| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1cnnc.g |
|
| 2 |
|
ftc1cnnc.a |
|
| 3 |
|
ftc1cnnc.b |
|
| 4 |
|
ftc1cnnc.le |
|
| 5 |
|
ftc1cnnc.f |
|
| 6 |
|
ftc1cnnc.i |
|
| 7 |
|
dvf |
|
| 8 |
7
|
a1i |
|
| 9 |
8
|
ffund |
|
| 10 |
|
ax-resscn |
|
| 11 |
10
|
a1i |
|
| 12 |
|
ssidd |
|
| 13 |
|
ioossre |
|
| 14 |
13
|
a1i |
|
| 15 |
|
cncff |
|
| 16 |
5 15
|
syl |
|
| 17 |
1 2 3 4 12 14 6 16
|
ftc1lem2 |
|
| 18 |
|
iccssre |
|
| 19 |
2 3 18
|
syl2anc |
|
| 20 |
|
tgioo4 |
|
| 21 |
|
eqid |
|
| 22 |
11 17 19 20 21
|
dvbssntr |
|
| 23 |
|
iccntr |
|
| 24 |
2 3 23
|
syl2anc |
|
| 25 |
22 24
|
sseqtrd |
|
| 26 |
|
retop |
|
| 27 |
20 26
|
eqeltrri |
|
| 28 |
27
|
a1i |
|
| 29 |
19
|
adantr |
|
| 30 |
|
iooretop |
|
| 31 |
30 20
|
eleqtri |
|
| 32 |
31
|
a1i |
|
| 33 |
|
ioossicc |
|
| 34 |
33
|
a1i |
|
| 35 |
|
uniretop |
|
| 36 |
20
|
unieqi |
|
| 37 |
35 36
|
eqtri |
|
| 38 |
37
|
ssntr |
|
| 39 |
28 29 32 34 38
|
syl22anc |
|
| 40 |
|
simpr |
|
| 41 |
39 40
|
sseldd |
|
| 42 |
16
|
ffvelcdmda |
|
| 43 |
|
cnxmet |
|
| 44 |
13 10
|
sstri |
|
| 45 |
|
xmetres2 |
|
| 46 |
43 44 45
|
mp2an |
|
| 47 |
46
|
a1i |
|
| 48 |
43
|
a1i |
|
| 49 |
|
ssid |
|
| 50 |
|
eqid |
|
| 51 |
21
|
cnfldtopon |
|
| 52 |
51
|
toponrestid |
|
| 53 |
21 50 52
|
cncfcn |
|
| 54 |
44 49 53
|
mp2an |
|
| 55 |
5 54
|
eleqtrdi |
|
| 56 |
|
resttopon |
|
| 57 |
51 44 56
|
mp2an |
|
| 58 |
57
|
toponunii |
|
| 59 |
58
|
eleq2i |
|
| 60 |
59
|
biimpi |
|
| 61 |
|
eqid |
|
| 62 |
61
|
cncnpi |
|
| 63 |
55 60 62
|
syl2an |
|
| 64 |
|
eqid |
|
| 65 |
21
|
cnfldtopn |
|
| 66 |
|
eqid |
|
| 67 |
64 65 66
|
metrest |
|
| 68 |
43 44 67
|
mp2an |
|
| 69 |
68
|
oveq1i |
|
| 70 |
69
|
fveq1i |
|
| 71 |
63 70
|
eleqtrdi |
|
| 72 |
71
|
adantr |
|
| 73 |
|
simpr |
|
| 74 |
66 65
|
metcnpi2 |
|
| 75 |
47 48 72 73 74
|
syl22anc |
|
| 76 |
|
simpr |
|
| 77 |
|
simpllr |
|
| 78 |
76 77
|
ovresd |
|
| 79 |
|
elioore |
|
| 80 |
79
|
recnd |
|
| 81 |
44
|
sseli |
|
| 82 |
81
|
ad3antlr |
|
| 83 |
|
eqid |
|
| 84 |
83
|
cnmetdval |
|
| 85 |
80 82 84
|
syl2an2 |
|
| 86 |
78 85
|
eqtrd |
|
| 87 |
86
|
breq1d |
|
| 88 |
16
|
ad2antrr |
|
| 89 |
88
|
ffvelcdmda |
|
| 90 |
42
|
ad2antrr |
|
| 91 |
83
|
cnmetdval |
|
| 92 |
89 90 91
|
syl2anc |
|
| 93 |
92
|
breq1d |
|
| 94 |
87 93
|
imbi12d |
|
| 95 |
94
|
ralbidva |
|
| 96 |
|
simprll |
|
| 97 |
|
eldifsni |
|
| 98 |
96 97
|
syl |
|
| 99 |
19
|
ssdifssd |
|
| 100 |
99
|
sselda |
|
| 101 |
100
|
ad2ant2r |
|
| 102 |
101
|
ad2ant2r |
|
| 103 |
|
elioore |
|
| 104 |
103
|
ad3antlr |
|
| 105 |
102 104
|
lttri2d |
|
| 106 |
105
|
biimpa |
|
| 107 |
|
fveq2 |
|
| 108 |
107
|
oveq1d |
|
| 109 |
|
oveq1 |
|
| 110 |
108 109
|
oveq12d |
|
| 111 |
|
eqid |
|
| 112 |
|
ovex |
|
| 113 |
110 111 112
|
fvmpt |
|
| 114 |
113
|
ad2antrr |
|
| 115 |
114
|
ad2antlr |
|
| 116 |
17
|
ad4antr |
|
| 117 |
|
eldifi |
|
| 118 |
117
|
ad2antrr |
|
| 119 |
118
|
ad2antlr |
|
| 120 |
116 119
|
ffvelcdmd |
|
| 121 |
33
|
sseli |
|
| 122 |
17
|
ffvelcdmda |
|
| 123 |
121 122
|
sylan2 |
|
| 124 |
123
|
ad3antrrr |
|
| 125 |
102
|
adantr |
|
| 126 |
125
|
recnd |
|
| 127 |
81
|
ad4antlr |
|
| 128 |
|
ltne |
|
| 129 |
128
|
necomd |
|
| 130 |
102 129
|
sylan |
|
| 131 |
120 124 126 127 130
|
div2subd |
|
| 132 |
115 131
|
eqtrd |
|
| 133 |
132
|
fvoveq1d |
|
| 134 |
2
|
ad3antrrr |
|
| 135 |
3
|
ad3antrrr |
|
| 136 |
4
|
ad3antrrr |
|
| 137 |
5
|
ad3antrrr |
|
| 138 |
6
|
ad3antrrr |
|
| 139 |
|
simpllr |
|
| 140 |
|
simplrl |
|
| 141 |
|
simplrr |
|
| 142 |
|
simprlr |
|
| 143 |
|
fvoveq1 |
|
| 144 |
143
|
breq1d |
|
| 145 |
144
|
imbrov2fvoveq |
|
| 146 |
145
|
rspccva |
|
| 147 |
142 146
|
sylan |
|
| 148 |
96 117
|
syl |
|
| 149 |
|
simprr |
|
| 150 |
121
|
ad3antlr |
|
| 151 |
103
|
recnd |
|
| 152 |
151
|
subidd |
|
| 153 |
152
|
abs00bd |
|
| 154 |
153
|
ad3antlr |
|
| 155 |
141
|
rpgt0d |
|
| 156 |
154 155
|
eqbrtrd |
|
| 157 |
1 134 135 136 137 138 139 111 140 141 147 148 149 150 156
|
ftc1cnnclem |
|
| 158 |
133 157
|
eqbrtrd |
|
| 159 |
113
|
fvoveq1d |
|
| 160 |
159
|
ad2antrr |
|
| 161 |
160
|
ad2antlr |
|
| 162 |
1 134 135 136 137 138 139 111 140 141 147 150 156 148 149
|
ftc1cnnclem |
|
| 163 |
161 162
|
eqbrtrd |
|
| 164 |
158 163
|
jaodan |
|
| 165 |
106 164
|
syldan |
|
| 166 |
98 165
|
mpdan |
|
| 167 |
166
|
expr |
|
| 168 |
167
|
adantld |
|
| 169 |
168
|
expr |
|
| 170 |
169
|
ralrimdva |
|
| 171 |
95 170
|
sylbid |
|
| 172 |
171
|
anassrs |
|
| 173 |
172
|
reximdva |
|
| 174 |
75 173
|
mpd |
|
| 175 |
174
|
ralrimiva |
|
| 176 |
17
|
adantr |
|
| 177 |
19 10
|
sstrdi |
|
| 178 |
177
|
adantr |
|
| 179 |
121
|
adantl |
|
| 180 |
176 178 179
|
dvlem |
|
| 181 |
180
|
fmpttd |
|
| 182 |
177
|
ssdifssd |
|
| 183 |
182
|
adantr |
|
| 184 |
81
|
adantl |
|
| 185 |
181 183 184
|
ellimc3 |
|
| 186 |
42 175 185
|
mpbir2and |
|
| 187 |
|
eqid |
|
| 188 |
187 21 111 11 17 19
|
eldv |
|
| 189 |
188
|
adantr |
|
| 190 |
41 186 189
|
mpbir2and |
|
| 191 |
|
vex |
|
| 192 |
|
fvex |
|
| 193 |
191 192
|
breldm |
|
| 194 |
190 193
|
syl |
|
| 195 |
25 194
|
eqelssd |
|
| 196 |
|
df-fn |
|
| 197 |
9 195 196
|
sylanbrc |
|
| 198 |
16
|
ffnd |
|
| 199 |
9
|
adantr |
|
| 200 |
|
funbrfv |
|
| 201 |
199 190 200
|
sylc |
|
| 202 |
197 198 201
|
eqfnfvd |
|