpbird |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
| 369 |
368 299
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> e |
| 370 |
369
|
rexlimdvva |
|- ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> e |
| 371 |
301 370
|
jaod |
|- ( ph -> ( ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
| 372 |
155 371
|
biimtrid |
|- ( ph -> ( e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
| 373 |
372
|
imp |
|- ( ( ph /\ e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
| 374 |
|
velsn |
|- ( f e. { 1s } <-> f = 1s ) |
| 375 |
|
breq2 |
|- ( f = 1s -> ( e e |
| 376 |
374 375
|
sylbi |
|- ( f e. { 1s } -> ( e e |
| 377 |
373 376
|
syl5ibrcom |
|- ( ( ph /\ e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( f e. { 1s } -> e |
| 378 |
377
|
3impia |
|- ( ( ph /\ e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
| 379 |
103 105 143 146 378
|
ssltd |
|- ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 380 |
|
eqid |
|- ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
| 381 |
380
|
rnmpo |
|- ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 382 |
|
mpoexga |
|- ( ( ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 383 |
85 97 382
|
syl2anc |
|- ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 384 |
|
rnexg |
|- ( ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 385 |
383 384
|
syl |
|- ( ph -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 386 |
381 385
|
eqeltrrid |
|- ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 387 |
|
eqid |
|- ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
| 388 |
387
|
rnmpo |
|- ran ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } |
| 389 |
|
mpoexga |
|- ( ( ( _Right ` A ) e. _V /\ U. ( L " _om ) e. _V ) -> ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 390 |
95 87 389
|
sylancr |
|- ( ph -> ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 391 |
|
rnexg |
|- ( ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 392 |
390 391
|
syl |
|- ( ph -> ran ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
| 393 |
388 392
|
eqeltrrid |
|- ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } e. _V ) |
| 394 |
386 393
|
unexd |
|- ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 395 |
108
|
adantrr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s c e. No ) |
| 396 |
56
|
adantr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s Y e. No ) |
| 397 |
395 396
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c x.s Y ) e. No ) |
| 398 |
4
|
adantr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s A e. No ) |
| 399 |
134
|
adantrl |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s d e. No ) |
| 400 |
398 399
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( A x.s d ) e. No ) |
| 401 |
397 400
|
addscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
| 402 |
395 399
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c x.s d ) e. No ) |
| 403 |
401 402
|
subscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) |
| 404 |
403 121
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
| 405 |
404
|
rexlimdvva |
|- ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s b e. No ) ) |
| 406 |
405
|
abssdv |
|- ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 407 |
127
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> c e. No ) |
| 408 |
56
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> Y e. No ) |
| 409 |
407 408
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( c x.s Y ) e. No ) |
| 410 |
4
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> A e. No ) |
| 411 |
115
|
adantrl |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> d e. No ) |
| 412 |
410 411
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( A x.s d ) e. No ) |
| 413 |
409 412
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
| 414 |
407 411
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( c x.s d ) e. No ) |
| 415 |
413 414
|
subscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) |
| 416 |
415 121
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
| 417 |
416
|
rexlimdvva |
|- ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
| 418 |
417
|
abssdv |
|- ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } C_ No ) |
| 419 |
406 418
|
unssd |
|- ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 420 |
|
elun |
|- ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( f e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 421 |
|
vex |
|- f e. _V |
| 422 |
|
eqeq1 |
|- ( b = f -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) ) |
| 423 |
422
|
2rexbidv |
|- ( b = f -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 424 |
421 423
|
elab |
|- ( f e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 425 |
422
|
2rexbidv |
|- ( b = f -> ( E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) ) |
| 426 |
421 425
|
elab |
|- ( f e. { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } <-> E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
| 427 |
424 426
|
orbi12i |
|- ( ( f e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 428 |
420 427
|
bitri |
|- ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 429 |
|
eliun |
|- ( d e. U_ j e. _om ( R ` j ) <-> E. j e. _om d e. ( R ` j ) ) |
| 430 |
239
|
eleq2i |
|- ( d e. U_ j e. _om ( R ` j ) <-> d e. U. ( R " _om ) ) |
| 431 |
429 430
|
bitr3i |
|- ( E. j e. _om d e. ( R ` j ) <-> d e. U. ( R " _om ) ) |
| 432 |
1 2 3 4 5 6
|
precsexlem9 |
|- ( ( ph /\ j e. _om ) -> ( A. c e. ( L ` j ) ( A x.s c ) |
| 433 |
|
rsp |
|- ( A. d e. ( R ` j ) 1s ( d e. ( R ` j ) -> 1s |
| 434 |
432 433
|
simpl2im |
|- ( ( ph /\ j e. _om ) -> ( d e. ( R ` j ) -> 1s |
| 435 |
434
|
rexlimdva |
|- ( ph -> ( E. j e. _om d e. ( R ` j ) -> 1s |
| 436 |
431 435
|
biimtrrid |
|- ( ph -> ( d e. U. ( R " _om ) -> 1s |
| 437 |
436
|
imp |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> 1s |
| 438 |
56
|
adantr |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> Y e. No ) |
| 439 |
57
|
oveq1d |
|- ( Y e. No -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( 0s +s ( A x.s d ) ) ) |
| 440 |
438 439
|
syl |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( 0s +s ( A x.s d ) ) ) |
| 441 |
4
|
adantr |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> A e. No ) |
| 442 |
441 134
|
mulscld |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( A x.s d ) e. No ) |
| 443 |
442 167
|
syl |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( 0s +s ( A x.s d ) ) = ( A x.s d ) ) |
| 444 |
440 443
|
eqtrd |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( A x.s d ) ) |
| 445 |
134 162
|
syl |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( 0s x.s d ) = 0s ) |
| 446 |
444 445
|
oveq12d |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( ( A x.s d ) -s 0s ) ) |
| 447 |
442 170
|
syl |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( A x.s d ) -s 0s ) = ( A x.s d ) ) |
| 448 |
446 447
|
eqtrd |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( A x.s d ) ) |
| 449 |
437 448
|
breqtrrd |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> 1s |
| 450 |
449
|
ex |
|- ( ph -> ( d e. U. ( R " _om ) -> 1s |
| 451 |
67
|
breq2d |
|- ( c = 0s -> ( 1s 1s |
| 452 |
451
|
imbi2d |
|- ( c = 0s -> ( ( d e. U. ( R " _om ) -> 1s ( d e. U. ( R " _om ) -> 1s |
| 453 |
450 452
|
syl5ibrcom |
|- ( ph -> ( c = 0s -> ( d e. U. ( R " _om ) -> 1s |
| 454 |
144
|
a1i |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s 1s e. No ) |
| 455 |
249
|
ad2antrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s c e. No ) |
| 456 |
134
|
adantrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s d e. No ) |
| 457 |
455 456
|
mulscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s d ) e. No ) |
| 458 |
442
|
adantrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( A x.s d ) e. No ) |
| 459 |
454 457 458
|
addsubsassd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
| 460 |
4
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s A e. No ) |
| 461 |
455 460 456
|
subsdird |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) ) |
| 462 |
461
|
oveq2d |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
| 463 |
459 462
|
eqtr4d |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
| 464 |
191
|
simp2d |
|- ( ph -> U. ( L " _om ) < |
| 465 |
464
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s U. ( L " _om ) < |
| 466 |
198
|
ad2antrl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s suc i e. _om ) |
| 467 |
201
|
oveq1d |
|- ( xL = c -> ( ( xL -s A ) x.s yR ) = ( ( c -s A ) x.s yR ) ) |
| 468 |
467
|
oveq2d |
|- ( xL = c -> ( 1s +s ( ( xL -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s yR ) ) ) |
| 469 |
468 204
|
oveq12d |
|- ( xL = c -> ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) |
| 470 |
469
|
eqeq2d |
|- ( xL = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) ) |
| 471 |
470 314
|
rspc2ev |
|- ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 472 |
200 471
|
mp3an3 |
|- ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 473 |
472
|
ad2ant2l |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 474 |
|
eqeq1 |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
| 475 |
474
|
2rexbidv |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 476 |
214 475
|
elab |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 477 |
473 476
|
sylibr |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 478 |
|
elun2 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 479 |
|
elun2 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 480 |
477 478 479
|
3syl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 481 |
1 2 3
|
precsexlem4 |
|- ( i e. _om -> ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 482 |
481
|
ad2antrl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 483 |
480 482
|
eleqtrrd |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) ) |
| 484 |
|
fveq2 |
|- ( j = suc i -> ( L ` j ) = ( L ` suc i ) ) |
| 485 |
484
|
eleq2d |
|- ( j = suc i -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) ) ) |
| 486 |
485
|
rspcev |
|- ( ( suc i e. _om /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) |
| 487 |
466 483 486
|
syl2anc |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) |
| 488 |
487
|
rexlimdvaa |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( E. i e. _om d e. ( R ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) ) |
| 489 |
|
eliun |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( L ` j ) <-> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) |
| 490 |
|
funiunfv |
|- ( Fun L -> U_ j e. _om ( L ` j ) = U. ( L " _om ) ) |
| 491 |
43 490
|
ax-mp |
|- U_ j e. _om ( L ` j ) = U. ( L " _om ) |
| 492 |
491
|
eleq2i |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( L ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) |
| 493 |
489 492
|
bitr3i |
|- ( E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) |
| 494 |
488 332 493
|
3imtr3g |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( R " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) ) |
| 495 |
494
|
impr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) |
| 496 |
196
|
a1i |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } ) |
| 497 |
465 495 496
|
ssltsepcd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) |
| 498 |
252
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c -s A ) e. No ) |
| 499 |
498 456
|
mulscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c -s A ) x.s d ) e. No ) |
| 500 |
454 499
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( ( c -s A ) x.s d ) ) e. No ) |
| 501 |
56
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s Y e. No ) |
| 502 |
260
|
ad2antrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s 0s |
| 503 |
274
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s E. y e. No ( c x.s y ) = 1s ) |
| 504 |
500 501 455 502 503
|
sltdivmulwd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ( 1s +s ( ( c -s A ) x.s d ) ) |
| 505 |
497 504
|
mpbid |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( ( c -s A ) x.s d ) ) |
| 506 |
463 505
|
eqbrtrd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) |
| 507 |
454 457
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( c x.s d ) ) e. No ) |
| 508 |
287
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s Y ) e. No ) |
| 509 |
507 458 508
|
sltsubaddd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) ( 1s +s ( c x.s d ) ) |
| 510 |
508 458
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
| 511 |
454 457 510
|
sltaddsubd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) 1s |
| 512 |
509 511
|
bitrd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) 1s |
| 513 |
506 512
|
mpbid |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s 1s |
| 514 |
513
|
exp32 |
|- ( ph -> ( c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( R " _om ) -> 1s |
| 515 |
453 514
|
jaod |
|- ( ph -> ( ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( R " _om ) -> 1s |
| 516 |
159 515
|
biimtrid |
|- ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( d e. U. ( R " _om ) -> 1s |
| 517 |
516
|
imp32 |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
| 518 |
|
breq2 |
|- ( f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> ( 1s 1s |
| 519 |
517 518
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> 1s |
| 520 |
519
|
rexlimdvva |
|- ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
| 521 |
144
|
a1i |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> 1s e. No ) |
| 522 |
521 414 412
|
addsubsassd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
| 523 |
407 410 411
|
subsdird |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) ) |
| 524 |
523
|
oveq2d |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
| 525 |
522 524
|
eqtr4d |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
| 526 |
464
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> U. ( L " _om ) < |
| 527 |
198
|
ad2antrl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> suc i e. _om ) |
| 528 |
305
|
oveq1d |
|- ( xR = c -> ( ( xR -s A ) x.s yL ) = ( ( c -s A ) x.s yL ) ) |
| 529 |
528
|
oveq2d |
|- ( xR = c -> ( 1s +s ( ( xR -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s yL ) ) ) |
| 530 |
529 308
|
oveq12d |
|- ( xR = c -> ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) |
| 531 |
530
|
eqeq2d |
|- ( xR = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) ) |
| 532 |
531 210
|
rspc2ev |
|- ( ( c e. ( _Right ` A ) /\ d e. ( L ` i ) /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
| 533 |
200 532
|
mp3an3 |
|- ( ( c e. ( _Right ` A ) /\ d e. ( L ` i ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
| 534 |
533
|
ad2ant2l |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
| 535 |
|
eqeq1 |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
| 536 |
535
|
2rexbidv |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
| 537 |
214 536
|
elab |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
| 538 |
534 537
|
sylibr |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } ) |
| 539 |
|
elun1 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 540 |
538 539 479
|
3syl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 541 |
481
|
ad2antrl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 542 |
540 541
|
eleqtrrd |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) ) |
| 543 |
527 542 486
|
syl2anc |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) |
| 544 |
543
|
rexlimdvaa |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( E. i e. _om d e. ( L ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) ) |
| 545 |
544 177 493
|
3imtr3g |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( d e. U. ( L " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) ) |
| 546 |
545
|
impr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) |
| 547 |
196
|
a1i |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } ) |
| 548 |
526 546 547
|
ssltsepcd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) |
| 549 |
338
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( c -s A ) e. No ) |
| 550 |
549 411
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( c -s A ) x.s d ) e. No ) |
| 551 |
521 550
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) e. No ) |
| 552 |
349
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> 0s |
| 553 |
355
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> E. y e. No ( c x.s y ) = 1s ) |
| 554 |
551 408 407 552 553
|
sltdivmulwd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ( 1s +s ( ( c -s A ) x.s d ) ) |
| 555 |
548 554
|
mpbid |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) |
| 556 |
525 555
|
eqbrtrd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) |
| 557 |
521 414
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( c x.s d ) ) e. No ) |
| 558 |
557 412 409
|
sltsubaddd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) ( 1s +s ( c x.s d ) ) |
| 559 |
521 414 413
|
sltaddsubd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) 1s |
| 560 |
558 559
|
bitrd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) 1s |
| 561 |
556 560
|
mpbid |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> 1s |
| 562 |
561 518
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> 1s |
| 563 |
562
|
rexlimdvva |
|- ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> 1s |
| 564 |
520 563
|
jaod |
|- ( ph -> ( ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
| 565 |
428 564
|
biimtrid |
|- ( ph -> ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
| 566 |
|
velsn |
|- ( e e. { 1s } <-> e = 1s ) |
| 567 |
|
breq1 |
|- ( e = 1s -> ( e 1s |
| 568 |
567
|
imbi2d |
|- ( e = 1s -> ( ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
| 569 |
566 568
|
sylbi |
|- ( e e. { 1s } -> ( ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
| 570 |
565 569
|
syl5ibrcom |
|- ( ph -> ( e e. { 1s } -> ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
| 571 |
570
|
3imp |
|- ( ( ph /\ e e. { 1s } /\ f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
| 572 |
105 394 146 419 571
|
ssltd |
|- ( ph -> { 1s } < |
| 573 |
81 379 572
|
cuteq1 |
|- ( ph -> ( ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
| 574 |
19 573
|
eqtrd |
|- ( ph -> ( A x.s Y ) = 1s ) |