Metamath Proof Explorer


Theorem ballotlemfcc

Description: F takes value 0 between positive and negative values. (Contributed by Thierry Arnoux, 2-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotlemfcc.c φCO
ballotlemfcc.j φJ
ballotlemfcc.3 φi1J0FCi
ballotlemfcc.4 φFCJ<0
Assertion ballotlemfcc φk1JFCk=0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotlemfcc.c φCO
7 ballotlemfcc.j φJ
8 ballotlemfcc.3 φi1J0FCi
9 ballotlemfcc.4 φFCJ<0
10 fveq2 i=kFCi=FCk
11 10 breq2d i=k0FCi0FCk
12 11 elrab ki1J|0FCik1J0FCk
13 12 anbi1i ki1J|0FCiji1J|0FCijkk1J0FCkji1J|0FCijk
14 simprl φk1J0FCkk1J
15 14 adantrr φk1J0FCkji1J|0FCijkk1J
16 fzssuz 1J1
17 uzssz 1
18 16 17 sstri 1J
19 zssre
20 18 19 sstri 1J
21 20 sseli k1Jk
22 21 ltp1d k1Jk<k+1
23 1red k1J1
24 21 23 readdcld k1Jk+1
25 21 24 ltnled k1Jk<k+1¬k+1k
26 22 25 mpbid k1J¬k+1k
27 15 26 syl φk1J0FCkji1J|0FCijk¬k+1k
28 simprr φk1J0FCkji1J|0FCijkji1J|0FCijk
29 9 adantr φk=JFCJ<0
30 simpr φk=Jk=J
31 30 fveq2d φk=JFCk=FCJ
32 31 breq1d φk=JFCk<0FCJ<0
33 elnnuz JJ1
34 7 33 sylib φJ1
35 eluzfz2 J1J1J
36 34 35 syl φJ1J
37 eleq1 k=Jk1JJ1J
38 36 37 syl5ibrcom φk=Jk1J
39 38 anc2li φk=Jφk1J
40 1eluzge0 10
41 fzss1 101J0J
42 41 sseld 10k1Jk0J
43 40 42 ax-mp k1Jk0J
44 6 adantr φk0JCO
45 elfzelz k0Jk
46 45 adantl φk0Jk
47 1 2 3 4 5 44 46 ballotlemfelz φk0JFCk
48 47 zred φk0JFCk
49 0red φk0J0
50 48 49 ltnled φk0JFCk<0¬0FCk
51 43 50 sylan2 φk1JFCk<0¬0FCk
52 39 51 syl6 φk=JFCk<0¬0FCk
53 52 imp φk=JFCk<0¬0FCk
54 32 53 bitr3d φk=JFCJ<0¬0FCk
55 29 54 mpbid φk=J¬0FCk
56 55 ex φk=J¬0FCk
57 56 con2d φ0FCk¬k=J
58 nn1m1nn JJ=1J1
59 7 58 syl φJ=1J1
60 8 adantr φJ=1i1J0FCi
61 oveq1 J=1JJ=1J
62 61 adantl φJ=1JJ=1J
63 7 nnzd φJ
64 fzsn JJJ=J
65 63 64 syl φJJ=J
66 65 adantr φJ=1JJ=J
67 62 66 eqtr3d φJ=11J=J
68 67 rexeqdv φJ=1i1J0FCiiJ0FCi
69 60 68 mpbid φJ=1iJ0FCi
70 fveq2 i=JFCi=FCJ
71 70 breq2d i=J0FCi0FCJ
72 71 rexsng JiJ0FCi0FCJ
73 7 72 syl φiJ0FCi0FCJ
74 73 adantr φJ=1iJ0FCi0FCJ
75 69 74 mpbid φJ=10FCJ
76 9 adantr φJ=1FCJ<0
77 1 2 3 4 5 6 63 ballotlemfelz φFCJ
78 77 zred φFCJ
79 0red φ0
80 78 79 ltnled φFCJ<0¬0FCJ
81 80 adantr φJ=1FCJ<0¬0FCJ
82 76 81 mpbid φJ=1¬0FCJ
83 75 82 pm2.65da φ¬J=1
84 biortn ¬J=1J1¬¬J=1J1
85 83 84 syl φJ1¬¬J=1J1
86 notnotb J=1¬¬J=1
87 86 orbi1i J=1J1¬¬J=1J1
88 85 87 bitr4di φJ1J=1J1
89 59 88 mpbird φJ1
90 elnnuz J1J11
91 89 90 sylib φJ11
92 elfzp1 J11k1J-1+1k1J1k=J-1+1
93 91 92 syl φk1J-1+1k1J1k=J-1+1
94 7 nncnd φJ
95 1cnd φ1
96 94 95 npcand φJ-1+1=J
97 96 oveq2d φ1J-1+1=1J
98 97 eleq2d φk1J-1+1k1J
99 96 eqeq2d φk=J-1+1k=J
100 99 orbi2d φk1J1k=J-1+1k1J1k=J
101 93 98 100 3bitr3d φk1Jk1J1k=J
102 orcom k1J1k=Jk=Jk1J1
103 101 102 bitrdi φk1Jk=Jk1J1
104 103 biimpd φk1Jk=Jk1J1
105 pm5.6 k1J¬k=Jk1J1k1Jk=Jk1J1
106 104 105 sylibr φk1J¬k=Jk1J1
107 89 nnzd φJ1
108 1z 1
109 107 108 jctil φ1J1
110 elfzelz k1J1k
111 110 108 jctir k1J1k1
112 fzaddel 1J1k1k1J1k+11+1J-1+1
113 109 111 112 syl2an φk1J1k1J1k+11+1J-1+1
114 113 biimp3a φk1J1k1J1k+11+1J-1+1
115 114 3anidm23 φk1J1k+11+1J-1+1
116 1p1e2 1+1=2
117 116 a1i φ1+1=2
118 117 96 oveq12d φ1+1J-1+1=2J
119 118 eleq2d φk+11+1J-1+1k+12J
120 2eluzge1 21
121 fzss1 212J1J
122 120 121 ax-mp 2J1J
123 122 sseli k+12Jk+11J
124 119 123 syl6bi φk+11+1J-1+1k+11J
125 124 adantr φk1J1k+11+1J-1+1k+11J
126 115 125 mpd φk1J1k+11J
127 126 ex φk1J1k+11J
128 106 127 syld φk1J¬k=Jk+11J
129 57 128 sylan2d φk1J0FCkk+11J
130 129 imp φk1J0FCkk+11J
131 130 adantrr φk1J0FCkji1J|0FCijkk+11J
132 fveq2 i=k+1FCi=FCk+1
133 132 breq2d i=k+10FCi0FCk+1
134 133 elrab k+1i1J|0FCik+11J0FCk+1
135 breq1 j=k+1jkk+1k
136 135 rspccva ji1J|0FCijkk+1i1J|0FCik+1k
137 134 136 sylan2br ji1J|0FCijkk+11J0FCk+1k+1k
138 137 expr ji1J|0FCijkk+11J0FCk+1k+1k
139 138 con3d ji1J|0FCijkk+11J¬k+1k¬0FCk+1
140 28 131 139 syl2anc φk1J0FCkji1J|0FCijk¬k+1k¬0FCk+1
141 27 140 mpd φk1J0FCkji1J|0FCijk¬0FCk+1
142 simplrr φk1J0FCkji1J|0FCijkk+1Cji1J|0FCijk
143 131 adantr φk1J0FCkji1J|0FCijkk+1Ck+11J
144 0red φk1J0FCkk+1C0
145 simpll φk1J0FCkk+1Cφ
146 130 adantr φk1J0FCkk+1Ck+11J
147 41 sseld 10k+11Jk+10J
148 40 146 147 mpsyl φk1J0FCkk+1Ck+10J
149 6 adantr φk+10JCO
150 elfzelz k+10Jk+1
151 150 adantl φk+10Jk+1
152 1 2 3 4 5 149 151 ballotlemfelz φk+10JFCk+1
153 152 zred φk+10JFCk+1
154 145 148 153 syl2anc φk1J0FCkk+1CFCk+1
155 simplrr φk1J0FCkk+1C0FCk
156 14 adantr φk1J0FCkk+1Ck1J
157 156 43 syl φk1J0FCkk+1Ck0J
158 129 imdistani φk1J0FCkφk+11J
159 6 adantr φk+11JCO
160 elfznn k+11Jk+1
161 160 adantl φk+11Jk+1
162 1 2 3 4 5 159 161 ballotlemfp1 φk+11J¬k+1CFCk+1=FCk+1-11k+1CFCk+1=FCk+1-1+1
163 162 simprd φk+11Jk+1CFCk+1=FCk+1-1+1
164 163 imp φk+11Jk+1CFCk+1=FCk+1-1+1
165 158 164 sylan φk1J0FCkk+1CFCk+1=FCk+1-1+1
166 elfzelz k1Jk
167 166 zcnd k1Jk
168 1cnd k1J1
169 167 168 pncand k1Jk+1-1=k
170 169 fveq2d k1JFCk+1-1=FCk
171 170 oveq1d k1JFCk+1-1+1=FCk+1
172 171 eqeq2d k1JFCk+1=FCk+1-1+1FCk+1=FCk+1
173 156 172 syl φk1J0FCkk+1CFCk+1=FCk+1-1+1FCk+1=FCk+1
174 165 173 mpbid φk1J0FCkk+1CFCk+1=FCk+1
175 0z 0
176 zleltp1 0FCk0FCk0<FCk+1
177 175 47 176 sylancr φk0J0FCk0<FCk+1
178 177 adantr φk0JFCk+1=FCk+10FCk0<FCk+1
179 breq2 FCk+1=FCk+10<FCk+10<FCk+1
180 179 adantl φk0JFCk+1=FCk+10<FCk+10<FCk+1
181 178 180 bitr4d φk0JFCk+1=FCk+10FCk0<FCk+1
182 145 157 174 181 syl21anc φk1J0FCkk+1C0FCk0<FCk+1
183 155 182 mpbid φk1J0FCkk+1C0<FCk+1
184 144 154 183 ltled φk1J0FCkk+1C0FCk+1
185 184 adantlrr φk1J0FCkji1J|0FCijkk+1C0FCk+1
186 142 143 185 137 syl12anc φk1J0FCkji1J|0FCijkk+1Ck+1k
187 27 186 mtand φk1J0FCkji1J|0FCijk¬k+1C
188 162 simpld φk+11J¬k+1CFCk+1=FCk+1-11
189 188 imp φk+11J¬k+1CFCk+1=FCk+1-11
190 158 189 sylan φk1J0FCk¬k+1CFCk+1=FCk+1-11
191 14 adantr φk1J0FCk¬k+1Ck1J
192 170 oveq1d k1JFCk+1-11=FCk1
193 192 eqeq2d k1JFCk+1=FCk+1-11FCk+1=FCk1
194 191 193 syl φk1J0FCk¬k+1CFCk+1=FCk+1-11FCk+1=FCk1
195 190 194 mpbid φk1J0FCk¬k+1CFCk+1=FCk1
196 195 adantlrr φk1J0FCkji1J|0FCijk¬k+1CFCk+1=FCk1
197 187 196 mpdan φk1J0FCkji1J|0FCijkFCk+1=FCk1
198 breq2 FCk+1=FCk10FCk+10FCk1
199 198 notbid FCk+1=FCk1¬0FCk+1¬0FCk1
200 197 199 syl φk1J0FCkji1J|0FCijk¬0FCk+1¬0FCk1
201 141 200 mpbid φk1J0FCkji1J|0FCijk¬0FCk1
202 14 43 syl φk1J0FCkk0J
203 202 47 syldan φk1J0FCkFCk
204 203 adantrr φk1J0FCkji1J|0FCijkFCk
205 zlem1lt FCk0FCk0FCk1<0
206 175 205 mpan2 FCkFCk0FCk1<0
207 zre FCkFCk
208 1red FCk1
209 207 208 resubcld FCkFCk1
210 0red FCk0
211 209 210 ltnled FCkFCk1<0¬0FCk1
212 206 211 bitrd FCkFCk0¬0FCk1
213 204 212 syl φk1J0FCkji1J|0FCijkFCk0¬0FCk1
214 201 213 mpbird φk1J0FCkji1J|0FCijkFCk0
215 simprlr φk1J0FCkji1J|0FCijk0FCk
216 204 zred φk1J0FCkji1J|0FCijkFCk
217 0red φk1J0FCkji1J|0FCijk0
218 216 217 letri3d φk1J0FCkji1J|0FCijkFCk=0FCk00FCk
219 214 215 218 mpbir2and φk1J0FCkji1J|0FCijkFCk=0
220 13 219 sylan2b φki1J|0FCiji1J|0FCijkFCk=0
221 ssrab2 i1J|0FCi1J
222 221 20 sstri i1J|0FCi
223 222 a1i φi1J|0FCi
224 fzfi 1JFin
225 ssfi 1JFini1J|0FCi1Ji1J|0FCiFin
226 224 221 225 mp2an i1J|0FCiFin
227 226 a1i φi1J|0FCiFin
228 rabn0 i1J|0FCii1J0FCi
229 8 228 sylibr φi1J|0FCi
230 fimaxre i1J|0FCii1J|0FCiFini1J|0FCiki1J|0FCiji1J|0FCijk
231 223 227 229 230 syl3anc φki1J|0FCiji1J|0FCijk
232 220 231 reximddv φki1J|0FCiFCk=0
233 elrabi ki1J|0FCik1J
234 233 anim1i ki1J|0FCiFCk=0k1JFCk=0
235 234 reximi2 ki1J|0FCiFCk=0k1JFCk=0
236 232 235 syl φk1JFCk=0