Metamath Proof Explorer


Theorem ftc1cnnc

Description: Choice-free proof of ftc1cn . (Contributed by Brendan Leahy, 20-Nov-2017)

Ref Expression
Hypotheses ftc1cnnc.g G=xABAxFtdt
ftc1cnnc.a φA
ftc1cnnc.b φB
ftc1cnnc.le φAB
ftc1cnnc.f φF:ABcn
ftc1cnnc.i φF𝐿1
Assertion ftc1cnnc φDG=F

Proof

Step Hyp Ref Expression
1 ftc1cnnc.g G=xABAxFtdt
2 ftc1cnnc.a φA
3 ftc1cnnc.b φB
4 ftc1cnnc.le φAB
5 ftc1cnnc.f φF:ABcn
6 ftc1cnnc.i φF𝐿1
7 dvf G:domG
8 7 a1i φG:domG
9 8 ffund φFunG
10 ax-resscn
11 10 a1i φ
12 ssidd φABAB
13 ioossre AB
14 13 a1i φAB
15 cncff F:ABcnF:AB
16 5 15 syl φF:AB
17 1 2 3 4 12 14 6 16 ftc1lem2 φG:AB
18 iccssre ABAB
19 2 3 18 syl2anc φAB
20 eqid TopOpenfld=TopOpenfld
21 20 tgioo2 topGenran.=TopOpenfld𝑡
22 11 17 19 21 20 dvbssntr φdomGinttopGenran.AB
23 iccntr ABinttopGenran.AB=AB
24 2 3 23 syl2anc φinttopGenran.AB=AB
25 22 24 sseqtrd φdomGAB
26 retop topGenran.Top
27 21 26 eqeltrri TopOpenfld𝑡Top
28 27 a1i φcABTopOpenfld𝑡Top
29 19 adantr φcABAB
30 iooretop ABtopGenran.
31 30 21 eleqtri ABTopOpenfld𝑡
32 31 a1i φcABABTopOpenfld𝑡
33 ioossicc ABAB
34 33 a1i φcABABAB
35 uniretop =topGenran.
36 21 unieqi topGenran.=TopOpenfld𝑡
37 35 36 eqtri =TopOpenfld𝑡
38 37 ssntr TopOpenfld𝑡TopABABTopOpenfld𝑡ABABABintTopOpenfld𝑡AB
39 28 29 32 34 38 syl22anc φcABABintTopOpenfld𝑡AB
40 simpr φcABcAB
41 39 40 sseldd φcABcintTopOpenfld𝑡AB
42 16 ffvelcdmda φcABFc
43 cnxmet abs∞Met
44 13 10 sstri AB
45 xmetres2 abs∞MetABabsAB×AB∞MetAB
46 43 44 45 mp2an absAB×AB∞MetAB
47 46 a1i φcABw+absAB×AB∞MetAB
48 43 a1i φcABw+abs∞Met
49 ssid
50 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
51 20 cnfldtopon TopOpenfldTopOn
52 51 toponrestid TopOpenfld=TopOpenfld𝑡
53 20 50 52 cncfcn ABABcn=TopOpenfld𝑡ABCnTopOpenfld
54 44 49 53 mp2an ABcn=TopOpenfld𝑡ABCnTopOpenfld
55 5 54 eleqtrdi φFTopOpenfld𝑡ABCnTopOpenfld
56 resttopon TopOpenfldTopOnABTopOpenfld𝑡ABTopOnAB
57 51 44 56 mp2an TopOpenfld𝑡ABTopOnAB
58 57 toponunii AB=TopOpenfld𝑡AB
59 58 eleq2i cABcTopOpenfld𝑡AB
60 59 biimpi cABcTopOpenfld𝑡AB
61 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
62 61 cncnpi FTopOpenfld𝑡ABCnTopOpenfldcTopOpenfld𝑡ABFTopOpenfld𝑡ABCnPTopOpenfldc
63 55 60 62 syl2an φcABFTopOpenfld𝑡ABCnPTopOpenfldc
64 eqid absAB×AB=absAB×AB
65 20 cnfldtopn TopOpenfld=MetOpenabs
66 eqid MetOpenabsAB×AB=MetOpenabsAB×AB
67 64 65 66 metrest abs∞MetABTopOpenfld𝑡AB=MetOpenabsAB×AB
68 43 44 67 mp2an TopOpenfld𝑡AB=MetOpenabsAB×AB
69 68 oveq1i TopOpenfld𝑡ABCnPTopOpenfld=MetOpenabsAB×ABCnPTopOpenfld
70 69 fveq1i TopOpenfld𝑡ABCnPTopOpenfldc=MetOpenabsAB×ABCnPTopOpenfldc
71 63 70 eleqtrdi φcABFMetOpenabsAB×ABCnPTopOpenfldc
72 71 adantr φcABw+FMetOpenabsAB×ABCnPTopOpenfldc
73 simpr φcABw+w+
74 66 65 metcnpi2 absAB×AB∞MetABabs∞MetFMetOpenabsAB×ABCnPTopOpenfldcw+v+uABuabsAB×ABc<vFuabsFc<w
75 47 48 72 73 74 syl22anc φcABw+v+uABuabsAB×ABc<vFuabsFc<w
76 simpr φcABw+v+uABuAB
77 simpllr φcABw+v+uABcAB
78 76 77 ovresd φcABw+v+uABuabsAB×ABc=uabsc
79 elioore uABu
80 79 recnd uABu
81 44 sseli cABc
82 81 ad3antlr φcABw+v+uABc
83 eqid abs=abs
84 83 cnmetdval ucuabsc=uc
85 80 82 84 syl2an2 φcABw+v+uABuabsc=uc
86 78 85 eqtrd φcABw+v+uABuabsAB×ABc=uc
87 86 breq1d φcABw+v+uABuabsAB×ABc<vuc<v
88 16 ad2antrr φcABw+v+F:AB
89 88 ffvelcdmda φcABw+v+uABFu
90 42 ad2antrr φcABw+v+uABFc
91 83 cnmetdval FuFcFuabsFc=FuFc
92 89 90 91 syl2anc φcABw+v+uABFuabsFc=FuFc
93 92 breq1d φcABw+v+uABFuabsFc<wFuFc<w
94 87 93 imbi12d φcABw+v+uABuabsAB×ABc<vFuabsFc<wuc<vFuFc<w
95 94 ralbidva φcABw+v+uABuabsAB×ABc<vFuabsFc<wuABuc<vFuFc<w
96 simprll φcABw+v+zABcuABuc<vFuFc<wzc<vzABc
97 eldifsni zABczc
98 96 97 syl φcABw+v+zABcuABuc<vFuFc<wzc<vzc
99 19 ssdifssd φABc
100 99 sselda φzABcz
101 100 ad2ant2r φcABzABcuABuc<vFuFc<wz
102 101 ad2ant2r φcABw+v+zABcuABuc<vFuFc<wzc<vz
103 elioore cABc
104 103 ad3antlr φcABw+v+zABcuABuc<vFuFc<wzc<vc
105 102 104 lttri2d φcABw+v+zABcuABuc<vFuFc<wzc<vzcz<cc<z
106 105 biimpa φcABw+v+zABcuABuc<vFuFc<wzc<vzcz<cc<z
107 fveq2 s=zGs=Gz
108 107 oveq1d s=zGsGc=GzGc
109 oveq1 s=zsc=zc
110 108 109 oveq12d s=zGsGcsc=GzGczc
111 eqid sABcGsGcsc=sABcGsGcsc
112 ovex GzGczcV
113 110 111 112 fvmpt zABcsABcGsGcscz=GzGczc
114 113 ad2antrr zABcuABuc<vFuFc<wzc<vsABcGsGcscz=GzGczc
115 114 ad2antlr φcABw+v+zABcuABuc<vFuFc<wzc<vz<csABcGsGcscz=GzGczc
116 17 ad4antr φcABw+v+zABcuABuc<vFuFc<wzc<vz<cG:AB
117 eldifi zABczAB
118 117 ad2antrr zABcuABuc<vFuFc<wzc<vzAB
119 118 ad2antlr φcABw+v+zABcuABuc<vFuFc<wzc<vz<czAB
120 116 119 ffvelcdmd φcABw+v+zABcuABuc<vFuFc<wzc<vz<cGz
121 33 sseli cABcAB
122 17 ffvelcdmda φcABGc
123 121 122 sylan2 φcABGc
124 123 ad3antrrr φcABw+v+zABcuABuc<vFuFc<wzc<vz<cGc
125 102 adantr φcABw+v+zABcuABuc<vFuFc<wzc<vz<cz
126 125 recnd φcABw+v+zABcuABuc<vFuFc<wzc<vz<cz
127 81 ad4antlr φcABw+v+zABcuABuc<vFuFc<wzc<vz<cc
128 ltne zz<ccz
129 128 necomd zz<czc
130 102 129 sylan φcABw+v+zABcuABuc<vFuFc<wzc<vz<czc
131 120 124 126 127 130 div2subd φcABw+v+zABcuABuc<vFuFc<wzc<vz<cGzGczc=GcGzcz
132 115 131 eqtrd φcABw+v+zABcuABuc<vFuFc<wzc<vz<csABcGsGcscz=GcGzcz
133 132 fvoveq1d φcABw+v+zABcuABuc<vFuFc<wzc<vz<csABcGsGcsczFc=GcGzczFc
134 2 ad3antrrr φcABw+v+zABcuABuc<vFuFc<wzc<vA
135 3 ad3antrrr φcABw+v+zABcuABuc<vFuFc<wzc<vB
136 4 ad3antrrr φcABw+v+zABcuABuc<vFuFc<wzc<vAB
137 5 ad3antrrr φcABw+v+zABcuABuc<vFuFc<wzc<vF:ABcn
138 6 ad3antrrr φcABw+v+zABcuABuc<vFuFc<wzc<vF𝐿1
139 simpllr φcABw+v+zABcuABuc<vFuFc<wzc<vcAB
140 simplrl φcABw+v+zABcuABuc<vFuFc<wzc<vw+
141 simplrr φcABw+v+zABcuABuc<vFuFc<wzc<vv+
142 simprlr φcABw+v+zABcuABuc<vFuFc<wzc<vuABuc<vFuFc<w
143 fvoveq1 u=yuc=yc
144 143 breq1d u=yuc<vyc<v
145 144 imbrov2fvoveq u=yuc<vFuFc<wyc<vFyFc<w
146 145 rspccva uABuc<vFuFc<wyAByc<vFyFc<w
147 142 146 sylan φcABw+v+zABcuABuc<vFuFc<wzc<vyAByc<vFyFc<w
148 96 117 syl φcABw+v+zABcuABuc<vFuFc<wzc<vzAB
149 simprr φcABw+v+zABcuABuc<vFuFc<wzc<vzc<v
150 121 ad3antlr φcABw+v+zABcuABuc<vFuFc<wzc<vcAB
151 103 recnd cABc
152 151 subidd cABcc=0
153 152 abs00bd cABcc=0
154 153 ad3antlr φcABw+v+zABcuABuc<vFuFc<wzc<vcc=0
155 141 rpgt0d φcABw+v+zABcuABuc<vFuFc<wzc<v0<v
156 154 155 eqbrtrd φcABw+v+zABcuABuc<vFuFc<wzc<vcc<v
157 1 134 135 136 137 138 139 111 140 141 147 148 149 150 156 ftc1cnnclem φcABw+v+zABcuABuc<vFuFc<wzc<vz<cGcGzczFc<w
158 133 157 eqbrtrd φcABw+v+zABcuABuc<vFuFc<wzc<vz<csABcGsGcsczFc<w
159 113 fvoveq1d zABcsABcGsGcsczFc=GzGczcFc
160 159 ad2antrr zABcuABuc<vFuFc<wzc<vsABcGsGcsczFc=GzGczcFc
161 160 ad2antlr φcABw+v+zABcuABuc<vFuFc<wzc<vc<zsABcGsGcsczFc=GzGczcFc
162 1 134 135 136 137 138 139 111 140 141 147 150 156 148 149 ftc1cnnclem φcABw+v+zABcuABuc<vFuFc<wzc<vc<zGzGczcFc<w
163 161 162 eqbrtrd φcABw+v+zABcuABuc<vFuFc<wzc<vc<zsABcGsGcsczFc<w
164 158 163 jaodan φcABw+v+zABcuABuc<vFuFc<wzc<vz<cc<zsABcGsGcsczFc<w
165 106 164 syldan φcABw+v+zABcuABuc<vFuFc<wzc<vzcsABcGsGcsczFc<w
166 98 165 mpdan φcABw+v+zABcuABuc<vFuFc<wzc<vsABcGsGcsczFc<w
167 166 expr φcABw+v+zABcuABuc<vFuFc<wzc<vsABcGsGcsczFc<w
168 167 adantld φcABw+v+zABcuABuc<vFuFc<wzczc<vsABcGsGcsczFc<w
169 168 expr φcABw+v+zABcuABuc<vFuFc<wzczc<vsABcGsGcsczFc<w
170 169 ralrimdva φcABw+v+uABuc<vFuFc<wzABczczc<vsABcGsGcsczFc<w
171 95 170 sylbid φcABw+v+uABuabsAB×ABc<vFuabsFc<wzABczczc<vsABcGsGcsczFc<w
172 171 anassrs φcABw+v+uABuabsAB×ABc<vFuabsFc<wzABczczc<vsABcGsGcsczFc<w
173 172 reximdva φcABw+v+uABuabsAB×ABc<vFuabsFc<wv+zABczczc<vsABcGsGcsczFc<w
174 75 173 mpd φcABw+v+zABczczc<vsABcGsGcsczFc<w
175 174 ralrimiva φcABw+v+zABczczc<vsABcGsGcsczFc<w
176 17 adantr φcABG:AB
177 19 10 sstrdi φAB
178 177 adantr φcABAB
179 121 adantl φcABcAB
180 176 178 179 dvlem φcABsABcGsGcsc
181 180 fmpttd φcABsABcGsGcsc:ABc
182 177 ssdifssd φABc
183 182 adantr φcABABc
184 81 adantl φcABc
185 181 183 184 ellimc3 φcABFcsABcGsGcsclimcFcw+v+zABczczc<vsABcGsGcsczFc<w
186 42 175 185 mpbir2and φcABFcsABcGsGcsclimc
187 eqid TopOpenfld𝑡=TopOpenfld𝑡
188 187 20 111 11 17 19 eldv φcGFccintTopOpenfld𝑡ABFcsABcGsGcsclimc
189 188 adantr φcABcGFccintTopOpenfld𝑡ABFcsABcGsGcsclimc
190 41 186 189 mpbir2and φcABcGFc
191 vex cV
192 fvex FcV
193 191 192 breldm cGFccdomG
194 190 193 syl φcABcdomG
195 25 194 eqelssd φdomG=AB
196 df-fn GFnABFunGdomG=AB
197 9 195 196 sylanbrc φGFnAB
198 16 ffnd φFFnAB
199 9 adantr φcABFunG
200 funbrfv FunGcGFcGc=Fc
201 199 190 200 sylc φcABGc=Fc
202 197 198 201 eqfnfvd φDG=F