Metamath Proof Explorer


Theorem cycpmco2

Description: The composition of a cyclic permutation and a transposition of one element in the cycle and one outside the cycle results in a cyclic permutation with one more element in its orbit. (Contributed by Thierry Arnoux, 2-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M=toCycD
cycpmco2.s S=SymGrpD
cycpmco2.d φDV
cycpmco2.w φWdomM
cycpmco2.i φIDranW
cycpmco2.j φJranW
cycpmco2.e E=W-1J+1
cycpmco2.1 U=WspliceEE⟨“I”⟩
Assertion cycpmco2 φMWM⟨“IJ”⟩=MU

Proof

Step Hyp Ref Expression
1 cycpmco2.c M=toCycD
2 cycpmco2.s S=SymGrpD
3 cycpmco2.d φDV
4 cycpmco2.w φWdomM
5 cycpmco2.i φIDranW
6 cycpmco2.j φJranW
7 cycpmco2.e E=W-1J+1
8 cycpmco2.1 U=WspliceEE⟨“I”⟩
9 eqid BaseS=BaseS
10 1 2 9 tocycf DVM:wWordD|w:domw1-1DBaseS
11 3 10 syl φM:wWordD|w:domw1-1DBaseS
12 11 fdmd φdomM=wWordD|w:domw1-1D
13 4 12 eleqtrd φWwWordD|w:domw1-1D
14 11 13 ffvelcdmd φMWBaseS
15 2 9 symgbasf MWBaseSMW:DD
16 14 15 syl φMW:DD
17 16 ffnd φMWFnD
18 5 eldifad φID
19 ssrab2 wWordD|w:domw1-1DWordD
20 19 13 sselid φWWordD
21 id w=Ww=W
22 dmeq w=Wdomw=domW
23 eqidd w=WD=D
24 21 22 23 f1eq123d w=Ww:domw1-1DW:domW1-1D
25 24 elrab3 WWordDWwWordD|w:domw1-1DW:domW1-1D
26 25 biimpa WWordDWwWordD|w:domw1-1DW:domW1-1D
27 20 13 26 syl2anc φW:domW1-1D
28 f1f W:domW1-1DW:domWD
29 27 28 syl φW:domWD
30 29 frnd φranWD
31 30 6 sseldd φJD
32 5 eldifbd φ¬IranW
33 nelne2 JranW¬IranWJI
34 6 32 33 syl2anc φJI
35 34 necomd φIJ
36 1 3 18 31 35 2 cycpm2cl φM⟨“IJ”⟩BaseS
37 2 9 symgbasf M⟨“IJ”⟩BaseSM⟨“IJ”⟩:DD
38 36 37 syl φM⟨“IJ”⟩:DD
39 38 ffnd φM⟨“IJ”⟩FnD
40 38 frnd φranM⟨“IJ”⟩D
41 fnco MWFnDM⟨“IJ”⟩FnDranM⟨“IJ”⟩DMWM⟨“IJ”⟩FnD
42 17 39 40 41 syl3anc φMWM⟨“IJ”⟩FnD
43 18 s1cld φ⟨“I”⟩WordD
44 splcl WWordD⟨“I”⟩WordDWspliceEE⟨“I”⟩WordD
45 20 43 44 syl2anc φWspliceEE⟨“I”⟩WordD
46 8 45 eqeltrid φUWordD
47 1 2 3 4 5 6 7 8 cycpmco2f1 φU:domU1-1D
48 1 3 46 47 2 cycpmcl φMUBaseS
49 2 9 symgbasf MUBaseSMU:DD
50 48 49 syl φMU:DD
51 50 ffnd φMUFnD
52 fvco3 M⟨“IJ”⟩:DDiDMWM⟨“IJ”⟩i=MWM⟨“IJ”⟩i
53 38 52 sylan φiDMWM⟨“IJ”⟩i=MWM⟨“IJ”⟩i
54 1 3 18 31 35 2 cyc2fv2 φM⟨“IJ”⟩J=I
55 54 fveq2d φMWM⟨“IJ”⟩J=MWI
56 1 2 3 4 5 6 7 8 cycpmco2lem2 φUE=I
57 f1cnv W:domW1-1DW-1:ranW1-1 ontodomW
58 f1of W-1:ranW1-1 ontodomWW-1:ranWdomW
59 27 57 58 3syl φW-1:ranWdomW
60 59 6 ffvelcdmd φW-1JdomW
61 wrddm WWordDdomW=0..^W
62 20 61 syl φdomW=0..^W
63 60 62 eleqtrd φW-1J0..^W
64 lencl WWordDW0
65 20 64 syl φW0
66 65 nn0cnd φW
67 1cnd φ1
68 ovexd φW-1J+1V
69 7 68 eqeltrid φEV
70 splval WdomMEVEV⟨“I”⟩WordDWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
71 4 69 69 43 70 syl13anc φWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
72 8 71 eqtrid φU=WprefixE++⟨“I”⟩++WsubstrEW
73 72 fveq2d φU=WprefixE++⟨“I”⟩++WsubstrEW
74 pfxcl WWordDWprefixEWordD
75 20 74 syl φWprefixEWordD
76 ccatcl WprefixEWordD⟨“I”⟩WordDWprefixE++⟨“I”⟩WordD
77 75 43 76 syl2anc φWprefixE++⟨“I”⟩WordD
78 swrdcl WWordDWsubstrEWWordD
79 20 78 syl φWsubstrEWWordD
80 ccatlen WprefixE++⟨“I”⟩WordDWsubstrEWWordDWprefixE++⟨“I”⟩++WsubstrEW=WprefixE++⟨“I”⟩+WsubstrEW
81 77 79 80 syl2anc φWprefixE++⟨“I”⟩++WsubstrEW=WprefixE++⟨“I”⟩+WsubstrEW
82 ccatws1len WprefixEWordDWprefixE++⟨“I”⟩=WprefixE+1
83 20 74 82 3syl φWprefixE++⟨“I”⟩=WprefixE+1
84 fzofzp1 W-1J0..^WW-1J+10W
85 63 84 syl φW-1J+10W
86 7 85 eqeltrid φE0W
87 pfxlen WWordDE0WWprefixE=E
88 20 86 87 syl2anc φWprefixE=E
89 88 oveq1d φWprefixE+1=E+1
90 83 89 eqtrd φWprefixE++⟨“I”⟩=E+1
91 nn0fz0 W0W0W
92 65 91 sylib φW0W
93 swrdlen WWordDE0WW0WWsubstrEW=WE
94 20 86 92 93 syl3anc φWsubstrEW=WE
95 90 94 oveq12d φWprefixE++⟨“I”⟩+WsubstrEW=E+1+WE
96 73 81 95 3eqtrd φU=E+1+WE
97 fz0ssnn0 0W0
98 97 86 sselid φE0
99 98 nn0zd φE
100 99 peano2zd φE+1
101 100 zcnd φE+1
102 98 nn0cnd φE
103 101 66 102 addsubassd φE+1+W-E=E+1+WE
104 102 67 66 addassd φE+1+W=E+1+W
105 104 oveq1d φE+1+W-E=E+1+W-E
106 96 103 105 3eqtr2d φU=E+1+W-E
107 67 66 addcld φ1+W
108 102 107 pncan2d φE+1+W-E=1+W
109 67 66 addcomd φ1+W=W+1
110 106 108 109 3eqtrd φU=W+1
111 66 67 110 mvrraddd φU1=W
112 111 oveq2d φ0..^U1=0..^W
113 63 112 eleqtrrd φW-1J0..^U1
114 1 3 46 47 113 cycpmfv1 φMUUW-1J=UW-1J+1
115 7 fveq2i UE=UW-1J+1
116 114 115 eqtr4di φMUUW-1J=UE
117 1 3 20 27 18 32 cycpmfv3 φMWI=I
118 56 116 117 3eqtr4d φMUUW-1J=MWI
119 72 fveq1d φUW-1J=WprefixE++⟨“I”⟩++WsubstrEWW-1J
120 fzossfzop1 E00..^E0..^E+1
121 98 120 syl φ0..^E0..^E+1
122 elfzonn0 W-1J0..^WW-1J0
123 fzonn0p1 W-1J0W-1J0..^W-1J+1
124 63 122 123 3syl φW-1J0..^W-1J+1
125 7 oveq2i 0..^E=0..^W-1J+1
126 124 125 eleqtrrdi φW-1J0..^E
127 121 126 sseldd φW-1J0..^E+1
128 90 oveq2d φ0..^WprefixE++⟨“I”⟩=0..^E+1
129 127 128 eleqtrrd φW-1J0..^WprefixE++⟨“I”⟩
130 ccatval1 WprefixE++⟨“I”⟩WordDWsubstrEWWordDW-1J0..^WprefixE++⟨“I”⟩WprefixE++⟨“I”⟩++WsubstrEWW-1J=WprefixE++⟨“I”⟩W-1J
131 77 79 129 130 syl3anc φWprefixE++⟨“I”⟩++WsubstrEWW-1J=WprefixE++⟨“I”⟩W-1J
132 88 oveq2d φ0..^WprefixE=0..^E
133 126 132 eleqtrrd φW-1J0..^WprefixE
134 ccatval1 WprefixEWordD⟨“I”⟩WordDW-1J0..^WprefixEWprefixE++⟨“I”⟩W-1J=WprefixEW-1J
135 75 43 133 134 syl3anc φWprefixE++⟨“I”⟩W-1J=WprefixEW-1J
136 119 131 135 3eqtrd φUW-1J=WprefixEW-1J
137 pfxfv WWordDE0WW-1J0..^EWprefixEW-1J=WW-1J
138 20 86 126 137 syl3anc φWprefixEW-1J=WW-1J
139 f1f1orn W:domW1-1DW:domW1-1 ontoranW
140 27 139 syl φW:domW1-1 ontoranW
141 f1ocnvfv2 W:domW1-1 ontoranWJranWWW-1J=J
142 140 6 141 syl2anc φWW-1J=J
143 136 138 142 3eqtrd φUW-1J=J
144 143 fveq2d φMUUW-1J=MUJ
145 55 118 144 3eqtr2d φMWM⟨“IJ”⟩J=MUJ
146 145 ad2antrr φiranWi=JMWM⟨“IJ”⟩J=MUJ
147 simpr φiranWi=Ji=J
148 147 fveq2d φiranWi=JM⟨“IJ”⟩i=M⟨“IJ”⟩J
149 148 fveq2d φiranWi=JMWM⟨“IJ”⟩i=MWM⟨“IJ”⟩J
150 147 fveq2d φiranWi=JMUi=MUJ
151 146 149 150 3eqtr4d φiranWi=JMWM⟨“IJ”⟩i=MUi
152 3 ad2antrr φiranWiJDV
153 18 31 s2cld φ⟨“IJ”⟩WordD
154 153 ad2antrr φiranWiJ⟨“IJ”⟩WordD
155 18 31 35 s2f1 φ⟨“IJ”⟩:dom⟨“IJ”⟩1-1D
156 155 ad2antrr φiranWiJ⟨“IJ”⟩:dom⟨“IJ”⟩1-1D
157 30 sselda φiranWiD
158 157 adantr φiranWiJiD
159 simpr φiranWiranW
160 32 adantr φiranW¬IranW
161 nelne2 iranW¬IranWiI
162 159 160 161 syl2anc φiranWiI
163 162 adantr φiranWiJiI
164 simpr φiranWiJiJ
165 163 164 nelprd φiranWiJ¬iIJ
166 18 31 s2rn φran⟨“IJ”⟩=IJ
167 166 eleq2d φiran⟨“IJ”⟩iIJ
168 167 notbid φ¬iran⟨“IJ”⟩¬iIJ
169 168 ad2antrr φiranWiJ¬iran⟨“IJ”⟩¬iIJ
170 165 169 mpbird φiranWiJ¬iran⟨“IJ”⟩
171 1 152 154 156 158 170 cycpmfv3 φiranWiJM⟨“IJ”⟩i=i
172 171 fveq2d φiranWiJMWM⟨“IJ”⟩i=MWi
173 3 ad3antrrr φiranWiJU-1i0..^EDV
174 4 ad3antrrr φiranWiJU-1i0..^EWdomM
175 5 ad3antrrr φiranWiJU-1i0..^EIDranW
176 6 ad3antrrr φiranWiJU-1i0..^EJranW
177 simpllr φiranWiJU-1i0..^EiranW
178 simplr φiranWiJU-1i0..^EiJ
179 simpr φiranWiJU-1i0..^EU-1i0..^E
180 1 2 173 174 175 176 7 8 177 178 179 cycpmco2lem7 φiranWiJU-1i0..^EMUi=MWi
181 3 ad3antrrr φiranWiJU-1iE..^U1DV
182 4 ad3antrrr φiranWiJU-1iE..^U1WdomM
183 5 ad3antrrr φiranWiJU-1iE..^U1IDranW
184 6 ad3antrrr φiranWiJU-1iE..^U1JranW
185 simpllr φiranWiJU-1iE..^U1iranW
186 162 ad2antrr φiranWiJU-1iE..^U1iI
187 simpr φiranWiJU-1iE..^U1U-1iE..^U1
188 1 2 181 182 183 184 7 8 185 186 187 cycpmco2lem6 φiranWiJU-1iE..^U1MUi=MWi
189 3 ad3antrrr φiranWiJU-1i=U1DV
190 4 ad3antrrr φiranWiJU-1i=U1WdomM
191 5 ad3antrrr φiranWiJU-1i=U1IDranW
192 6 ad3antrrr φiranWiJU-1i=U1JranW
193 simpllr φiranWiJU-1i=U1iranW
194 simpr φiranWiJU-1i=U1U-1i=U1
195 1 2 189 190 191 192 7 8 193 194 cycpmco2lem5 φiranWiJU-1i=U1MUi=MWi
196 f1f1orn U:domU1-1DU:domU1-1 ontoranU
197 47 196 syl φU:domU1-1 ontoranU
198 ssun1 ranWranWI
199 1 2 3 4 5 6 7 8 cycpmco2rn φranU=ranWI
200 198 199 sseqtrrid φranWranU
201 200 sselda φiranWiranU
202 f1ocnvdm U:domU1-1 ontoranUiranUU-1idomU
203 197 201 202 syl2an2r φiranWU-1idomU
204 wrddm UWordDdomU=0..^U
205 46 204 syl φdomU=0..^U
206 205 adantr φiranWdomU=0..^U
207 203 206 eleqtrd φiranWU-1i0..^U
208 65 nn0zd φW
209 208 peano2zd φW+1
210 110 209 eqeltrd φU
211 fzoval U0..^U=0U1
212 210 211 syl φ0..^U=0U1
213 212 adantr φiranW0..^U=0U1
214 207 213 eleqtrd φiranWU-1i0U1
215 elfzr U-1i0U1U-1i0..^U1U-1i=U1
216 214 215 syl φiranWU-1i0..^U1U-1i=U1
217 simpr φiranWU-1i0..^U1U-1i0..^U1
218 99 ad2antrr φiranWU-1i0..^U1E
219 fzospliti U-1i0..^U1EU-1i0..^EU-1iE..^U1
220 217 218 219 syl2anc φiranWU-1i0..^U1U-1i0..^EU-1iE..^U1
221 220 ex φiranWU-1i0..^U1U-1i0..^EU-1iE..^U1
222 221 orim1d φiranWU-1i0..^U1U-1i=U1U-1i0..^EU-1iE..^U1U-1i=U1
223 216 222 mpd φiranWU-1i0..^EU-1iE..^U1U-1i=U1
224 df-3or U-1i0..^EU-1iE..^U1U-1i=U1U-1i0..^EU-1iE..^U1U-1i=U1
225 223 224 sylibr φiranWU-1i0..^EU-1iE..^U1U-1i=U1
226 225 adantr φiranWiJU-1i0..^EU-1iE..^U1U-1i=U1
227 180 188 195 226 mpjao3dan φiranWiJMUi=MWi
228 172 227 eqtr4d φiranWiJMWM⟨“IJ”⟩i=MUi
229 151 228 pm2.61dane φiranWMWM⟨“IJ”⟩i=MUi
230 229 adantlr φiDiranWMWM⟨“IJ”⟩i=MUi
231 1 2 3 4 5 6 7 8 cycpmco2lem4 φMWM⟨“IJ”⟩I=MUI
232 231 ad2antrr φiDranWi=IMWM⟨“IJ”⟩I=MUI
233 simpr φiDranWi=Ii=I
234 233 fveq2d φiDranWi=IM⟨“IJ”⟩i=M⟨“IJ”⟩I
235 234 fveq2d φiDranWi=IMWM⟨“IJ”⟩i=MWM⟨“IJ”⟩I
236 233 fveq2d φiDranWi=IMUi=MUI
237 232 235 236 3eqtr4d φiDranWi=IMWM⟨“IJ”⟩i=MUi
238 3 ad2antrr φiDranWiIDV
239 20 ad2antrr φiDranWiIWWordD
240 27 ad2antrr φiDranWiIW:domW1-1D
241 simplr φiDranWiIiDranW
242 241 eldifad φiDranWiIiD
243 241 eldifbd φiDranWiI¬iranW
244 1 238 239 240 242 243 cycpmfv3 φiDranWiIMWi=i
245 153 ad2antrr φiDranWiI⟨“IJ”⟩WordD
246 155 ad2antrr φiDranWiI⟨“IJ”⟩:dom⟨“IJ”⟩1-1D
247 simpr φiDranWiIiI
248 eldifn iDranW¬iranW
249 nelne2 JranW¬iranWJi
250 6 248 249 syl2an φiDranWJi
251 250 necomd φiDranWiJ
252 251 adantr φiDranWiIiJ
253 247 252 nelprd φiDranWiI¬iIJ
254 168 ad2antrr φiDranWiI¬iran⟨“IJ”⟩¬iIJ
255 253 254 mpbird φiDranWiI¬iran⟨“IJ”⟩
256 1 238 245 246 242 255 cycpmfv3 φiDranWiIM⟨“IJ”⟩i=i
257 256 fveq2d φiDranWiIMWM⟨“IJ”⟩i=MWi
258 46 ad2antrr φiDranWiIUWordD
259 47 ad2antrr φiDranWiIU:domU1-1D
260 199 ad2antrr φiDranWiIranU=ranWI
261 nelsn iI¬iI
262 261 adantl φiDranWiI¬iI
263 nelun ranU=ranWI¬iranU¬iranW¬iI
264 263 biimpar ranU=ranWI¬iranW¬iI¬iranU
265 260 243 262 264 syl12anc φiDranWiI¬iranU
266 1 238 258 259 242 265 cycpmfv3 φiDranWiIMUi=i
267 244 257 266 3eqtr4d φiDranWiIMWM⟨“IJ”⟩i=MUi
268 237 267 pm2.61dane φiDranWMWM⟨“IJ”⟩i=MUi
269 268 adantlr φiDiDranWMWM⟨“IJ”⟩i=MUi
270 undif ranWDranWDranW=D
271 30 270 sylib φranWDranW=D
272 271 eleq2d φiranWDranWiD
273 elun iranWDranWiranWiDranW
274 272 273 bitr3di φiDiranWiDranW
275 274 biimpa φiDiranWiDranW
276 230 269 275 mpjaodan φiDMWM⟨“IJ”⟩i=MUi
277 53 276 eqtrd φiDMWM⟨“IJ”⟩i=MUi
278 42 51 277 eqfnfvd φMWM⟨“IJ”⟩=MU