Metamath Proof Explorer


Theorem cyc3conja

Description: All 3-cycles are conjugate in the alternating group A_n for n>= 5. Property (b) of Lang p. 32. (Contributed by Thierry Arnoux, 15-Oct-2023)

Ref Expression
Hypotheses cyc3conja.c C=M.-13
cyc3conja.a A=pmEvenD
cyc3conja.s S=SymGrpD
cyc3conja.n N=D
cyc3conja.m M=toCycD
cyc3conja.p +˙=+S
cyc3conja.l -˙=-S
cyc3conja.1 φ5N
cyc3conja.d φDFin
cyc3conja.q φQC
cyc3conja.t φTC
Assertion cyc3conja φpAQ=p+˙T-˙p

Proof

Step Hyp Ref Expression
1 cyc3conja.c C=M.-13
2 cyc3conja.a A=pmEvenD
3 cyc3conja.s S=SymGrpD
4 cyc3conja.n N=D
5 cyc3conja.m M=toCycD
6 cyc3conja.p +˙=+S
7 cyc3conja.l -˙=-S
8 cyc3conja.1 φ5N
9 cyc3conja.d φDFin
10 cyc3conja.q φQC
11 cyc3conja.t φTC
12 simpr φgBaseSQ=g+˙T-˙ggAgA
13 simpr φgBaseSQ=g+˙T-˙ggAp=gp=g
14 13 oveq1d φgBaseSQ=g+˙T-˙ggAp=gp+˙T=g+˙T
15 14 13 oveq12d φgBaseSQ=g+˙T-˙ggAp=gp+˙T-˙p=g+˙T-˙g
16 15 eqeq2d φgBaseSQ=g+˙T-˙ggAp=gQ=p+˙T-˙pQ=g+˙T-˙g
17 simplr φgBaseSQ=g+˙T-˙ggAQ=g+˙T-˙g
18 12 16 17 rspcedvd φgBaseSQ=g+˙T-˙ggApAQ=p+˙T-˙p
19 9 ad5antr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TDFin
20 19 ad3antrrr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyDFin
21 simp-8r φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygBaseS
22 simp-6r φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxy¬gA
23 21 22 eldifd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygBaseSA
24 simpllr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyxDranu
25 24 eldifad φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyxD
26 simplr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyyDranu
27 26 eldifad φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyyD
28 25 27 prssd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyxyD
29 simpr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyxy
30 enpr2 xDranuyDranuxyxy2𝑜
31 24 26 29 30 syl3anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyxy2𝑜
32 eqid pmTrspD=pmTrspD
33 eqid ranpmTrspD=ranpmTrspD
34 32 33 pmtrrn DFinxyDxy2𝑜pmTrspDxyranpmTrspD
35 20 28 31 34 syl3anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxypmTrspDxyranpmTrspD
36 eqid BaseS=BaseS
37 3 36 33 pmtrodpm DFinpmTrspDxyranpmTrspDpmTrspDxyBaseSpmEvenD
38 20 35 37 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxypmTrspDxyBaseSpmEvenD
39 2 difeq2i BaseSA=BaseSpmEvenD
40 38 39 eleqtrrdi φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxypmTrspDxyBaseSA
41 3 36 2 odpmco DFingBaseSApmTrspDxyBaseSAgpmTrspDxyA
42 20 23 40 41 syl3anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxyA
43 simpr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyp=gpmTrspDxyp=gpmTrspDxy
44 43 oveq1d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyp=gpmTrspDxyp+˙T=gpmTrspDxy+˙T
45 44 43 oveq12d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyp=gpmTrspDxyp+˙T-˙p=gpmTrspDxy+˙T-˙gpmTrspDxy
46 45 eqeq2d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyp=gpmTrspDxyQ=p+˙T-˙pQ=gpmTrspDxy+˙T-˙gpmTrspDxy
47 38 eldifad φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxypmTrspDxyBaseS
48 0zd φ0
49 hashcl DFinD0
50 9 49 syl φD0
51 4 50 eqeltrid φN0
52 51 nn0zd φN
53 3z 3
54 53 a1i φ3
55 0red φ0
56 54 zred φ3
57 3pos 0<3
58 57 a1i φ0<3
59 55 56 58 ltled φ03
60 5re 5
61 60 a1i φ5
62 51 nn0red φN
63 3lt5 3<5
64 63 a1i φ3<5
65 56 61 64 ltled φ35
66 56 61 62 65 8 letrd φ3N
67 48 52 54 59 66 elfzd φ30N
68 1 3 4 5 36 cycpmgcl DFin30NCBaseS
69 9 67 68 syl2anc φCBaseS
70 69 11 sseldd φTBaseS
71 70 ad8antr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyTBaseS
72 5 20 25 27 29 32 cycpm2tr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyM⟨“xy”⟩=pmTrspDxy
73 72 reseq1d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyM⟨“xy”⟩ranu=pmTrspDxyranu
74 25 27 s2cld φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxy⟨“xy”⟩WordD
75 25 27 29 s2f1 φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxy⟨“xy”⟩:dom⟨“xy”⟩1-1D
76 5 20 74 75 tocycfvres2 φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyM⟨“xy”⟩Dran⟨“xy”⟩=IDran⟨“xy”⟩
77 76 reseq1d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyM⟨“xy”⟩Dran⟨“xy”⟩ranu=IDran⟨“xy”⟩ranu
78 simplr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TuwWordD|w:domw1-1D.-13
79 78 elin1d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TuwWordD|w:domw1-1D
80 id w=uw=u
81 dmeq w=udomw=domu
82 eqidd w=uD=D
83 80 81 82 f1eq123d w=uw:domw1-1Du:domu1-1D
84 83 elrab uwWordD|w:domw1-1DuWordDu:domu1-1D
85 79 84 sylib φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TuWordDu:domu1-1D
86 85 simprd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=Tu:domu1-1D
87 f1f u:domu1-1Du:domuD
88 frn u:domuDranuD
89 86 87 88 3syl φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TranuD
90 89 ad3antrrr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyranuD
91 24 26 prssd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyxyDranu
92 ssconb xyDranuDxyDranuranuDxy
93 92 biimpa xyDranuDxyDranuranuDxy
94 28 90 91 93 syl21anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyranuDxy
95 24 26 s2rn φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyran⟨“xy”⟩=xy
96 95 difeq2d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyDran⟨“xy”⟩=Dxy
97 94 96 sseqtrrd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyranuDran⟨“xy”⟩
98 97 resabs1d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyM⟨“xy”⟩Dran⟨“xy”⟩ranu=M⟨“xy”⟩ranu
99 97 resabs1d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyIDran⟨“xy”⟩ranu=Iranu
100 77 98 99 3eqtr3d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyM⟨“xy”⟩ranu=Iranu
101 73 100 eqtr3d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxypmTrspDxyranu=Iranu
102 simp-4r φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyMu=T
103 102 reseq1d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyMuDranu=TDranu
104 85 simpld φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TuWordD
105 104 ad3antrrr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyuWordD
106 86 ad3antrrr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyu:domu1-1D
107 5 20 105 106 tocycfvres2 φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyMuDranu=IDranu
108 103 107 eqtr3d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyTDranu=IDranu
109 disjdif ranuDranu=
110 109 a1i φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyranuDranu=
111 undif ranuDranuDranu=D
112 90 111 sylib φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyranuDranu=D
113 3 36 47 71 101 108 110 112 symgcom φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxypmTrspDxyT=TpmTrspDxy
114 113 coeq2d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxyT=gTpmTrspDxy
115 3 36 6 symgov gBaseSpmTrspDxyBaseSg+˙pmTrspDxy=gpmTrspDxy
116 21 47 115 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyg+˙pmTrspDxy=gpmTrspDxy
117 3 36 6 symgcl gBaseSpmTrspDxyBaseSg+˙pmTrspDxyBaseS
118 21 47 117 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyg+˙pmTrspDxyBaseS
119 116 118 eqeltrrd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxyBaseS
120 3 36 6 symgov gpmTrspDxyBaseSTBaseSgpmTrspDxy+˙T=gpmTrspDxyT
121 119 71 120 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxy+˙T=gpmTrspDxyT
122 coass gpmTrspDxyT=gpmTrspDxyT
123 121 122 eqtrdi φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxy+˙T=gpmTrspDxyT
124 coass gTpmTrspDxy=gTpmTrspDxy
125 124 a1i φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygTpmTrspDxy=gTpmTrspDxy
126 114 123 125 3eqtr4d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxy+˙T=gTpmTrspDxy
127 cnvco gpmTrspDxy-1=pmTrspDxy-1g-1
128 127 a1i φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxy-1=pmTrspDxy-1g-1
129 126 128 coeq12d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxy+˙TgpmTrspDxy-1=gTpmTrspDxypmTrspDxy-1g-1
130 coass gTpmTrspDxypmTrspDxy-1g-1=gTpmTrspDxypmTrspDxy-1g-1
131 coass gTpmTrspDxypmTrspDxy-1=gTpmTrspDxypmTrspDxy-1
132 131 coeq1i gTpmTrspDxypmTrspDxy-1g-1=gTpmTrspDxypmTrspDxy-1g-1
133 130 132 eqtr3i gTpmTrspDxypmTrspDxy-1g-1=gTpmTrspDxypmTrspDxy-1g-1
134 133 a1i φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygTpmTrspDxypmTrspDxy-1g-1=gTpmTrspDxypmTrspDxy-1g-1
135 3 36 6 symgov gBaseSTBaseSg+˙T=gT
136 21 71 135 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyg+˙T=gT
137 3 36 6 symgcl gBaseSTBaseSg+˙TBaseS
138 21 71 137 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyg+˙TBaseS
139 136 138 eqeltrrd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygTBaseS
140 3 36 symgbasf gTBaseSgT:DD
141 fcoi1 gT:DDgTID=gT
142 139 140 141 3syl φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygTID=gT
143 3 36 elsymgbas DFinpmTrspDxyBaseSpmTrspDxy:D1-1 ontoD
144 143 biimpa DFinpmTrspDxyBaseSpmTrspDxy:D1-1 ontoD
145 20 47 144 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxypmTrspDxy:D1-1 ontoD
146 f1ococnv2 pmTrspDxy:D1-1 ontoDpmTrspDxypmTrspDxy-1=ID
147 145 146 syl φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxypmTrspDxypmTrspDxy-1=ID
148 147 coeq2d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygTpmTrspDxypmTrspDxy-1=gTID
149 142 148 136 3eqtr4d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygTpmTrspDxypmTrspDxy-1=g+˙T
150 149 coeq1d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygTpmTrspDxypmTrspDxy-1g-1=g+˙Tg-1
151 3 36 7 symgsubg g+˙TBaseSgBaseSg+˙T-˙g=g+˙Tg-1
152 138 21 151 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyg+˙T-˙g=g+˙Tg-1
153 150 152 eqtr4d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygTpmTrspDxypmTrspDxy-1g-1=g+˙T-˙g
154 129 134 153 3eqtrd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxy+˙TgpmTrspDxy-1=g+˙T-˙g
155 3 symggrp DFinSGrp
156 9 155 syl φSGrp
157 156 ad8antr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxySGrp
158 36 6 grpcl SGrpgpmTrspDxyBaseSTBaseSgpmTrspDxy+˙TBaseS
159 157 119 71 158 syl3anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxy+˙TBaseS
160 3 36 7 symgsubg gpmTrspDxy+˙TBaseSgpmTrspDxyBaseSgpmTrspDxy+˙T-˙gpmTrspDxy=gpmTrspDxy+˙TgpmTrspDxy-1
161 159 119 160 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxygpmTrspDxy+˙T-˙gpmTrspDxy=gpmTrspDxy+˙TgpmTrspDxy-1
162 simp-7r φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyQ=g+˙T-˙g
163 154 161 162 3eqtr4rd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxyQ=gpmTrspDxy+˙T-˙gpmTrspDxy
164 42 46 163 rspcedvd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxypAQ=p+˙T-˙p
165 9 difexd φDranuV
166 165 ad5antr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TDranuV
167 3p2e5 3+2=5
168 167 8 eqbrtrid φ3+2N
169 2re 2
170 169 a1i φ2
171 56 170 62 leaddsub2d φ3+2N2N3
172 168 171 mpbid φ2N3
173 172 ad5antr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=T2N3
174 4 a1i φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TN=D
175 78 elin2d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=Tu.-13
176 hashf .:V0+∞
177 ffn .:V0+∞.FnV
178 fniniseg .FnVu.-13uVu=3
179 176 177 178 mp2b u.-13uVu=3
180 179 simprbi u.-13u=3
181 175 180 syl φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=Tu=3
182 vex uV
183 182 dmex domuV
184 hashf1rn domuVu:domu1-1Du=ranu
185 183 86 184 sylancr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=Tu=ranu
186 181 185 eqtr3d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=T3=ranu
187 174 186 oveq12d φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TN3=Dranu
188 173 187 breqtrd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=T2Dranu
189 hashssdif DFinranuDDranu=Dranu
190 19 89 189 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TDranu=Dranu
191 188 190 breqtrrd φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=T2Dranu
192 hashge2el2dif DranuV2DranuxDranuyDranuxy
193 166 191 192 syl2anc φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TxDranuyDranuxy
194 164 193 r19.29vva φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=TpAQ=p+˙T-˙p
195 nfcv _uM
196 5 3 36 tocycf DFinM:wWordD|w:domw1-1DBaseS
197 ffn M:wWordD|w:domw1-1DBaseSMFnwWordD|w:domw1-1D
198 9 196 197 3syl φMFnwWordD|w:domw1-1D
199 11 1 eleqtrdi φTM.-13
200 195 198 199 fvelimad φuwWordD|w:domw1-1D.-13Mu=T
201 200 ad3antrrr φgBaseSQ=g+˙T-˙g¬gAuwWordD|w:domw1-1D.-13Mu=T
202 194 201 r19.29a φgBaseSQ=g+˙T-˙g¬gApAQ=p+˙T-˙p
203 18 202 pm2.61dan φgBaseSQ=g+˙T-˙gpAQ=p+˙T-˙p
204 1 3 4 5 36 6 7 67 9 10 11 cycpmconjs φgBaseSQ=g+˙T-˙g
205 203 204 r19.29a φpAQ=p+˙T-˙p