Metamath Proof Explorer


Theorem evls1fpws

Description: Evaluation of a univariate subring polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025)

Ref Expression
Hypotheses ressply1evl.q Q=SevalSub1R
ressply1evl.k K=BaseS
ressply1evl.w W=Poly1U
ressply1evl.u U=S𝑠R
ressply1evl.b B=BaseW
evls1fpws.s φSCRing
evls1fpws.r φRSubRingS
evls1fpws.y φMB
evls1fpws.1 ·˙=S
evls1fpws.2 ×˙=mulGrpS
evls1fpws.a A=coe1M
Assertion evls1fpws φQM=xKSk0Ak·˙k×˙x

Proof

Step Hyp Ref Expression
1 ressply1evl.q Q=SevalSub1R
2 ressply1evl.k K=BaseS
3 ressply1evl.w W=Poly1U
4 ressply1evl.u U=S𝑠R
5 ressply1evl.b B=BaseW
6 evls1fpws.s φSCRing
7 evls1fpws.r φRSubRingS
8 evls1fpws.y φMB
9 evls1fpws.1 ·˙=S
10 evls1fpws.2 ×˙=mulGrpS
11 evls1fpws.a A=coe1M
12 4 subrgring RSubRingSURing
13 7 12 syl φURing
14 eqid var1U=var1U
15 eqid W=W
16 eqid mulGrpW=mulGrpW
17 eqid mulGrpW=mulGrpW
18 3 14 5 15 16 17 11 ply1coe URingMBM=Wk0AkWkmulGrpWvar1U
19 13 8 18 syl2anc φM=Wk0AkWkmulGrpWvar1U
20 19 fveq2d φQM=QWk0AkWkmulGrpWvar1U
21 eqid 0W=0W
22 eqid S𝑠K=S𝑠K
23 3 ply1lmod URingWLMod
24 13 23 syl φWLMod
25 24 adantr φk0WLMod
26 eqid BaseU=BaseU
27 11 5 3 26 coe1fvalcl MBk0AkBaseU
28 8 27 sylan φk0AkBaseU
29 3 ply1sca URingU=ScalarW
30 13 29 syl φU=ScalarW
31 30 fveq2d φBaseU=BaseScalarW
32 31 adantr φk0BaseU=BaseScalarW
33 28 32 eleqtrd φk0AkBaseScalarW
34 16 5 mgpbas B=BasemulGrpW
35 3 ply1ring URingWRing
36 13 35 syl φWRing
37 36 adantr φk0WRing
38 16 ringmgp WRingmulGrpWMnd
39 37 38 syl φk0mulGrpWMnd
40 simpr φk0k0
41 13 adantr φk0URing
42 14 3 5 vr1cl URingvar1UB
43 41 42 syl φk0var1UB
44 34 17 39 40 43 mulgnn0cld φk0kmulGrpWvar1UB
45 eqid ScalarW=ScalarW
46 eqid BaseScalarW=BaseScalarW
47 5 45 15 46 lmodvscl WLModAkBaseScalarWkmulGrpWvar1UBAkWkmulGrpWvar1UB
48 25 33 44 47 syl3anc φk0AkWkmulGrpWvar1UB
49 ssidd φ00
50 fvexd φ0WV
51 fveq2 k=jAk=Aj
52 oveq1 k=jkmulGrpWvar1U=jmulGrpWvar1U
53 51 52 oveq12d k=jAkWkmulGrpWvar1U=AjWjmulGrpWvar1U
54 eqid 0U=0U
55 11 5 3 54 coe1ae0 MBi0j0i<jAj=0U
56 8 55 syl φi0j0i<jAj=0U
57 simpr φi0j0Aj=0UAj=0U
58 30 ad3antrrr φi0j0Aj=0UU=ScalarW
59 58 fveq2d φi0j0Aj=0U0U=0ScalarW
60 57 59 eqtrd φi0j0Aj=0UAj=0ScalarW
61 60 oveq1d φi0j0Aj=0UAjWjmulGrpWvar1U=0ScalarWWjmulGrpWvar1U
62 24 ad3antrrr φi0j0Aj=0UWLMod
63 36 38 syl φmulGrpWMnd
64 63 adantr φj0mulGrpWMnd
65 simpr φj0j0
66 13 42 syl φvar1UB
67 66 adantr φj0var1UB
68 34 17 64 65 67 mulgnn0cld φj0jmulGrpWvar1UB
69 68 ad4ant13 φi0j0Aj=0UjmulGrpWvar1UB
70 eqid 0ScalarW=0ScalarW
71 5 45 15 70 21 lmod0vs WLModjmulGrpWvar1UB0ScalarWWjmulGrpWvar1U=0W
72 62 69 71 syl2anc φi0j0Aj=0U0ScalarWWjmulGrpWvar1U=0W
73 61 72 eqtrd φi0j0Aj=0UAjWjmulGrpWvar1U=0W
74 73 ex φi0j0Aj=0UAjWjmulGrpWvar1U=0W
75 74 imim2d φi0j0i<jAj=0Ui<jAjWjmulGrpWvar1U=0W
76 75 ralimdva φi0j0i<jAj=0Uj0i<jAjWjmulGrpWvar1U=0W
77 76 reximdva φi0j0i<jAj=0Ui0j0i<jAjWjmulGrpWvar1U=0W
78 56 77 mpd φi0j0i<jAjWjmulGrpWvar1U=0W
79 50 48 53 78 mptnn0fsuppd φfinSupp0Wk0AkWkmulGrpWvar1U
80 1 2 3 21 4 22 5 6 7 48 49 79 evls1gsumadd φQWk0AkWkmulGrpWvar1U=S𝑠Kk0QAkWkmulGrpWvar1U
81 1 2 22 4 3 evls1rhm SCRingRSubRingSQWRingHomS𝑠K
82 6 7 81 syl2anc φQWRingHomS𝑠K
83 82 adantr φk0QWRingHomS𝑠K
84 eqid algScW=algScW
85 84 45 36 24 46 5 asclf φalgScW:BaseScalarWB
86 85 adantr φk0algScW:BaseScalarWB
87 86 33 ffvelcdmd φk0algScWAkB
88 eqid W=W
89 eqid S𝑠K=S𝑠K
90 5 88 89 rhmmul QWRingHomS𝑠KalgScWAkBkmulGrpWvar1UBQalgScWAkWkmulGrpWvar1U=QalgScWAkS𝑠KQkmulGrpWvar1U
91 83 87 44 90 syl3anc φk0QalgScWAkWkmulGrpWvar1U=QalgScWAkS𝑠KQkmulGrpWvar1U
92 4 subrgcrng SCRingRSubRingSUCRing
93 6 7 92 syl2anc φUCRing
94 3 ply1assa UCRingWAssAlg
95 93 94 syl φWAssAlg
96 95 adantr φk0WAssAlg
97 84 45 46 5 88 15 asclmul1 WAssAlgAkBaseScalarWkmulGrpWvar1UBalgScWAkWkmulGrpWvar1U=AkWkmulGrpWvar1U
98 96 33 44 97 syl3anc φk0algScWAkWkmulGrpWvar1U=AkWkmulGrpWvar1U
99 98 fveq2d φk0QalgScWAkWkmulGrpWvar1U=QAkWkmulGrpWvar1U
100 eqid BaseS𝑠K=BaseS𝑠K
101 6 adantr φk0SCRing
102 2 fvexi KV
103 102 a1i φk0KV
104 5 100 rhmf QWRingHomS𝑠KQ:BBaseS𝑠K
105 83 104 syl φk0Q:BBaseS𝑠K
106 105 87 ffvelcdmd φk0QalgScWAkBaseS𝑠K
107 105 44 ffvelcdmd φk0QkmulGrpWvar1UBaseS𝑠K
108 22 100 101 103 106 107 9 89 pwsmulrval φk0QalgScWAkS𝑠KQkmulGrpWvar1U=QalgScWAk·˙fQkmulGrpWvar1U
109 22 2 100 101 103 106 pwselbas φk0QalgScWAk:KK
110 109 ffnd φk0QalgScWAkFnK
111 22 2 100 101 103 107 pwselbas φk0QkmulGrpWvar1U:KK
112 111 ffnd φk0QkmulGrpWvar1UFnK
113 inidm KK=K
114 6 ad2antrr φk0xKSCRing
115 7 ad2antrr φk0xKRSubRingS
116 2 subrgss RSubRingSRK
117 7 116 syl φRK
118 4 2 ressbas2 RKR=BaseU
119 117 118 syl φR=BaseU
120 119 adantr φk0R=BaseU
121 28 120 eleqtrrd φk0AkR
122 121 adantr φk0xKAkR
123 simpr φk0xKxK
124 1 3 4 2 84 114 115 122 123 evls1scafv φk0xKQalgScWAkx=Ak
125 simplr φk0xKk0
126 1 4 3 14 2 17 10 114 115 125 123 evls1varpwval φk0xKQkmulGrpWvar1Ux=k×˙x
127 110 112 103 103 113 124 126 offval φk0QalgScWAk·˙fQkmulGrpWvar1U=xKAk·˙k×˙x
128 108 127 eqtrd φk0QalgScWAkS𝑠KQkmulGrpWvar1U=xKAk·˙k×˙x
129 91 99 128 3eqtr3d φk0QAkWkmulGrpWvar1U=xKAk·˙k×˙x
130 129 mpteq2dva φk0QAkWkmulGrpWvar1U=k0xKAk·˙k×˙x
131 130 oveq2d φS𝑠Kk0QAkWkmulGrpWvar1U=S𝑠Kk0xKAk·˙k×˙x
132 eqid 0S𝑠K=0S𝑠K
133 102 a1i φKV
134 nn0ex 0V
135 134 a1i φ0V
136 6 crngringd φSRing
137 136 ringcmnd φSCMnd
138 136 ad2antrr φk0xKSRing
139 7 adantr φk0RSubRingS
140 139 116 syl φk0RK
141 140 121 sseldd φk0AkK
142 141 adantr φk0xKAkK
143 eqid mulGrpS=mulGrpS
144 143 2 mgpbas K=BasemulGrpS
145 143 ringmgp SRingmulGrpSMnd
146 136 145 syl φmulGrpSMnd
147 146 ad2antrr φk0xKmulGrpSMnd
148 144 10 147 125 123 mulgnn0cld φk0xKk×˙xK
149 2 9 138 142 148 ringcld φk0xKAk·˙k×˙xK
150 149 3impa φk0xKAk·˙k×˙xK
151 150 3com23 φxKk0Ak·˙k×˙xK
152 151 3expb φxKk0Ak·˙k×˙xK
153 135 mptexd φk0xKAk·˙k×˙xV
154 funmpt Funk0xKAk·˙k×˙x
155 154 a1i φFunk0xKAk·˙k×˙x
156 fvexd φ0S𝑠KV
157 11 5 3 54 coe1sfi MBfinSupp0UA
158 8 157 syl φfinSupp0UA
159 158 fsuppimpd φAsupp0UFin
160 11 5 3 26 coe1f MBA:0BaseU
161 8 160 syl φA:0BaseU
162 161 ffnd φAFn0
163 162 adantr φk0supp0UAAFn0
164 134 a1i φk0supp0UA0V
165 fvexd φk0supp0UA0UV
166 simpr φk0supp0UAk0supp0UA
167 163 164 165 166 fvdifsupp φk0supp0UAAk=0U
168 eqid 0S=0S
169 4 168 subrg0 RSubRingS0S=0U
170 7 169 syl φ0S=0U
171 170 adantr φk0supp0UA0S=0U
172 167 171 eqtr4d φk0supp0UAAk=0S
173 172 adantr φk0supp0UAxKAk=0S
174 173 oveq1d φk0supp0UAxKAk·˙k×˙x=0S·˙k×˙x
175 136 ad2antrr φk0supp0UAxKSRing
176 175 145 syl φk0supp0UAxKmulGrpSMnd
177 simplr φk0supp0UAxKk0supp0UA
178 177 eldifad φk0supp0UAxKk0
179 simpr φk0supp0UAxKxK
180 144 10 176 178 179 mulgnn0cld φk0supp0UAxKk×˙xK
181 2 9 168 ringlz SRingk×˙xK0S·˙k×˙x=0S
182 175 180 181 syl2anc φk0supp0UAxK0S·˙k×˙x=0S
183 174 182 eqtrd φk0supp0UAxKAk·˙k×˙x=0S
184 183 mpteq2dva φk0supp0UAxKAk·˙k×˙x=xK0S
185 fconstmpt K×0S=xK0S
186 184 185 eqtr4di φk0supp0UAxKAk·˙k×˙x=K×0S
187 137 cmnmndd φSMnd
188 22 168 pws0g SMndKVK×0S=0S𝑠K
189 187 133 188 syl2anc φK×0S=0S𝑠K
190 189 adantr φk0supp0UAK×0S=0S𝑠K
191 186 190 eqtrd φk0supp0UAxKAk·˙k×˙x=0S𝑠K
192 191 135 suppss2 φk0xKAk·˙k×˙xsupp0S𝑠KAsupp0U
193 suppssfifsupp k0xKAk·˙k×˙xVFunk0xKAk·˙k×˙x0S𝑠KVAsupp0UFink0xKAk·˙k×˙xsupp0S𝑠KAsupp0UfinSupp0S𝑠Kk0xKAk·˙k×˙x
194 153 155 156 159 192 193 syl32anc φfinSupp0S𝑠Kk0xKAk·˙k×˙x
195 22 2 132 133 135 137 152 194 pwsgsum φS𝑠Kk0xKAk·˙k×˙x=xKSk0Ak·˙k×˙x
196 80 131 195 3eqtrd φQWk0AkWkmulGrpWvar1U=xKSk0Ak·˙k×˙x
197 20 196 eqtrd φQM=xKSk0Ak·˙k×˙x