Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
2 |
|
precsexlem.2 |
|- L = ( 1st o. F ) |
3 |
|
precsexlem.3 |
|- R = ( 2nd o. F ) |
4 |
|
precsexlem.4 |
|- ( ph -> A e. No ) |
5 |
|
precsexlem.5 |
|- ( ph -> 0s |
6 |
|
precsexlem.6 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
7 |
|
precsexlem.7 |
|- Y = ( U. ( L " _om ) |s U. ( R " _om ) ) |
8 |
|
lltropt |
|- ( _Left ` A ) < |
9 |
4 5
|
0elleft |
|- ( ph -> 0s e. ( _Left ` A ) ) |
10 |
9
|
snssd |
|- ( ph -> { 0s } C_ ( _Left ` A ) ) |
11 |
|
ssrab2 |
|- { x e. ( _Left ` A ) | 0s |
12 |
11
|
a1i |
|- ( ph -> { x e. ( _Left ` A ) | 0s |
13 |
10 12
|
unssd |
|- ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s |
14 |
|
sssslt1 |
|- ( ( ( _Left ` A ) < ( { 0s } u. { x e. ( _Left ` A ) | 0s |
15 |
8 13 14
|
sylancr |
|- ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s |
16 |
1 2 3 4 5 6
|
precsexlem10 |
|- ( ph -> U. ( L " _om ) < |
17 |
4 5
|
cutpos |
|- ( ph -> A = ( ( { 0s } u. { x e. ( _Left ` A ) | 0s |
18 |
7
|
a1i |
|- ( ph -> Y = ( U. ( L " _om ) |s U. ( R " _om ) ) ) |
19 |
15 16 17 18
|
mulsunif |
|- ( ph -> ( A x.s Y ) = ( ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
20 |
|
0sno |
|- 0s e. No |
21 |
20
|
elexi |
|- 0s e. _V |
22 |
21
|
snid |
|- 0s e. { 0s } |
23 |
|
elun1 |
|- ( 0s e. { 0s } -> 0s e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
24 |
22 23
|
ax-mp |
|- 0s e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
25 |
|
peano1 |
|- (/) e. _om |
26 |
1 2 3
|
precsexlem1 |
|- ( L ` (/) ) = { 0s } |
27 |
22 26
|
eleqtrri |
|- 0s e. ( L ` (/) ) |
28 |
|
fveq2 |
|- ( b = (/) -> ( L ` b ) = ( L ` (/) ) ) |
29 |
28
|
eleq2d |
|- ( b = (/) -> ( 0s e. ( L ` b ) <-> 0s e. ( L ` (/) ) ) ) |
30 |
29
|
rspcev |
|- ( ( (/) e. _om /\ 0s e. ( L ` (/) ) ) -> E. b e. _om 0s e. ( L ` b ) ) |
31 |
25 27 30
|
mp2an |
|- E. b e. _om 0s e. ( L ` b ) |
32 |
|
eliun |
|- ( 0s e. U_ b e. _om ( L ` b ) <-> E. b e. _om 0s e. ( L ` b ) ) |
33 |
31 32
|
mpbir |
|- 0s e. U_ b e. _om ( L ` b ) |
34 |
|
fo1st |
|- 1st : _V -onto-> _V |
35 |
|
fofun |
|- ( 1st : _V -onto-> _V -> Fun 1st ) |
36 |
34 35
|
ax-mp |
|- Fun 1st |
37 |
|
rdgfun |
|- Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
38 |
1
|
funeqi |
|- ( Fun F <-> Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ) |
39 |
37 38
|
mpbir |
|- Fun F |
40 |
|
funco |
|- ( ( Fun 1st /\ Fun F ) -> Fun ( 1st o. F ) ) |
41 |
36 39 40
|
mp2an |
|- Fun ( 1st o. F ) |
42 |
2
|
funeqi |
|- ( Fun L <-> Fun ( 1st o. F ) ) |
43 |
41 42
|
mpbir |
|- Fun L |
44 |
|
funiunfv |
|- ( Fun L -> U_ b e. _om ( L ` b ) = U. ( L " _om ) ) |
45 |
43 44
|
ax-mp |
|- U_ b e. _om ( L ` b ) = U. ( L " _om ) |
46 |
33 45
|
eleqtri |
|- 0s e. U. ( L " _om ) |
47 |
|
addsrid |
|- ( 0s e. No -> ( 0s +s 0s ) = 0s ) |
48 |
20 47
|
ax-mp |
|- ( 0s +s 0s ) = 0s |
49 |
|
muls01 |
|- ( 0s e. No -> ( 0s x.s 0s ) = 0s ) |
50 |
20 49
|
ax-mp |
|- ( 0s x.s 0s ) = 0s |
51 |
48 50
|
oveq12i |
|- ( ( 0s +s 0s ) -s ( 0s x.s 0s ) ) = ( 0s -s 0s ) |
52 |
|
subsid |
|- ( 0s e. No -> ( 0s -s 0s ) = 0s ) |
53 |
20 52
|
ax-mp |
|- ( 0s -s 0s ) = 0s |
54 |
51 53
|
eqtr2i |
|- 0s = ( ( 0s +s 0s ) -s ( 0s x.s 0s ) ) |
55 |
16
|
scutcld |
|- ( ph -> ( U. ( L " _om ) |s U. ( R " _om ) ) e. No ) |
56 |
7 55
|
eqeltrid |
|- ( ph -> Y e. No ) |
57 |
|
muls02 |
|- ( Y e. No -> ( 0s x.s Y ) = 0s ) |
58 |
56 57
|
syl |
|- ( ph -> ( 0s x.s Y ) = 0s ) |
59 |
|
muls01 |
|- ( A e. No -> ( A x.s 0s ) = 0s ) |
60 |
4 59
|
syl |
|- ( ph -> ( A x.s 0s ) = 0s ) |
61 |
58 60
|
oveq12d |
|- ( ph -> ( ( 0s x.s Y ) +s ( A x.s 0s ) ) = ( 0s +s 0s ) ) |
62 |
61
|
oveq1d |
|- ( ph -> ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) = ( ( 0s +s 0s ) -s ( 0s x.s 0s ) ) ) |
63 |
54 62
|
eqtr4id |
|- ( ph -> 0s = ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) ) |
64 |
|
oveq1 |
|- ( c = 0s -> ( c x.s Y ) = ( 0s x.s Y ) ) |
65 |
64
|
oveq1d |
|- ( c = 0s -> ( ( c x.s Y ) +s ( A x.s d ) ) = ( ( 0s x.s Y ) +s ( A x.s d ) ) ) |
66 |
|
oveq1 |
|- ( c = 0s -> ( c x.s d ) = ( 0s x.s d ) ) |
67 |
65 66
|
oveq12d |
|- ( c = 0s -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) = ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) ) |
68 |
67
|
eqeq2d |
|- ( c = 0s -> ( 0s = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> 0s = ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) ) ) |
69 |
|
oveq2 |
|- ( d = 0s -> ( A x.s d ) = ( A x.s 0s ) ) |
70 |
69
|
oveq2d |
|- ( d = 0s -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( ( 0s x.s Y ) +s ( A x.s 0s ) ) ) |
71 |
|
oveq2 |
|- ( d = 0s -> ( 0s x.s d ) = ( 0s x.s 0s ) ) |
72 |
70 71
|
oveq12d |
|- ( d = 0s -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) ) |
73 |
72
|
eqeq2d |
|- ( d = 0s -> ( 0s = ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) <-> 0s = ( ( ( 0s x.s Y ) +s ( A x.s 0s ) ) -s ( 0s x.s 0s ) ) ) ) |
74 |
68 73
|
rspc2ev |
|- ( ( 0s e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
75 |
24 46 63 74
|
mp3an12i |
|- ( ph -> E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
76 |
|
eqeq1 |
|- ( b = 0s -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> 0s = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) ) |
77 |
76
|
2rexbidv |
|- ( b = 0s -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
78 |
21 77
|
elab |
|- ( 0s e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
79 |
75 78
|
sylibr |
|- ( ph -> 0s e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
80 |
|
elun1 |
|- ( 0s e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 0s e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
81 |
79 80
|
syl |
|- ( ph -> 0s e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
82 |
|
eqid |
|- ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
83 |
82
|
rnmpo |
|- ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
84 |
|
ssltex1 |
|- ( ( { 0s } u. { x e. ( _Left ` A ) | 0s ( { 0s } u. { x e. ( _Left ` A ) | 0s |
85 |
15 84
|
syl |
|- ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s |
86 |
|
ssltex1 |
|- ( U. ( L " _om ) < U. ( L " _om ) e. _V ) |
87 |
16 86
|
syl |
|- ( ph -> U. ( L " _om ) e. _V ) |
88 |
|
mpoexga |
|- ( ( ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
89 |
85 87 88
|
syl2anc |
|- ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
90 |
|
rnexg |
|- ( ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
91 |
89 90
|
syl |
|- ( ph -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
92 |
83 91
|
eqeltrrid |
|- ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
93 |
|
eqid |
|- ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
94 |
93
|
rnmpo |
|- ran ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } |
95 |
|
fvex |
|- ( _Right ` A ) e. _V |
96 |
|
ssltex2 |
|- ( U. ( L " _om ) < U. ( R " _om ) e. _V ) |
97 |
16 96
|
syl |
|- ( ph -> U. ( R " _om ) e. _V ) |
98 |
|
mpoexga |
|- ( ( ( _Right ` A ) e. _V /\ U. ( R " _om ) e. _V ) -> ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
99 |
95 97 98
|
sylancr |
|- ( ph -> ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
100 |
|
rnexg |
|- ( ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
101 |
99 100
|
syl |
|- ( ph -> ran ( c e. ( _Right ` A ) , d e. U. ( R " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
102 |
94 101
|
eqeltrrid |
|- ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } e. _V ) |
103 |
92 102
|
unexd |
|- ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
104 |
|
snex |
|- { 1s } e. _V |
105 |
104
|
a1i |
|- ( ph -> { 1s } e. _V ) |
106 |
|
ssltss1 |
|- ( ( { 0s } u. { x e. ( _Left ` A ) | 0s ( { 0s } u. { x e. ( _Left ` A ) | 0s |
107 |
15 106
|
syl |
|- ( ph -> ( { 0s } u. { x e. ( _Left ` A ) | 0s |
108 |
107
|
sselda |
|- ( ( ph /\ c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s c e. No ) |
109 |
108
|
adantrr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s c e. No ) |
110 |
56
|
adantr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s Y e. No ) |
111 |
109 110
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c x.s Y ) e. No ) |
112 |
4
|
adantr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s A e. No ) |
113 |
|
ssltss1 |
|- ( U. ( L " _om ) < U. ( L " _om ) C_ No ) |
114 |
16 113
|
syl |
|- ( ph -> U. ( L " _om ) C_ No ) |
115 |
114
|
sselda |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> d e. No ) |
116 |
115
|
adantrl |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s d e. No ) |
117 |
112 116
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( A x.s d ) e. No ) |
118 |
111 117
|
addscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
119 |
109 116
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c x.s d ) e. No ) |
120 |
118 119
|
subscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) |
121 |
|
eleq1 |
|- ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> ( b e. No <-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) ) |
122 |
120 121
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
123 |
122
|
rexlimdvva |
|- ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s b e. No ) ) |
124 |
123
|
abssdv |
|- ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
125 |
|
rightssno |
|- ( _Right ` A ) C_ No |
126 |
125
|
a1i |
|- ( ph -> ( _Right ` A ) C_ No ) |
127 |
126
|
sselda |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> c e. No ) |
128 |
127
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> c e. No ) |
129 |
56
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> Y e. No ) |
130 |
128 129
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s Y ) e. No ) |
131 |
4
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> A e. No ) |
132 |
|
ssltss2 |
|- ( U. ( L " _om ) < U. ( R " _om ) C_ No ) |
133 |
16 132
|
syl |
|- ( ph -> U. ( R " _om ) C_ No ) |
134 |
133
|
sselda |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> d e. No ) |
135 |
134
|
adantrl |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> d e. No ) |
136 |
131 135
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( A x.s d ) e. No ) |
137 |
130 136
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
138 |
128 135
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s d ) e. No ) |
139 |
137 138
|
subscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) |
140 |
139 121
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
141 |
140
|
rexlimdvva |
|- ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
142 |
141
|
abssdv |
|- ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } C_ No ) |
143 |
124 142
|
unssd |
|- ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
144 |
|
1sno |
|- 1s e. No |
145 |
|
snssi |
|- ( 1s e. No -> { 1s } C_ No ) |
146 |
144 145
|
mp1i |
|- ( ph -> { 1s } C_ No ) |
147 |
|
elun |
|- ( e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( e e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
148 |
|
vex |
|- e e. _V |
149 |
|
eqeq1 |
|- ( b = e -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) ) |
150 |
149
|
2rexbidv |
|- ( b = e -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
151 |
148 150
|
elab |
|- ( e e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
152 |
149
|
2rexbidv |
|- ( b = e -> ( E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) ) |
153 |
148 152
|
elab |
|- ( e e. { b | E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } <-> E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
154 |
151 153
|
orbi12i |
|- ( ( e e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
155 |
147 154
|
bitri |
|- ( e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
156 |
|
elun |
|- ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c e. { 0s } \/ c e. { x e. ( _Left ` A ) | 0s |
157 |
|
velsn |
|- ( c e. { 0s } <-> c = 0s ) |
158 |
157
|
orbi1i |
|- ( ( c e. { 0s } \/ c e. { x e. ( _Left ` A ) | 0s ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s |
159 |
156 158
|
bitri |
|- ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s |
160 |
58
|
adantr |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( 0s x.s Y ) = 0s ) |
161 |
160
|
oveq1d |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( 0s +s ( A x.s d ) ) ) |
162 |
|
muls02 |
|- ( d e. No -> ( 0s x.s d ) = 0s ) |
163 |
115 162
|
syl |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( 0s x.s d ) = 0s ) |
164 |
161 163
|
oveq12d |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( ( 0s +s ( A x.s d ) ) -s 0s ) ) |
165 |
4
|
adantr |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> A e. No ) |
166 |
165 115
|
mulscld |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( A x.s d ) e. No ) |
167 |
|
addslid |
|- ( ( A x.s d ) e. No -> ( 0s +s ( A x.s d ) ) = ( A x.s d ) ) |
168 |
166 167
|
syl |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( 0s +s ( A x.s d ) ) = ( A x.s d ) ) |
169 |
168
|
oveq1d |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( 0s +s ( A x.s d ) ) -s 0s ) = ( ( A x.s d ) -s 0s ) ) |
170 |
|
subsid1 |
|- ( ( A x.s d ) e. No -> ( ( A x.s d ) -s 0s ) = ( A x.s d ) ) |
171 |
166 170
|
syl |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( A x.s d ) -s 0s ) = ( A x.s d ) ) |
172 |
164 169 171
|
3eqtrd |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( A x.s d ) ) |
173 |
|
eliun |
|- ( d e. U_ i e. _om ( L ` i ) <-> E. i e. _om d e. ( L ` i ) ) |
174 |
|
funiunfv |
|- ( Fun L -> U_ i e. _om ( L ` i ) = U. ( L " _om ) ) |
175 |
43 174
|
ax-mp |
|- U_ i e. _om ( L ` i ) = U. ( L " _om ) |
176 |
175
|
eleq2i |
|- ( d e. U_ i e. _om ( L ` i ) <-> d e. U. ( L " _om ) ) |
177 |
173 176
|
bitr3i |
|- ( E. i e. _om d e. ( L ` i ) <-> d e. U. ( L " _om ) ) |
178 |
1 2 3 4 5 6
|
precsexlem9 |
|- ( ( ph /\ i e. _om ) -> ( A. d e. ( L ` i ) ( A x.s d ) |
179 |
178
|
simpld |
|- ( ( ph /\ i e. _om ) -> A. d e. ( L ` i ) ( A x.s d ) |
180 |
|
rsp |
|- ( A. d e. ( L ` i ) ( A x.s d ) ( d e. ( L ` i ) -> ( A x.s d ) |
181 |
179 180
|
syl |
|- ( ( ph /\ i e. _om ) -> ( d e. ( L ` i ) -> ( A x.s d ) |
182 |
181
|
rexlimdva |
|- ( ph -> ( E. i e. _om d e. ( L ` i ) -> ( A x.s d ) |
183 |
177 182
|
biimtrrid |
|- ( ph -> ( d e. U. ( L " _om ) -> ( A x.s d ) |
184 |
183
|
imp |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( A x.s d ) |
185 |
172 184
|
eqbrtrd |
|- ( ( ph /\ d e. U. ( L " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) |
186 |
185
|
ex |
|- ( ph -> ( d e. U. ( L " _om ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) |
187 |
67
|
breq1d |
|- ( c = 0s -> ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) |
188 |
187
|
imbi2d |
|- ( c = 0s -> ( ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( d e. U. ( L " _om ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) |
189 |
186 188
|
syl5ibrcom |
|- ( ph -> ( c = 0s -> ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
190 |
|
scutcut |
|- ( U. ( L " _om ) < ( ( U. ( L " _om ) |s U. ( R " _om ) ) e. No /\ U. ( L " _om ) < |
191 |
16 190
|
syl |
|- ( ph -> ( ( U. ( L " _om ) |s U. ( R " _om ) ) e. No /\ U. ( L " _om ) < |
192 |
191
|
simp3d |
|- ( ph -> { ( U. ( L " _om ) |s U. ( R " _om ) ) } < |
193 |
192
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s { ( U. ( L " _om ) |s U. ( R " _om ) ) } < |
194 |
|
ovex |
|- ( U. ( L " _om ) |s U. ( R " _om ) ) e. _V |
195 |
194
|
snid |
|- ( U. ( L " _om ) |s U. ( R " _om ) ) e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } |
196 |
7 195
|
eqeltri |
|- Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } |
197 |
196
|
a1i |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } ) |
198 |
|
peano2 |
|- ( i e. _om -> suc i e. _om ) |
199 |
198
|
ad2antrl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s suc i e. _om ) |
200 |
|
eqid |
|- ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) |
201 |
|
oveq1 |
|- ( xL = c -> ( xL -s A ) = ( c -s A ) ) |
202 |
201
|
oveq1d |
|- ( xL = c -> ( ( xL -s A ) x.s yL ) = ( ( c -s A ) x.s yL ) ) |
203 |
202
|
oveq2d |
|- ( xL = c -> ( 1s +s ( ( xL -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s yL ) ) ) |
204 |
|
id |
|- ( xL = c -> xL = c ) |
205 |
203 204
|
oveq12d |
|- ( xL = c -> ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) |
206 |
205
|
eqeq2d |
|- ( xL = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) ) |
207 |
|
oveq2 |
|- ( yL = d -> ( ( c -s A ) x.s yL ) = ( ( c -s A ) x.s d ) ) |
208 |
207
|
oveq2d |
|- ( yL = d -> ( 1s +s ( ( c -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
209 |
208
|
oveq1d |
|- ( yL = d -> ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) |
210 |
209
|
eqeq2d |
|- ( yL = d -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) ) |
211 |
206 210
|
rspc2ev |
|- ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
212 |
200 211
|
mp3an3 |
|- ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
213 |
212
|
ad2ant2l |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
214 |
|
ovex |
|- ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. _V |
215 |
|
eqeq1 |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) |
216 |
215
|
2rexbidv |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
217 |
214 216
|
elab |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
218 |
213 217
|
sylibr |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
219 |
|
elun1 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
220 |
|
elun2 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
221 |
218 219 220
|
3syl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
222 |
1 2 3
|
precsexlem5 |
|- ( i e. _om -> ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
223 |
222
|
ad2antrl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
224 |
221 223
|
eleqtrrd |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) ) |
225 |
|
fveq2 |
|- ( j = suc i -> ( R ` j ) = ( R ` suc i ) ) |
226 |
225
|
eleq2d |
|- ( j = suc i -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) ) ) |
227 |
226
|
rspcev |
|- ( ( suc i e. _om /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) |
228 |
199 224 227
|
syl2anc |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) |
229 |
228
|
rexlimdvaa |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( E. i e. _om d e. ( L ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) ) |
230 |
|
eliun |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( R ` j ) <-> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) |
231 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
232 |
|
fofun |
|- ( 2nd : _V -onto-> _V -> Fun 2nd ) |
233 |
231 232
|
ax-mp |
|- Fun 2nd |
234 |
|
funco |
|- ( ( Fun 2nd /\ Fun F ) -> Fun ( 2nd o. F ) ) |
235 |
233 39 234
|
mp2an |
|- Fun ( 2nd o. F ) |
236 |
3
|
funeqi |
|- ( Fun R <-> Fun ( 2nd o. F ) ) |
237 |
235 236
|
mpbir |
|- Fun R |
238 |
|
funiunfv |
|- ( Fun R -> U_ j e. _om ( R ` j ) = U. ( R " _om ) ) |
239 |
237 238
|
ax-mp |
|- U_ j e. _om ( R ` j ) = U. ( R " _om ) |
240 |
239
|
eleq2i |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( R ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) |
241 |
230 240
|
bitr3i |
|- ( E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) |
242 |
229 177 241
|
3imtr3g |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( L " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) ) |
243 |
242
|
impr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) |
244 |
193 197 243
|
ssltsepcd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s Y |
245 |
56
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s Y e. No ) |
246 |
144
|
a1i |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s 1s e. No ) |
247 |
|
leftssno |
|- ( _Left ` A ) C_ No |
248 |
11 247
|
sstri |
|- { x e. ( _Left ` A ) | 0s |
249 |
248
|
sseli |
|- ( c e. { x e. ( _Left ` A ) | 0s c e. No ) |
250 |
249
|
adantl |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s c e. No ) |
251 |
4
|
adantr |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s A e. No ) |
252 |
250 251
|
subscld |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( c -s A ) e. No ) |
253 |
252
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c -s A ) e. No ) |
254 |
115
|
adantrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s d e. No ) |
255 |
253 254
|
mulscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c -s A ) x.s d ) e. No ) |
256 |
246 255
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( ( c -s A ) x.s d ) ) e. No ) |
257 |
249
|
ad2antrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s c e. No ) |
258 |
|
breq2 |
|- ( x = c -> ( 0s 0s |
259 |
258
|
elrab |
|- ( c e. { x e. ( _Left ` A ) | 0s ( c e. ( _Left ` A ) /\ 0s |
260 |
259
|
simprbi |
|- ( c e. { x e. ( _Left ` A ) | 0s 0s |
261 |
260
|
ad2antrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s 0s |
262 |
260
|
adantl |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s 0s |
263 |
|
breq2 |
|- ( xO = c -> ( 0s 0s |
264 |
|
oveq1 |
|- ( xO = c -> ( xO x.s y ) = ( c x.s y ) ) |
265 |
264
|
eqeq1d |
|- ( xO = c -> ( ( xO x.s y ) = 1s <-> ( c x.s y ) = 1s ) ) |
266 |
265
|
rexbidv |
|- ( xO = c -> ( E. y e. No ( xO x.s y ) = 1s <-> E. y e. No ( c x.s y ) = 1s ) ) |
267 |
263 266
|
imbi12d |
|- ( xO = c -> ( ( 0s E. y e. No ( xO x.s y ) = 1s ) <-> ( 0s E. y e. No ( c x.s y ) = 1s ) ) ) |
268 |
6
|
adantr |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
269 |
|
ssun1 |
|- ( _Left ` A ) C_ ( ( _Left ` A ) u. ( _Right ` A ) ) |
270 |
11 269
|
sstri |
|- { x e. ( _Left ` A ) | 0s |
271 |
270
|
sseli |
|- ( c e. { x e. ( _Left ` A ) | 0s c e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
272 |
271
|
adantl |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s c e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
273 |
267 268 272
|
rspcdva |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( 0s E. y e. No ( c x.s y ) = 1s ) ) |
274 |
262 273
|
mpd |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. y e. No ( c x.s y ) = 1s ) |
275 |
274
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s E. y e. No ( c x.s y ) = 1s ) |
276 |
245 256 257 261 275
|
sltmuldiv2wd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c x.s Y ) Y |
277 |
244 276
|
mpbird |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s Y ) |
278 |
257 254
|
mulscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s d ) e. No ) |
279 |
166
|
adantrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( A x.s d ) e. No ) |
280 |
246 278 279
|
addsubsassd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
281 |
4
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s A e. No ) |
282 |
257 281 254
|
subsdird |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) ) |
283 |
282
|
oveq2d |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
284 |
280 283
|
eqtr4d |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
285 |
277 284
|
breqtrrd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s Y ) |
286 |
56
|
adantr |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s Y e. No ) |
287 |
250 286
|
mulscld |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( c x.s Y ) e. No ) |
288 |
287
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s Y ) e. No ) |
289 |
288 279
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
290 |
289 278 246
|
sltsubaddd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( ( c x.s Y ) +s ( A x.s d ) ) |
291 |
246 278
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( c x.s d ) ) e. No ) |
292 |
288 279 291
|
sltaddsubd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) ( c x.s Y ) |
293 |
290 292
|
bitrd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( c x.s Y ) |
294 |
285 293
|
mpbird |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
295 |
294
|
exp32 |
|- ( ph -> ( c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
296 |
189 295
|
jaod |
|- ( ph -> ( ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
297 |
159 296
|
biimtrid |
|- ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( d e. U. ( L " _om ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
298 |
297
|
imp32 |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
299 |
|
breq1 |
|- ( e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> ( e ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
300 |
298 299
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> e |
301 |
300
|
rexlimdvva |
|- ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
302 |
192
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> { ( U. ( L " _om ) |s U. ( R " _om ) ) } < |
303 |
196
|
a1i |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } ) |
304 |
198
|
ad2antrl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> suc i e. _om ) |
305 |
|
oveq1 |
|- ( xR = c -> ( xR -s A ) = ( c -s A ) ) |
306 |
305
|
oveq1d |
|- ( xR = c -> ( ( xR -s A ) x.s yR ) = ( ( c -s A ) x.s yR ) ) |
307 |
306
|
oveq2d |
|- ( xR = c -> ( 1s +s ( ( xR -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s yR ) ) ) |
308 |
|
id |
|- ( xR = c -> xR = c ) |
309 |
307 308
|
oveq12d |
|- ( xR = c -> ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) |
310 |
309
|
eqeq2d |
|- ( xR = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) ) |
311 |
|
oveq2 |
|- ( yR = d -> ( ( c -s A ) x.s yR ) = ( ( c -s A ) x.s d ) ) |
312 |
311
|
oveq2d |
|- ( yR = d -> ( 1s +s ( ( c -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
313 |
312
|
oveq1d |
|- ( yR = d -> ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) |
314 |
313
|
eqeq2d |
|- ( yR = d -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) ) |
315 |
310 314
|
rspc2ev |
|- ( ( c e. ( _Right ` A ) /\ d e. ( R ` i ) /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) |
316 |
200 315
|
mp3an3 |
|- ( ( c e. ( _Right ` A ) /\ d e. ( R ` i ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) |
317 |
316
|
ad2ant2l |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) |
318 |
|
eqeq1 |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
319 |
318
|
2rexbidv |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
320 |
214 319
|
elab |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) |
321 |
317 320
|
sylibr |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } ) |
322 |
|
elun2 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
323 |
321 322 220
|
3syl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
324 |
222
|
ad2antrl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
325 |
323 324
|
eleqtrrd |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` suc i ) ) |
326 |
304 325 227
|
syl2anc |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) |
327 |
326
|
rexlimdvaa |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( E. i e. _om d e. ( R ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( R ` j ) ) ) |
328 |
|
eliun |
|- ( d e. U_ i e. _om ( R ` i ) <-> E. i e. _om d e. ( R ` i ) ) |
329 |
|
funiunfv |
|- ( Fun R -> U_ i e. _om ( R ` i ) = U. ( R " _om ) ) |
330 |
237 329
|
ax-mp |
|- U_ i e. _om ( R ` i ) = U. ( R " _om ) |
331 |
330
|
eleq2i |
|- ( d e. U_ i e. _om ( R ` i ) <-> d e. U. ( R " _om ) ) |
332 |
328 331
|
bitr3i |
|- ( E. i e. _om d e. ( R ` i ) <-> d e. U. ( R " _om ) ) |
333 |
327 332 241
|
3imtr3g |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( d e. U. ( R " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) ) |
334 |
333
|
impr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( R " _om ) ) |
335 |
302 303 334
|
ssltsepcd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> Y |
336 |
144
|
a1i |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> 1s e. No ) |
337 |
4
|
adantr |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> A e. No ) |
338 |
127 337
|
subscld |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( c -s A ) e. No ) |
339 |
338
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c -s A ) e. No ) |
340 |
339 135
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c -s A ) x.s d ) e. No ) |
341 |
336 340
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) e. No ) |
342 |
20
|
a1i |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> 0s e. No ) |
343 |
5
|
adantr |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> 0s |
344 |
|
breq2 |
|- ( xO = c -> ( A A |
345 |
|
rightval |
|- ( _Right ` A ) = { xO e. ( _Old ` ( bday ` A ) ) | A |
346 |
344 345
|
elrab2 |
|- ( c e. ( _Right ` A ) <-> ( c e. ( _Old ` ( bday ` A ) ) /\ A |
347 |
346
|
simprbi |
|- ( c e. ( _Right ` A ) -> A |
348 |
347
|
adantl |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> A |
349 |
342 337 127 343 348
|
slttrd |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> 0s |
350 |
349
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> 0s |
351 |
6
|
adantr |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
352 |
|
elun2 |
|- ( c e. ( _Right ` A ) -> c e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
353 |
352
|
adantl |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> c e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
354 |
267 351 353
|
rspcdva |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( 0s E. y e. No ( c x.s y ) = 1s ) ) |
355 |
349 354
|
mpd |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> E. y e. No ( c x.s y ) = 1s ) |
356 |
355
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> E. y e. No ( c x.s y ) = 1s ) |
357 |
129 341 128 350 356
|
sltmuldiv2wd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c x.s Y ) Y |
358 |
335 357
|
mpbird |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s Y ) |
359 |
336 138 136
|
addsubsassd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
360 |
128 131 135
|
subsdird |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) ) |
361 |
360
|
oveq2d |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
362 |
359 361
|
eqtr4d |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
363 |
358 362
|
breqtrrd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( c x.s Y ) |
364 |
137 138 336
|
sltsubaddd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( ( c x.s Y ) +s ( A x.s d ) ) |
365 |
336 138
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( 1s +s ( c x.s d ) ) e. No ) |
366 |
130 136 365
|
sltaddsubd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) ( c x.s Y ) |
367 |
364 366
|
bitrd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ( c x.s Y ) |
368 |
363 367
|
mpbird |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) |
369 |
368 299
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( R " _om ) ) ) -> ( e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> e |
370 |
369
|
rexlimdvva |
|- ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( R " _om ) e = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> e |
371 |
301 370
|
jaod |
|- ( ph -> ( ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
372 |
155 371
|
biimtrid |
|- ( ph -> ( e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
373 |
372
|
imp |
|- ( ( ph /\ e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
374 |
|
velsn |
|- ( f e. { 1s } <-> f = 1s ) |
375 |
|
breq2 |
|- ( f = 1s -> ( e e |
376 |
374 375
|
sylbi |
|- ( f e. { 1s } -> ( e e |
377 |
373 376
|
syl5ibrcom |
|- ( ( ph /\ e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( f e. { 1s } -> e |
378 |
377
|
3impia |
|- ( ( ph /\ e e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
379 |
103 105 143 146 378
|
ssltd |
|- ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
380 |
|
eqid |
|- ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
381 |
380
|
rnmpo |
|- ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
382 |
|
mpoexga |
|- ( ( ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
383 |
85 97 382
|
syl2anc |
|- ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
384 |
|
rnexg |
|- ( ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
385 |
383 384
|
syl |
|- ( ph -> ran ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
386 |
381 385
|
eqeltrrid |
|- ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
387 |
|
eqid |
|- ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
388 |
387
|
rnmpo |
|- ran ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) = { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } |
389 |
|
mpoexga |
|- ( ( ( _Right ` A ) e. _V /\ U. ( L " _om ) e. _V ) -> ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
390 |
95 87 389
|
sylancr |
|- ( ph -> ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
391 |
|
rnexg |
|- ( ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V -> ran ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
392 |
390 391
|
syl |
|- ( ph -> ran ( c e. ( _Right ` A ) , d e. U. ( L " _om ) |-> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) e. _V ) |
393 |
388 392
|
eqeltrrid |
|- ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } e. _V ) |
394 |
386 393
|
unexd |
|- ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
395 |
108
|
adantrr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s c e. No ) |
396 |
56
|
adantr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s Y e. No ) |
397 |
395 396
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c x.s Y ) e. No ) |
398 |
4
|
adantr |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s A e. No ) |
399 |
134
|
adantrl |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s d e. No ) |
400 |
398 399
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( A x.s d ) e. No ) |
401 |
397 400
|
addscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
402 |
395 399
|
mulscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( c x.s d ) e. No ) |
403 |
401 402
|
subscld |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) |
404 |
403 121
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
405 |
404
|
rexlimdvva |
|- ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s b e. No ) ) |
406 |
405
|
abssdv |
|- ( ph -> { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
407 |
127
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> c e. No ) |
408 |
56
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> Y e. No ) |
409 |
407 408
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( c x.s Y ) e. No ) |
410 |
4
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> A e. No ) |
411 |
115
|
adantrl |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> d e. No ) |
412 |
410 411
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( A x.s d ) e. No ) |
413 |
409 412
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
414 |
407 411
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( c x.s d ) e. No ) |
415 |
413 414
|
subscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) e. No ) |
416 |
415 121
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
417 |
416
|
rexlimdvva |
|- ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> b e. No ) ) |
418 |
417
|
abssdv |
|- ( ph -> { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } C_ No ) |
419 |
406 418
|
unssd |
|- ( ph -> ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
420 |
|
elun |
|- ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( f e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
421 |
|
vex |
|- f e. _V |
422 |
|
eqeq1 |
|- ( b = f -> ( b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) ) |
423 |
422
|
2rexbidv |
|- ( b = f -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
424 |
421 423
|
elab |
|- ( f e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
425 |
422
|
2rexbidv |
|- ( b = f -> ( E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) <-> E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) ) |
426 |
421 425
|
elab |
|- ( f e. { b | E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) b = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) } <-> E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) ) |
427 |
424 426
|
orbi12i |
|- ( ( f e. { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
428 |
420 427
|
bitri |
|- ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
429 |
|
eliun |
|- ( d e. U_ j e. _om ( R ` j ) <-> E. j e. _om d e. ( R ` j ) ) |
430 |
239
|
eleq2i |
|- ( d e. U_ j e. _om ( R ` j ) <-> d e. U. ( R " _om ) ) |
431 |
429 430
|
bitr3i |
|- ( E. j e. _om d e. ( R ` j ) <-> d e. U. ( R " _om ) ) |
432 |
1 2 3 4 5 6
|
precsexlem9 |
|- ( ( ph /\ j e. _om ) -> ( A. c e. ( L ` j ) ( A x.s c ) |
433 |
|
rsp |
|- ( A. d e. ( R ` j ) 1s ( d e. ( R ` j ) -> 1s |
434 |
432 433
|
simpl2im |
|- ( ( ph /\ j e. _om ) -> ( d e. ( R ` j ) -> 1s |
435 |
434
|
rexlimdva |
|- ( ph -> ( E. j e. _om d e. ( R ` j ) -> 1s |
436 |
431 435
|
biimtrrid |
|- ( ph -> ( d e. U. ( R " _om ) -> 1s |
437 |
436
|
imp |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> 1s |
438 |
56
|
adantr |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> Y e. No ) |
439 |
57
|
oveq1d |
|- ( Y e. No -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( 0s +s ( A x.s d ) ) ) |
440 |
438 439
|
syl |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( 0s +s ( A x.s d ) ) ) |
441 |
4
|
adantr |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> A e. No ) |
442 |
441 134
|
mulscld |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( A x.s d ) e. No ) |
443 |
442 167
|
syl |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( 0s +s ( A x.s d ) ) = ( A x.s d ) ) |
444 |
440 443
|
eqtrd |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( 0s x.s Y ) +s ( A x.s d ) ) = ( A x.s d ) ) |
445 |
134 162
|
syl |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( 0s x.s d ) = 0s ) |
446 |
444 445
|
oveq12d |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( ( A x.s d ) -s 0s ) ) |
447 |
442 170
|
syl |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( A x.s d ) -s 0s ) = ( A x.s d ) ) |
448 |
446 447
|
eqtrd |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> ( ( ( 0s x.s Y ) +s ( A x.s d ) ) -s ( 0s x.s d ) ) = ( A x.s d ) ) |
449 |
437 448
|
breqtrrd |
|- ( ( ph /\ d e. U. ( R " _om ) ) -> 1s |
450 |
449
|
ex |
|- ( ph -> ( d e. U. ( R " _om ) -> 1s |
451 |
67
|
breq2d |
|- ( c = 0s -> ( 1s 1s |
452 |
451
|
imbi2d |
|- ( c = 0s -> ( ( d e. U. ( R " _om ) -> 1s ( d e. U. ( R " _om ) -> 1s |
453 |
450 452
|
syl5ibrcom |
|- ( ph -> ( c = 0s -> ( d e. U. ( R " _om ) -> 1s |
454 |
144
|
a1i |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s 1s e. No ) |
455 |
249
|
ad2antrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s c e. No ) |
456 |
134
|
adantrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s d e. No ) |
457 |
455 456
|
mulscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s d ) e. No ) |
458 |
442
|
adantrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( A x.s d ) e. No ) |
459 |
454 457 458
|
addsubsassd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
460 |
4
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s A e. No ) |
461 |
455 460 456
|
subsdird |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) ) |
462 |
461
|
oveq2d |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
463 |
459 462
|
eqtr4d |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
464 |
191
|
simp2d |
|- ( ph -> U. ( L " _om ) < |
465 |
464
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s U. ( L " _om ) < |
466 |
198
|
ad2antrl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s suc i e. _om ) |
467 |
201
|
oveq1d |
|- ( xL = c -> ( ( xL -s A ) x.s yR ) = ( ( c -s A ) x.s yR ) ) |
468 |
467
|
oveq2d |
|- ( xL = c -> ( 1s +s ( ( xL -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s yR ) ) ) |
469 |
468 204
|
oveq12d |
|- ( xL = c -> ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) |
470 |
469
|
eqeq2d |
|- ( xL = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) ) |
471 |
470 314
|
rspc2ev |
|- ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
472 |
200 471
|
mp3an3 |
|- ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
473 |
472
|
ad2ant2l |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
474 |
|
eqeq1 |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
475 |
474
|
2rexbidv |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
476 |
214 475
|
elab |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
477 |
473 476
|
sylibr |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
478 |
|
elun2 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
479 |
|
elun2 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
480 |
477 478 479
|
3syl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
481 |
1 2 3
|
precsexlem4 |
|- ( i e. _om -> ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
482 |
481
|
ad2antrl |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
483 |
480 482
|
eleqtrrd |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) ) |
484 |
|
fveq2 |
|- ( j = suc i -> ( L ` j ) = ( L ` suc i ) ) |
485 |
484
|
eleq2d |
|- ( j = suc i -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) ) ) |
486 |
485
|
rspcev |
|- ( ( suc i e. _om /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) |
487 |
466 483 486
|
syl2anc |
|- ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) |
488 |
487
|
rexlimdvaa |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( E. i e. _om d e. ( R ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) ) |
489 |
|
eliun |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( L ` j ) <-> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) |
490 |
|
funiunfv |
|- ( Fun L -> U_ j e. _om ( L ` j ) = U. ( L " _om ) ) |
491 |
43 490
|
ax-mp |
|- U_ j e. _om ( L ` j ) = U. ( L " _om ) |
492 |
491
|
eleq2i |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U_ j e. _om ( L ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) |
493 |
489 492
|
bitr3i |
|- ( E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) |
494 |
488 332 493
|
3imtr3g |
|- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( R " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) ) |
495 |
494
|
impr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) |
496 |
196
|
a1i |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } ) |
497 |
465 495 496
|
ssltsepcd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) |
498 |
252
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c -s A ) e. No ) |
499 |
498 456
|
mulscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c -s A ) x.s d ) e. No ) |
500 |
454 499
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( ( c -s A ) x.s d ) ) e. No ) |
501 |
56
|
adantr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s Y e. No ) |
502 |
260
|
ad2antrl |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s 0s |
503 |
274
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s E. y e. No ( c x.s y ) = 1s ) |
504 |
500 501 455 502 503
|
sltdivmulwd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ( 1s +s ( ( c -s A ) x.s d ) ) |
505 |
497 504
|
mpbid |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( ( c -s A ) x.s d ) ) |
506 |
463 505
|
eqbrtrd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) |
507 |
454 457
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( 1s +s ( c x.s d ) ) e. No ) |
508 |
287
|
adantrr |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( c x.s Y ) e. No ) |
509 |
507 458 508
|
sltsubaddd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) ( 1s +s ( c x.s d ) ) |
510 |
508 458
|
addscld |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( c x.s Y ) +s ( A x.s d ) ) e. No ) |
511 |
454 457 510
|
sltaddsubd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( c x.s d ) ) 1s |
512 |
509 511
|
bitrd |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) 1s |
513 |
506 512
|
mpbid |
|- ( ( ph /\ ( c e. { x e. ( _Left ` A ) | 0s 1s |
514 |
513
|
exp32 |
|- ( ph -> ( c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( R " _om ) -> 1s |
515 |
453 514
|
jaod |
|- ( ph -> ( ( c = 0s \/ c e. { x e. ( _Left ` A ) | 0s ( d e. U. ( R " _om ) -> 1s |
516 |
159 515
|
biimtrid |
|- ( ph -> ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( d e. U. ( R " _om ) -> 1s |
517 |
516
|
imp32 |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
518 |
|
breq2 |
|- ( f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> ( 1s 1s |
519 |
517 518
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s ( f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> 1s |
520 |
519
|
rexlimdvva |
|- ( ph -> ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
521 |
144
|
a1i |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> 1s e. No ) |
522 |
521 414 412
|
addsubsassd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
523 |
407 410 411
|
subsdird |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( c -s A ) x.s d ) = ( ( c x.s d ) -s ( A x.s d ) ) ) |
524 |
523
|
oveq2d |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) = ( 1s +s ( ( c x.s d ) -s ( A x.s d ) ) ) ) |
525 |
522 524
|
eqtr4d |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) |
526 |
464
|
adantr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> U. ( L " _om ) < |
527 |
198
|
ad2antrl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> suc i e. _om ) |
528 |
305
|
oveq1d |
|- ( xR = c -> ( ( xR -s A ) x.s yL ) = ( ( c -s A ) x.s yL ) ) |
529 |
528
|
oveq2d |
|- ( xR = c -> ( 1s +s ( ( xR -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s yL ) ) ) |
530 |
529 308
|
oveq12d |
|- ( xR = c -> ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) |
531 |
530
|
eqeq2d |
|- ( xR = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) ) |
532 |
531 210
|
rspc2ev |
|- ( ( c e. ( _Right ` A ) /\ d e. ( L ` i ) /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
533 |
200 532
|
mp3an3 |
|- ( ( c e. ( _Right ` A ) /\ d e. ( L ` i ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
534 |
533
|
ad2ant2l |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
535 |
|
eqeq1 |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
536 |
535
|
2rexbidv |
|- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
537 |
214 536
|
elab |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
538 |
534 537
|
sylibr |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } ) |
539 |
|
elun1 |
|- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
540 |
538 539 479
|
3syl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
541 |
481
|
ad2antrl |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
542 |
540 541
|
eleqtrrd |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` suc i ) ) |
543 |
527 542 486
|
syl2anc |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) |
544 |
543
|
rexlimdvaa |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( E. i e. _om d e. ( L ` i ) -> E. j e. _om ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( L ` j ) ) ) |
545 |
544 177 493
|
3imtr3g |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( d e. U. ( L " _om ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) ) |
546 |
545
|
impr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. U. ( L " _om ) ) |
547 |
196
|
a1i |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> Y e. { ( U. ( L " _om ) |s U. ( R " _om ) ) } ) |
548 |
526 546 547
|
ssltsepcd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) |
549 |
338
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( c -s A ) e. No ) |
550 |
549 411
|
mulscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( c -s A ) x.s d ) e. No ) |
551 |
521 550
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) e. No ) |
552 |
349
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> 0s |
553 |
355
|
adantrr |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> E. y e. No ( c x.s y ) = 1s ) |
554 |
551 408 407 552 553
|
sltdivmulwd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ( 1s +s ( ( c -s A ) x.s d ) ) |
555 |
548 554
|
mpbid |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( ( c -s A ) x.s d ) ) |
556 |
525 555
|
eqbrtrd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) |
557 |
521 414
|
addscld |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( 1s +s ( c x.s d ) ) e. No ) |
558 |
557 412 409
|
sltsubaddd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) ( 1s +s ( c x.s d ) ) |
559 |
521 414 413
|
sltaddsubd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( 1s +s ( c x.s d ) ) 1s |
560 |
558 559
|
bitrd |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( ( ( 1s +s ( c x.s d ) ) -s ( A x.s d ) ) 1s |
561 |
556 560
|
mpbid |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> 1s |
562 |
561 518
|
syl5ibrcom |
|- ( ( ph /\ ( c e. ( _Right ` A ) /\ d e. U. ( L " _om ) ) ) -> ( f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> 1s |
563 |
562
|
rexlimdvva |
|- ( ph -> ( E. c e. ( _Right ` A ) E. d e. U. ( L " _om ) f = ( ( ( c x.s Y ) +s ( A x.s d ) ) -s ( c x.s d ) ) -> 1s |
564 |
520 563
|
jaod |
|- ( ph -> ( ( E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
565 |
428 564
|
biimtrid |
|- ( ph -> ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
566 |
|
velsn |
|- ( e e. { 1s } <-> e = 1s ) |
567 |
|
breq1 |
|- ( e = 1s -> ( e 1s |
568 |
567
|
imbi2d |
|- ( e = 1s -> ( ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
569 |
566 568
|
sylbi |
|- ( e e. { 1s } -> ( ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s 1s |
570 |
565 569
|
syl5ibrcom |
|- ( ph -> ( e e. { 1s } -> ( f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
571 |
570
|
3imp |
|- ( ( ph /\ e e. { 1s } /\ f e. ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s e |
572 |
105 394 146 419 571
|
ssltd |
|- ( ph -> { 1s } < |
573 |
81 379 572
|
cuteq1 |
|- ( ph -> ( ( { b | E. c e. ( { 0s } u. { x e. ( _Left ` A ) | 0s |
574 |
19 573
|
eqtrd |
|- ( ph -> ( A x.s Y ) = 1s ) |