Metamath Proof Explorer


Theorem ftc1cnnc

Description: Choice-free proof of ftc1cn . (Contributed by Brendan Leahy, 20-Nov-2017)

Ref Expression
Hypotheses ftc1cnnc.g G = x A B A x F t dt
ftc1cnnc.a φ A
ftc1cnnc.b φ B
ftc1cnnc.le φ A B
ftc1cnnc.f φ F : A B cn
ftc1cnnc.i φ F 𝐿 1
Assertion ftc1cnnc φ D G = F

Proof

Step Hyp Ref Expression
1 ftc1cnnc.g G = x A B A x F t dt
2 ftc1cnnc.a φ A
3 ftc1cnnc.b φ B
4 ftc1cnnc.le φ A B
5 ftc1cnnc.f φ F : A B cn
6 ftc1cnnc.i φ F 𝐿 1
7 dvf G : dom G
8 7 a1i φ G : dom G
9 8 ffund φ Fun G
10 ax-resscn
11 10 a1i φ
12 ssidd φ A B A B
13 ioossre A B
14 13 a1i φ A B
15 cncff F : A B cn F : A B
16 5 15 syl φ F : A B
17 1 2 3 4 12 14 6 16 ftc1lem2 φ G : A B
18 iccssre A B A B
19 2 3 18 syl2anc φ A B
20 eqid TopOpen fld = TopOpen fld
21 20 tgioo2 topGen ran . = TopOpen fld 𝑡
22 11 17 19 21 20 dvbssntr φ dom G int topGen ran . A B
23 iccntr A B int topGen ran . A B = A B
24 2 3 23 syl2anc φ int topGen ran . A B = A B
25 22 24 sseqtrd φ dom G A B
26 retop topGen ran . Top
27 21 26 eqeltrri TopOpen fld 𝑡 Top
28 27 a1i φ c A B TopOpen fld 𝑡 Top
29 19 adantr φ c A B A B
30 iooretop A B topGen ran .
31 30 21 eleqtri A B TopOpen fld 𝑡
32 31 a1i φ c A B A B TopOpen fld 𝑡
33 ioossicc A B A B
34 33 a1i φ c A B A B A B
35 uniretop = topGen ran .
36 21 unieqi topGen ran . = TopOpen fld 𝑡
37 35 36 eqtri = TopOpen fld 𝑡
38 37 ssntr TopOpen fld 𝑡 Top A B A B TopOpen fld 𝑡 A B A B A B int TopOpen fld 𝑡 A B
39 28 29 32 34 38 syl22anc φ c A B A B int TopOpen fld 𝑡 A B
40 simpr φ c A B c A B
41 39 40 sseldd φ c A B c int TopOpen fld 𝑡 A B
42 16 ffvelrnda φ c A B F c
43 cnxmet abs ∞Met
44 13 10 sstri A B
45 xmetres2 abs ∞Met A B abs A B × A B ∞Met A B
46 43 44 45 mp2an abs A B × A B ∞Met A B
47 46 a1i φ c A B w + abs A B × A B ∞Met A B
48 43 a1i φ c A B w + abs ∞Met
49 ssid
50 eqid TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B
51 20 cnfldtopon TopOpen fld TopOn
52 51 toponrestid TopOpen fld = TopOpen fld 𝑡
53 20 50 52 cncfcn A B A B cn = TopOpen fld 𝑡 A B Cn TopOpen fld
54 44 49 53 mp2an A B cn = TopOpen fld 𝑡 A B Cn TopOpen fld
55 5 54 eleqtrdi φ F TopOpen fld 𝑡 A B Cn TopOpen fld
56 resttopon TopOpen fld TopOn A B TopOpen fld 𝑡 A B TopOn A B
57 51 44 56 mp2an TopOpen fld 𝑡 A B TopOn A B
58 57 toponunii A B = TopOpen fld 𝑡 A B
59 58 eleq2i c A B c TopOpen fld 𝑡 A B
60 59 biimpi c A B c TopOpen fld 𝑡 A B
61 eqid TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B
62 61 cncnpi F TopOpen fld 𝑡 A B Cn TopOpen fld c TopOpen fld 𝑡 A B F TopOpen fld 𝑡 A B CnP TopOpen fld c
63 55 60 62 syl2an φ c A B F TopOpen fld 𝑡 A B CnP TopOpen fld c
64 eqid abs A B × A B = abs A B × A B
65 20 cnfldtopn TopOpen fld = MetOpen abs
66 eqid MetOpen abs A B × A B = MetOpen abs A B × A B
67 64 65 66 metrest abs ∞Met A B TopOpen fld 𝑡 A B = MetOpen abs A B × A B
68 43 44 67 mp2an TopOpen fld 𝑡 A B = MetOpen abs A B × A B
69 68 oveq1i TopOpen fld 𝑡 A B CnP TopOpen fld = MetOpen abs A B × A B CnP TopOpen fld
70 69 fveq1i TopOpen fld 𝑡 A B CnP TopOpen fld c = MetOpen abs A B × A B CnP TopOpen fld c
71 63 70 eleqtrdi φ c A B F MetOpen abs A B × A B CnP TopOpen fld c
72 71 adantr φ c A B w + F MetOpen abs A B × A B CnP TopOpen fld c
73 simpr φ c A B w + w +
74 66 65 metcnpi2 abs A B × A B ∞Met A B abs ∞Met F MetOpen abs A B × A B CnP TopOpen fld c w + v + u A B u abs A B × A B c < v F u abs F c < w
75 47 48 72 73 74 syl22anc φ c A B w + v + u A B u abs A B × A B c < v F u abs F c < w
76 simpr φ c A B w + v + u A B u A B
77 simpllr φ c A B w + v + u A B c A B
78 76 77 ovresd φ c A B w + v + u A B u abs A B × A B c = u abs c
79 elioore u A B u
80 79 recnd u A B u
81 44 sseli c A B c
82 81 ad3antlr φ c A B w + v + u A B c
83 eqid abs = abs
84 83 cnmetdval u c u abs c = u c
85 80 82 84 syl2an2 φ c A B w + v + u A B u abs c = u c
86 78 85 eqtrd φ c A B w + v + u A B u abs A B × A B c = u c
87 86 breq1d φ c A B w + v + u A B u abs A B × A B c < v u c < v
88 16 ad2antrr φ c A B w + v + F : A B
89 88 ffvelrnda φ c A B w + v + u A B F u
90 42 ad2antrr φ c A B w + v + u A B F c
91 83 cnmetdval F u F c F u abs F c = F u F c
92 89 90 91 syl2anc φ c A B w + v + u A B F u abs F c = F u F c
93 92 breq1d φ c A B w + v + u A B F u abs F c < w F u F c < w
94 87 93 imbi12d φ c A B w + v + u A B u abs A B × A B c < v F u abs F c < w u c < v F u F c < w
95 94 ralbidva φ c A B w + v + u A B u abs A B × A B c < v F u abs F c < w u A B u c < v F u F c < w
96 simprll φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z A B c
97 eldifsni z A B c z c
98 96 97 syl φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z c
99 19 ssdifssd φ A B c
100 99 sselda φ z A B c z
101 100 ad2ant2r φ c A B z A B c u A B u c < v F u F c < w z
102 101 ad2ant2r φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z
103 elioore c A B c
104 103 ad3antlr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v c
105 102 104 lttri2d φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z c z < c c < z
106 105 biimpa φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z c z < c c < z
107 fveq2 s = z G s = G z
108 107 oveq1d s = z G s G c = G z G c
109 oveq1 s = z s c = z c
110 108 109 oveq12d s = z G s G c s c = G z G c z c
111 eqid s A B c G s G c s c = s A B c G s G c s c
112 ovex G z G c z c V
113 110 111 112 fvmpt z A B c s A B c G s G c s c z = G z G c z c
114 113 ad2antrr z A B c u A B u c < v F u F c < w z c < v s A B c G s G c s c z = G z G c z c
115 114 ad2antlr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c s A B c G s G c s c z = G z G c z c
116 17 ad4antr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c G : A B
117 eldifi z A B c z A B
118 117 ad2antrr z A B c u A B u c < v F u F c < w z c < v z A B
119 118 ad2antlr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c z A B
120 116 119 ffvelrnd φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c G z
121 33 sseli c A B c A B
122 17 ffvelrnda φ c A B G c
123 121 122 sylan2 φ c A B G c
124 123 ad3antrrr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c G c
125 102 adantr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c z
126 125 recnd φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c z
127 81 ad4antlr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c c
128 ltne z z < c c z
129 128 necomd z z < c z c
130 102 129 sylan φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c z c
131 120 124 126 127 130 div2subd φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c G z G c z c = G c G z c z
132 115 131 eqtrd φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c s A B c G s G c s c z = G c G z c z
133 132 fvoveq1d φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c s A B c G s G c s c z F c = G c G z c z F c
134 2 ad3antrrr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v A
135 3 ad3antrrr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v B
136 4 ad3antrrr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v A B
137 5 ad3antrrr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v F : A B cn
138 6 ad3antrrr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v F 𝐿 1
139 simpllr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v c A B
140 simplrl φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v w +
141 simplrr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v v +
142 simprlr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v u A B u c < v F u F c < w
143 fvoveq1 u = y u c = y c
144 143 breq1d u = y u c < v y c < v
145 144 imbrov2fvoveq u = y u c < v F u F c < w y c < v F y F c < w
146 145 rspccva u A B u c < v F u F c < w y A B y c < v F y F c < w
147 142 146 sylan φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v y A B y c < v F y F c < w
148 96 117 syl φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z A B
149 simprr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z c < v
150 121 ad3antlr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v c A B
151 103 recnd c A B c
152 151 subidd c A B c c = 0
153 152 abs00bd c A B c c = 0
154 153 ad3antlr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v c c = 0
155 141 rpgt0d φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v 0 < v
156 154 155 eqbrtrd φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v c c < v
157 1 134 135 136 137 138 139 111 140 141 147 148 149 150 156 ftc1cnnclem φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c G c G z c z F c < w
158 133 157 eqbrtrd φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c s A B c G s G c s c z F c < w
159 113 fvoveq1d z A B c s A B c G s G c s c z F c = G z G c z c F c
160 159 ad2antrr z A B c u A B u c < v F u F c < w z c < v s A B c G s G c s c z F c = G z G c z c F c
161 160 ad2antlr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v c < z s A B c G s G c s c z F c = G z G c z c F c
162 1 134 135 136 137 138 139 111 140 141 147 150 156 148 149 ftc1cnnclem φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v c < z G z G c z c F c < w
163 161 162 eqbrtrd φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v c < z s A B c G s G c s c z F c < w
164 158 163 jaodan φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z < c c < z s A B c G s G c s c z F c < w
165 106 164 syldan φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v z c s A B c G s G c s c z F c < w
166 98 165 mpdan φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v s A B c G s G c s c z F c < w
167 166 expr φ c A B w + v + z A B c u A B u c < v F u F c < w z c < v s A B c G s G c s c z F c < w
168 167 adantld φ c A B w + v + z A B c u A B u c < v F u F c < w z c z c < v s A B c G s G c s c z F c < w
169 168 expr φ c A B w + v + z A B c u A B u c < v F u F c < w z c z c < v s A B c G s G c s c z F c < w
170 169 ralrimdva φ c A B w + v + u A B u c < v F u F c < w z A B c z c z c < v s A B c G s G c s c z F c < w
171 95 170 sylbid φ c A B w + v + u A B u abs A B × A B c < v F u abs F c < w z A B c z c z c < v s A B c G s G c s c z F c < w
172 171 anassrs φ c A B w + v + u A B u abs A B × A B c < v F u abs F c < w z A B c z c z c < v s A B c G s G c s c z F c < w
173 172 reximdva φ c A B w + v + u A B u abs A B × A B c < v F u abs F c < w v + z A B c z c z c < v s A B c G s G c s c z F c < w
174 75 173 mpd φ c A B w + v + z A B c z c z c < v s A B c G s G c s c z F c < w
175 174 ralrimiva φ c A B w + v + z A B c z c z c < v s A B c G s G c s c z F c < w
176 17 adantr φ c A B G : A B
177 19 10 sstrdi φ A B
178 177 adantr φ c A B A B
179 121 adantl φ c A B c A B
180 176 178 179 dvlem φ c A B s A B c G s G c s c
181 180 fmpttd φ c A B s A B c G s G c s c : A B c
182 177 ssdifssd φ A B c
183 182 adantr φ c A B A B c
184 81 adantl φ c A B c
185 181 183 184 ellimc3 φ c A B F c s A B c G s G c s c lim c F c w + v + z A B c z c z c < v s A B c G s G c s c z F c < w
186 42 175 185 mpbir2and φ c A B F c s A B c G s G c s c lim c
187 eqid TopOpen fld 𝑡 = TopOpen fld 𝑡
188 187 20 111 11 17 19 eldv φ c G F c c int TopOpen fld 𝑡 A B F c s A B c G s G c s c lim c
189 188 adantr φ c A B c G F c c int TopOpen fld 𝑡 A B F c s A B c G s G c s c lim c
190 41 186 189 mpbir2and φ c A B c G F c
191 vex c V
192 fvex F c V
193 191 192 breldm c G F c c dom G
194 190 193 syl φ c A B c dom G
195 25 194 eqelssd φ dom G = A B
196 df-fn G Fn A B Fun G dom G = A B
197 9 195 196 sylanbrc φ G Fn A B
198 16 ffnd φ F Fn A B
199 9 adantr φ c A B Fun G
200 funbrfv Fun G c G F c G c = F c
201 199 190 200 sylc φ c A B G c = F c
202 197 198 201 eqfnfvd φ D G = F