Metamath Proof Explorer


Theorem dvnprodlem3

Description: The multinomial formula for the k -th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnprodlem3.s φS
dvnprodlem3.x φXTopOpenfld𝑡S
dvnprodlem3.t φTFin
dvnprodlem3.h φtTHt:X
dvnprodlem3.n φN0
dvnprodlem3.dvnh φtTj0NSDnHtj:X
dvnprodlem3.f F=xXtTHtx
dvnprodlem3.d D=s𝒫Tn0c0ns|tsct=n
dvnprodlem3.c C=n0c0nT|tTct=n
Assertion dvnprodlem3 φSDnFN=xXcCNN!tTct!tTSDnHtctx

Proof

Step Hyp Ref Expression
1 dvnprodlem3.s φS
2 dvnprodlem3.x φXTopOpenfld𝑡S
3 dvnprodlem3.t φTFin
4 dvnprodlem3.h φtTHt:X
5 dvnprodlem3.n φN0
6 dvnprodlem3.dvnh φtTj0NSDnHtj:X
7 dvnprodlem3.f F=xXtTHtx
8 dvnprodlem3.d D=s𝒫Tn0c0ns|tsct=n
9 dvnprodlem3.c C=n0c0nT|tTct=n
10 prodeq1 s=tsHtx=tHtx
11 10 mpteq2dv s=xXtsHtx=xXtHtx
12 11 oveq2d s=SDnxXtsHtx=SDnxXtHtx
13 12 fveq1d s=SDnxXtsHtxk=SDnxXtHtxk
14 fveq2 s=Ds=D
15 14 fveq1d s=Dsk=Dk
16 15 sumeq1d s=cDskk!tsct!tsSDnHtctx=cDkk!tsct!tsSDnHtctx
17 prodeq1 s=tsct!=tct!
18 17 oveq2d s=k!tsct!=k!tct!
19 prodeq1 s=tsSDnHtctx=tSDnHtctx
20 18 19 oveq12d s=k!tsct!tsSDnHtctx=k!tct!tSDnHtctx
21 20 sumeq2sdv s=cDkk!tsct!tsSDnHtctx=cDkk!tct!tSDnHtctx
22 16 21 eqtrd s=cDskk!tsct!tsSDnHtctx=cDkk!tct!tSDnHtctx
23 22 mpteq2dv s=xXcDskk!tsct!tsSDnHtctx=xXcDkk!tct!tSDnHtctx
24 13 23 eqeq12d s=SDnxXtsHtxk=xXcDskk!tsct!tsSDnHtctxSDnxXtHtxk=xXcDkk!tct!tSDnHtctx
25 24 ralbidv s=k0NSDnxXtsHtxk=xXcDskk!tsct!tsSDnHtctxk0NSDnxXtHtxk=xXcDkk!tct!tSDnHtctx
26 prodeq1 s=rtsHtx=trHtx
27 26 mpteq2dv s=rxXtsHtx=xXtrHtx
28 27 oveq2d s=rSDnxXtsHtx=SDnxXtrHtx
29 28 fveq1d s=rSDnxXtsHtxk=SDnxXtrHtxk
30 fveq2 s=rDs=Dr
31 30 fveq1d s=rDsk=Drk
32 31 sumeq1d s=rcDskk!tsct!tsSDnHtctx=cDrkk!tsct!tsSDnHtctx
33 prodeq1 s=rtsct!=trct!
34 33 oveq2d s=rk!tsct!=k!trct!
35 prodeq1 s=rtsSDnHtctx=trSDnHtctx
36 34 35 oveq12d s=rk!tsct!tsSDnHtctx=k!trct!trSDnHtctx
37 36 sumeq2sdv s=rcDrkk!tsct!tsSDnHtctx=cDrkk!trct!trSDnHtctx
38 32 37 eqtrd s=rcDskk!tsct!tsSDnHtctx=cDrkk!trct!trSDnHtctx
39 38 mpteq2dv s=rxXcDskk!tsct!tsSDnHtctx=xXcDrkk!trct!trSDnHtctx
40 29 39 eqeq12d s=rSDnxXtsHtxk=xXcDskk!tsct!tsSDnHtctxSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctx
41 40 ralbidv s=rk0NSDnxXtsHtxk=xXcDskk!tsct!tsSDnHtctxk0NSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctx
42 prodeq1 s=rztsHtx=trzHtx
43 42 mpteq2dv s=rzxXtsHtx=xXtrzHtx
44 43 oveq2d s=rzSDnxXtsHtx=SDnxXtrzHtx
45 44 fveq1d s=rzSDnxXtsHtxk=SDnxXtrzHtxk
46 fveq2 s=rzDs=Drz
47 46 fveq1d s=rzDsk=Drzk
48 47 sumeq1d s=rzcDskk!tsct!tsSDnHtctx=cDrzkk!tsct!tsSDnHtctx
49 prodeq1 s=rztsct!=trzct!
50 49 oveq2d s=rzk!tsct!=k!trzct!
51 prodeq1 s=rztsSDnHtctx=trzSDnHtctx
52 50 51 oveq12d s=rzk!tsct!tsSDnHtctx=k!trzct!trzSDnHtctx
53 52 sumeq2sdv s=rzcDrzkk!tsct!tsSDnHtctx=cDrzkk!trzct!trzSDnHtctx
54 48 53 eqtrd s=rzcDskk!tsct!tsSDnHtctx=cDrzkk!trzct!trzSDnHtctx
55 54 mpteq2dv s=rzxXcDskk!tsct!tsSDnHtctx=xXcDrzkk!trzct!trzSDnHtctx
56 45 55 eqeq12d s=rzSDnxXtsHtxk=xXcDskk!tsct!tsSDnHtctxSDnxXtrzHtxk=xXcDrzkk!trzct!trzSDnHtctx
57 56 ralbidv s=rzk0NSDnxXtsHtxk=xXcDskk!tsct!tsSDnHtctxk0NSDnxXtrzHtxk=xXcDrzkk!trzct!trzSDnHtctx
58 prodeq1 s=TtsHtx=tTHtx
59 58 mpteq2dv s=TxXtsHtx=xXtTHtx
60 7 a1i s=TF=xXtTHtx
61 60 eqcomd s=TxXtTHtx=F
62 59 61 eqtrd s=TxXtsHtx=F
63 62 oveq2d s=TSDnxXtsHtx=SDnF
64 63 fveq1d s=TSDnxXtsHtxk=SDnFk
65 fveq2 s=TDs=DT
66 65 fveq1d s=TDsk=DTk
67 66 sumeq1d s=TcDskk!tsct!tsSDnHtctx=cDTkk!tsct!tsSDnHtctx
68 prodeq1 s=Ttsct!=tTct!
69 68 oveq2d s=Tk!tsct!=k!tTct!
70 prodeq1 s=TtsSDnHtctx=tTSDnHtctx
71 69 70 oveq12d s=Tk!tsct!tsSDnHtctx=k!tTct!tTSDnHtctx
72 71 sumeq2sdv s=TcDTkk!tsct!tsSDnHtctx=cDTkk!tTct!tTSDnHtctx
73 67 72 eqtrd s=TcDskk!tsct!tsSDnHtctx=cDTkk!tTct!tTSDnHtctx
74 73 mpteq2dv s=TxXcDskk!tsct!tsSDnHtctx=xXcDTkk!tTct!tTSDnHtctx
75 64 74 eqeq12d s=TSDnxXtsHtxk=xXcDskk!tsct!tsSDnHtctxSDnFk=xXcDTkk!tTct!tTSDnHtctx
76 75 ralbidv s=Tk0NSDnxXtsHtxk=xXcDskk!tsct!tsSDnHtctxk0NSDnFk=xXcDTkk!tTct!tTSDnHtctx
77 prod0 tHtx=1
78 77 mpteq2i xXtHtx=xX1
79 78 oveq2i SDnxXtHtx=SDnxX1
80 79 a1i k=0SDnxXtHtx=SDnxX1
81 id k=0k=0
82 80 81 fveq12d k=0SDnxXtHtxk=SDnxX10
83 82 adantl φk=0SDnxXtHtxk=SDnxX10
84 recnprss SS
85 1 84 syl φS
86 1cnd φxX1
87 86 fmpttd φxX1:X
88 1re 1
89 88 rgenw xX1
90 dmmptg xX1domxX1=X
91 89 90 ax-mp domxX1=X
92 91 a1i φdomxX1=X
93 92 feq2d φxX1:domxX1xX1:X
94 87 93 mpbird φxX1:domxX1
95 restsspw TopOpenfld𝑡S𝒫S
96 95 2 sselid φX𝒫S
97 elpwi X𝒫SXS
98 96 97 syl φXS
99 92 98 eqsstrd φdomxX1S
100 94 99 jca φxX1:domxX1domxX1S
101 cnex V
102 101 a1i φV
103 elpm2g VSxX1𝑝𝑚SxX1:domxX1domxX1S
104 102 1 103 syl2anc φxX1𝑝𝑚SxX1:domxX1domxX1S
105 100 104 mpbird φxX1𝑝𝑚S
106 dvn0 SxX1𝑝𝑚SSDnxX10=xX1
107 85 105 106 syl2anc φSDnxX10=xX1
108 107 adantr φk=0SDnxX10=xX1
109 fveq2 k=0Dk=D0
110 109 adantl φk=0Dk=D0
111 oveq2 s=0ns=0n
112 elmapfn x0nxFn
113 fn0 xFnx=
114 112 113 sylib x0nx=
115 velsn xx=
116 114 115 sylibr x0nx
117 115 biimpi xx=
118 id x=x=
119 f0 :0n
120 ovex 0nV
121 0ex V
122 120 121 elmap 0n:0n
123 119 122 mpbir 0n
124 123 a1i x=0n
125 118 124 eqeltrd x=x0n
126 117 125 syl xx0n
127 116 126 impbii x0nx
128 127 ax-gen xx0nx
129 dfcleq 0n=xx0nx
130 128 129 mpbir 0n=
131 130 a1i s=0n=
132 111 131 eqtrd s=0ns=
133 rabeq 0ns=c0ns|tsct=n=c|tsct=n
134 132 133 syl s=c0ns|tsct=n=c|tsct=n
135 sumeq1 s=tsct=tct
136 135 eqeq1d s=tsct=ntct=n
137 136 rabbidv s=c|tsct=n=c|tct=n
138 134 137 eqtrd s=c0ns|tsct=n=c|tct=n
139 138 mpteq2dv s=n0c0ns|tsct=n=n0c|tct=n
140 0elpw 𝒫T
141 140 a1i φ𝒫T
142 nn0ex 0V
143 142 mptex n0c|tct=nV
144 143 a1i φn0c|tct=nV
145 8 139 141 144 fvmptd3 φD=n0c|tct=n
146 eqeq2 n=0tct=ntct=0
147 146 rabbidv n=0c|tct=n=c|tct=0
148 147 adantl φn=0c|tct=n=c|tct=0
149 0nn0 00
150 149 a1i φ00
151 p0ex V
152 151 rabex c|tct=0V
153 152 a1i φc|tct=0V
154 145 148 150 153 fvmptd φD0=c|tct=0
155 154 adantr φk=0D0=c|tct=0
156 snidg V
157 121 156 ax-mp
158 eqid 0=0
159 157 158 pm3.2i 0=0
160 sum0 tct=0
161 160 a1i c=tct=0
162 161 eqeq1d c=tct=00=0
163 162 elrab c|tct=00=0
164 159 163 mpbir c|tct=0
165 164 n0ii ¬c|tct=0=
166 eqid c|tct=0=c|tct=0
167 rabrsn c|tct=0=c|tct=0c|tct=0=c|tct=0=
168 166 167 ax-mp c|tct=0=c|tct=0=
169 165 168 mtpor c|tct=0=
170 169 a1i φk=0c|tct=0=
171 iftrue k=0ifk=0=
172 171 adantl φk=0ifk=0=
173 170 172 eqtr4d φk=0c|tct=0=ifk=0
174 110 155 173 3eqtrd φk=0Dk=ifk=0
175 174 172 eqtrd φk=0Dk=
176 175 sumeq1d φk=0cDkk!tct!tSDnHtctx=ck!tct!tSDnHtctx
177 fveq2 k=0k!=0!
178 fac0 0!=1
179 178 a1i k=00!=1
180 177 179 eqtrd k=0k!=1
181 180 oveq1d k=0k!tct!=1tct!
182 prod0 tct!=1
183 182 oveq2i 1tct!=11
184 1div1e1 11=1
185 183 184 eqtri 1tct!=1
186 181 185 eqtrdi k=0k!tct!=1
187 prod0 tSDnHtctx=1
188 187 a1i k=0tSDnHtctx=1
189 186 188 oveq12d k=0k!tct!tSDnHtctx=11
190 189 ad2antlr φk=0ck!tct!tSDnHtctx=11
191 1t1e1 11=1
192 191 a1i φk=0c11=1
193 190 192 eqtrd φk=0ck!tct!tSDnHtctx=1
194 193 sumeq2dv φk=0ck!tct!tSDnHtctx=c1
195 ax-1cn 1
196 eqidd c=1=1
197 196 sumsn V1c1=1
198 121 195 197 mp2an c1=1
199 198 a1i φk=0c1=1
200 176 194 199 3eqtrd φk=0cDkk!tct!tSDnHtctx=1
201 200 mpteq2dv φk=0xXcDkk!tct!tSDnHtctx=xX1
202 201 eqcomd φk=0xX1=xXcDkk!tct!tSDnHtctx
203 83 108 202 3eqtrd φk=0SDnxXtHtxk=xXcDkk!tct!tSDnHtctx
204 203 a1d φk=0k0NSDnxXtHtxk=xXcDkk!tct!tSDnHtctx
205 79 fveq1i SDnxXtHtxk=SDnxX1k
206 205 a1i φ¬k=0k0NSDnxXtHtxk=SDnxX1k
207 1 adantr φ¬k=0S
208 207 adantr φ¬k=0k0NS
209 2 adantr φ¬k=0XTopOpenfld𝑡S
210 209 adantr φ¬k=0k0NXTopOpenfld𝑡S
211 195 a1i φ¬k=0k0N1
212 elfznn0 k0Nk0
213 212 adantl ¬k=0k0Nk0
214 neqne ¬k=0k0
215 214 adantr ¬k=0k0Nk0
216 213 215 jca ¬k=0k0Nk0k0
217 elnnne0 kk0k0
218 216 217 sylibr ¬k=0k0Nk
219 218 adantll φ¬k=0k0Nk
220 208 210 211 219 dvnmptconst φ¬k=0k0NSDnxX1k=xX0
221 145 ad2antrr φ¬k=0k0ND=n0c|tct=n
222 eqeq2 n=ktct=ntct=k
223 222 rabbidv n=kc|tct=n=c|tct=k
224 223 adantl ¬k=0n=kc|tct=n=c|tct=k
225 eqidd tct=kk=k
226 id tct=ktct=k
227 226 eqcomd tct=kk=tct
228 160 a1i tct=ktct=0
229 225 227 228 3eqtrd tct=kk=0
230 229 adantl ctct=kk=0
231 230 adantll ¬k=0ctct=kk=0
232 simpll ¬k=0ctct=k¬k=0
233 231 232 pm2.65da ¬k=0c¬tct=k
234 233 ralrimiva ¬k=0c¬tct=k
235 rabeq0 c|tct=k=c¬tct=k
236 234 235 sylibr ¬k=0c|tct=k=
237 236 adantr ¬k=0n=kc|tct=k=
238 224 237 eqtrd ¬k=0n=kc|tct=n=
239 238 adantll φ¬k=0n=kc|tct=n=
240 239 adantlr φ¬k=0k0Nn=kc|tct=n=
241 212 adantl φ¬k=0k0Nk0
242 121 a1i φ¬k=0k0NV
243 221 240 241 242 fvmptd φ¬k=0k0NDk=
244 243 sumeq1d φ¬k=0k0NcDkk!tct!tSDnHtctx=ck!tct!tSDnHtctx
245 sum0 ck!tct!tSDnHtctx=0
246 245 a1i φ¬k=0k0Nck!tct!tSDnHtctx=0
247 244 246 eqtr2d φ¬k=0k0N0=cDkk!tct!tSDnHtctx
248 247 mpteq2dv φ¬k=0k0NxX0=xXcDkk!tct!tSDnHtctx
249 206 220 248 3eqtrd φ¬k=0k0NSDnxXtHtxk=xXcDkk!tct!tSDnHtctx
250 249 ex φ¬k=0k0NSDnxXtHtxk=xXcDkk!tct!tSDnHtctx
251 204 250 pm2.61dan φk0NSDnxXtHtxk=xXcDkk!tct!tSDnHtctx
252 251 ralrimiv φk0NSDnxXtHtxk=xXcDkk!tct!tSDnHtctx
253 simpll φrTzTrk0NSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctxj0NφrTzTr
254 fveq2 x=yHtx=Hty
255 254 prodeq2ad x=ytrHtx=trHty
256 fveq2 t=uHt=Hu
257 256 fveq1d t=uHty=Huy
258 257 cbvprodv trHty=urHuy
259 258 a1i x=ytrHty=urHuy
260 255 259 eqtrd x=ytrHtx=urHuy
261 260 cbvmptv xXtrHtx=yXurHuy
262 261 oveq2i SDnxXtrHtx=SDnyXurHuy
263 262 fveq1i SDnxXtrHtxk=SDnyXurHuyk
264 fveq2 t=uct=cu
265 264 fveq2d t=uct!=cu!
266 265 cbvprodv trct!=urcu!
267 266 oveq2i k!trct!=k!urcu!
268 267 a1i x=yk!trct!=k!urcu!
269 fveq2 x=ySDnHtctx=SDnHtcty
270 269 prodeq2ad x=ytrSDnHtctx=trSDnHtcty
271 256 oveq2d t=uSDnHt=SDnHu
272 271 264 fveq12d t=uSDnHtct=SDnHucu
273 272 fveq1d t=uSDnHtcty=SDnHucuy
274 273 cbvprodv trSDnHtcty=urSDnHucuy
275 274 a1i x=ytrSDnHtcty=urSDnHucuy
276 270 275 eqtrd x=ytrSDnHtctx=urSDnHucuy
277 268 276 oveq12d x=yk!trct!trSDnHtctx=k!urcu!urSDnHucuy
278 277 sumeq2sdv x=ycDrkk!trct!trSDnHtctx=cDrkk!urcu!urSDnHucuy
279 fveq1 c=dcu=du
280 279 fveq2d c=dcu!=du!
281 280 prodeq2ad c=durcu!=urdu!
282 281 oveq2d c=dk!urcu!=k!urdu!
283 279 fveq2d c=dSDnHucu=SDnHudu
284 283 fveq1d c=dSDnHucuy=SDnHuduy
285 284 prodeq2ad c=durSDnHucuy=urSDnHuduy
286 282 285 oveq12d c=dk!urcu!urSDnHucuy=k!urdu!urSDnHuduy
287 286 cbvsumv cDrkk!urcu!urSDnHucuy=dDrkk!urdu!urSDnHuduy
288 287 a1i x=ycDrkk!urcu!urSDnHucuy=dDrkk!urdu!urSDnHuduy
289 278 288 eqtrd x=ycDrkk!trct!trSDnHtctx=dDrkk!urdu!urSDnHuduy
290 289 cbvmptv xXcDrkk!trct!trSDnHtctx=yXdDrkk!urdu!urSDnHuduy
291 263 290 eqeq12i SDnxXtrHtxk=xXcDrkk!trct!trSDnHtctxSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduy
292 291 ralbii k0NSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctxk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduy
293 292 biimpi k0NSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctxk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduy
294 293 ad2antlr φrTzTrk0NSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctxj0Nk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduy
295 simpr φrTzTrk0NSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctxj0Nj0N
296 1 ad3antrrr φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NS
297 2 ad3antrrr φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NXTopOpenfld𝑡S
298 3 ad3antrrr φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NTFin
299 simp-4l φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NtTφ
300 simpr φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NtTtT
301 299 300 4 syl2anc φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NtTHt:X
302 5 ad3antrrr φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NN0
303 simplll φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0Nφ
304 303 3ad2ant1 φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NtTh0Nφ
305 simp2 φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NtTh0NtT
306 simp3 φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NtTh0Nh0N
307 eleq1w j=hj0Nh0N
308 307 3anbi3d j=hφtTj0NφtTh0N
309 fveq2 j=hSDnHtj=SDnHth
310 309 feq1d j=hSDnHtj:XSDnHth:X
311 308 310 imbi12d j=hφtTj0NSDnHtj:XφtTh0NSDnHth:X
312 311 6 chvarvv φtTh0NSDnHth:X
313 304 305 306 312 syl3anc φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NtTh0NSDnHth:X
314 simprl φrTzTrrT
315 314 ad2antrr φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NrT
316 simprr φrTzTrzTr
317 316 ad2antrr φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NzTr
318 262 eqcomi SDnyXurHuy=SDnxXtrHtx
319 318 a1i k=lSDnyXurHuy=SDnxXtrHtx
320 id k=lk=l
321 319 320 fveq12d k=lSDnyXurHuyk=SDnxXtrHtxl
322 290 eqcomi yXdDrkk!urdu!urSDnHuduy=xXcDrkk!trct!trSDnHtctx
323 322 a1i k=lyXdDrkk!urdu!urSDnHuduy=xXcDrkk!trct!trSDnHtctx
324 fveq2 k=lk!=l!
325 324 oveq1d k=lk!trct!=l!trct!
326 325 oveq1d k=lk!trct!trSDnHtctx=l!trct!trSDnHtctx
327 326 sumeq2sdv k=lcDrkk!trct!trSDnHtctx=cDrkl!trct!trSDnHtctx
328 fveq2 k=lDrk=Drl
329 328 sumeq1d k=lcDrkl!trct!trSDnHtctx=cDrll!trct!trSDnHtctx
330 327 329 eqtrd k=lcDrkk!trct!trSDnHtctx=cDrll!trct!trSDnHtctx
331 330 mpteq2dv k=lxXcDrkk!trct!trSDnHtctx=xXcDrll!trct!trSDnHtctx
332 323 331 eqtrd k=lyXdDrkk!urdu!urSDnHuduy=xXcDrll!trct!trSDnHtctx
333 321 332 eqeq12d k=lSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduySDnxXtrHtxl=xXcDrll!trct!trSDnHtctx
334 333 cbvralvw k0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyl0NSDnxXtrHtxl=xXcDrll!trct!trSDnHtctx
335 334 biimpi k0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyl0NSDnxXtrHtxl=xXcDrll!trct!trSDnHtctx
336 335 ad2antlr φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0Nl0NSDnxXtrHtxl=xXcDrll!trct!trSDnHtctx
337 simpr φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0Nj0N
338 fveq1 d=cdz=cz
339 338 oveq2d d=cjdz=jcz
340 reseq1 d=cdr=cr
341 339 340 opeq12d d=cjdzdr=jczcr
342 341 cbvmptv dDrzjjdzdr=cDrzjjczcr
343 296 297 298 301 302 313 8 315 317 336 337 342 dvnprodlem2 φrTzTrk0NSDnyXurHuyk=yXdDrkk!urdu!urSDnHuduyj0NSDnxXtrzHtxj=xXcDrzjj!trzct!trzSDnHtctx
344 253 294 295 343 syl21anc φrTzTrk0NSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctxj0NSDnxXtrzHtxj=xXcDrzjj!trzct!trzSDnHtctx
345 344 ralrimiva φrTzTrk0NSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctxj0NSDnxXtrzHtxj=xXcDrzjj!trzct!trzSDnHtctx
346 fveq2 j=kSDnxXtrzHtxj=SDnxXtrzHtxk
347 fveq2 j=kj!=k!
348 347 oveq1d j=kj!trzct!=k!trzct!
349 348 oveq1d j=kj!trzct!trzSDnHtctx=k!trzct!trzSDnHtctx
350 349 sumeq2sdv j=kcDrzjj!trzct!trzSDnHtctx=cDrzjk!trzct!trzSDnHtctx
351 fveq2 j=kDrzj=Drzk
352 351 sumeq1d j=kcDrzjk!trzct!trzSDnHtctx=cDrzkk!trzct!trzSDnHtctx
353 350 352 eqtrd j=kcDrzjj!trzct!trzSDnHtctx=cDrzkk!trzct!trzSDnHtctx
354 353 mpteq2dv j=kxXcDrzjj!trzct!trzSDnHtctx=xXcDrzkk!trzct!trzSDnHtctx
355 346 354 eqeq12d j=kSDnxXtrzHtxj=xXcDrzjj!trzct!trzSDnHtctxSDnxXtrzHtxk=xXcDrzkk!trzct!trzSDnHtctx
356 355 cbvralvw j0NSDnxXtrzHtxj=xXcDrzjj!trzct!trzSDnHtctxk0NSDnxXtrzHtxk=xXcDrzkk!trzct!trzSDnHtctx
357 345 356 sylib φrTzTrk0NSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctxk0NSDnxXtrzHtxk=xXcDrzkk!trzct!trzSDnHtctx
358 357 ex φrTzTrk0NSDnxXtrHtxk=xXcDrkk!trct!trSDnHtctxk0NSDnxXtrzHtxk=xXcDrzkk!trzct!trzSDnHtctx
359 25 41 57 76 252 358 3 findcard2d φk0NSDnFk=xXcDTkk!tTct!tTSDnHtctx
360 nn0uz 0=0
361 5 360 eleqtrdi φN0
362 eluzfz2 N0N0N
363 361 362 syl φN0N
364 fveq2 k=NSDnFk=SDnFN
365 fveq2 k=NDTk=DTN
366 365 sumeq1d k=NcDTkk!tTct!tTSDnHtctx=cDTNk!tTct!tTSDnHtctx
367 fveq2 k=Nk!=N!
368 367 oveq1d k=Nk!tTct!=N!tTct!
369 368 oveq1d k=Nk!tTct!tTSDnHtctx=N!tTct!tTSDnHtctx
370 369 sumeq2sdv k=NcDTNk!tTct!tTSDnHtctx=cDTNN!tTct!tTSDnHtctx
371 366 370 eqtrd k=NcDTkk!tTct!tTSDnHtctx=cDTNN!tTct!tTSDnHtctx
372 371 mpteq2dv k=NxXcDTkk!tTct!tTSDnHtctx=xXcDTNN!tTct!tTSDnHtctx
373 364 372 eqeq12d k=NSDnFk=xXcDTkk!tTct!tTSDnHtctxSDnFN=xXcDTNN!tTct!tTSDnHtctx
374 373 rspccva k0NSDnFk=xXcDTkk!tTct!tTSDnHtctxN0NSDnFN=xXcDTNN!tTct!tTSDnHtctx
375 359 363 374 syl2anc φSDnFN=xXcDTNN!tTct!tTSDnHtctx
376 oveq2 s=T0ns=0nT
377 rabeq 0ns=0nTc0ns|tsct=n=c0nT|tsct=n
378 376 377 syl s=Tc0ns|tsct=n=c0nT|tsct=n
379 sumeq1 s=Ttsct=tTct
380 379 eqeq1d s=Ttsct=ntTct=n
381 380 rabbidv s=Tc0nT|tsct=n=c0nT|tTct=n
382 378 381 eqtrd s=Tc0ns|tsct=n=c0nT|tTct=n
383 382 mpteq2dv s=Tn0c0ns|tsct=n=n0c0nT|tTct=n
384 pwidg TFinT𝒫T
385 3 384 syl φT𝒫T
386 142 mptex n0c0nT|tTct=nV
387 386 a1i φn0c0nT|tTct=nV
388 8 383 385 387 fvmptd3 φDT=n0c0nT|tTct=n
389 9 a1i φC=n0c0nT|tTct=n
390 388 389 eqtr4d φDT=C
391 390 fveq1d φDTN=CN
392 391 sumeq1d φcDTNN!tTct!tTSDnHtctx=cCNN!tTct!tTSDnHtctx
393 392 mpteq2dv φxXcDTNN!tTct!tTSDnHtctx=xXcCNN!tTct!tTSDnHtctx
394 375 393 eqtrd φSDnFN=xXcCNN!tTct!tTSDnHtctx