Metamath Proof Explorer


Theorem hoicvr

Description: I is a countable set of half-open intervals that covers the whole multidimensional reals. See Definition 1135 (b) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses hoicvr.2 I=jxXjj
hoicvr.3 φXFin
Assertion hoicvr φXjiX.Iji

Proof

Step Hyp Ref Expression
1 hoicvr.2 I=jxXjj
2 hoicvr.3 φXFin
3 reex V
4 mapdm0 V=
5 3 4 ax-mp =
6 5 a1i X==
7 oveq2 X=X=
8 ixpeq1 X=iX.Iji=i.Iji
9 8 iuneq2d X=jiX.Iji=ji.Iji
10 ixp0x i.Iji=
11 10 a1i ji.Iji=
12 11 iuneq2i ji.Iji=j
13 1nn 1
14 13 ne0ii
15 iunconst j=
16 14 15 ax-mp j=
17 12 16 eqtri ji.Iji=
18 17 a1i X=ji.Iji=
19 9 18 eqtrd X=jiX.Iji=
20 6 7 19 3eqtr4d X=X=jiX.Iji
21 eqimss X=jiX.IjiXjiX.Iji
22 20 21 syl X=XjiX.Iji
23 22 adantl φX=XjiX.Iji
24 simpll φ¬X=fXφ
25 simpr φ¬X=fXfX
26 simplr φ¬X=fX¬X=
27 rncoss ranabsfranabs
28 absf abs:
29 frn abs:ranabs
30 28 29 ax-mp ranabs
31 27 30 sstri ranabsf
32 31 a1i φfX¬X=ranabsf
33 ltso <Or
34 33 a1i φfX¬X=<Or
35 28 a1i φfXabs:
36 elmapi fXf:X
37 36 adantl φfXf:X
38 ax-resscn
39 38 a1i φfX
40 37 39 fssd φfXf:X
41 fco abs:f:Xabsf:X
42 35 40 41 syl2anc φfXabsf:X
43 2 adantr φfXXFin
44 rnffi absf:XXFinranabsfFin
45 42 43 44 syl2anc φfXranabsfFin
46 45 adantr φfX¬X=ranabsfFin
47 36 frnd fXranf
48 28 fdmi domabs=
49 48 eqcomi =domabs
50 38 49 sseqtri domabs
51 50 a1i fXdomabs
52 47 51 sstrd fXranfdomabs
53 dmcosseq ranfdomabsdomabsf=domf
54 52 53 syl fXdomabsf=domf
55 36 fdmd fXdomf=X
56 54 55 eqtrd fXdomabsf=X
57 56 adantr fX¬X=domabsf=X
58 neqne ¬X=X
59 58 adantl fX¬X=X
60 57 59 eqnetrd fX¬X=domabsf
61 60 neneqd fX¬X=¬domabsf=
62 dm0rn0 domabsf=ranabsf=
63 61 62 sylnib fX¬X=¬ranabsf=
64 63 neqned fX¬X=ranabsf
65 64 adantll φfX¬X=ranabsf
66 fisupcl <OrranabsfFinranabsfranabsfsupranabsf<ranabsf
67 34 46 65 32 66 syl13anc φfX¬X=supranabsf<ranabsf
68 32 67 sseldd φfX¬X=supranabsf<
69 arch supranabsf<jsupranabsf<<j
70 68 69 syl φfX¬X=jsupranabsf<<j
71 37 ffnd φfXfFnX
72 71 ad2antrr φfX¬X=supranabsf<<jfFnX
73 72 adantlr φfX¬X=jsupranabsf<<jfFnX
74 simplll φfXjsupranabsf<<jiXφfX
75 id jj
76 75 ad3antlr φfXjsupranabsf<<jiXj
77 simplr φfXjsupranabsf<<jiXsupranabsf<<j
78 simpr φfXjsupranabsf<<jiXiX
79 simp2 φfXjsupranabsf<<jj
80 zssre
81 ressxr *
82 80 81 sstri *
83 nnnegz jj
84 82 83 sselid jj*
85 84 adantr jiXj*
86 79 85 sylan φfXjsupranabsf<<jiXj*
87 75 nnxrd jj*
88 87 adantr jiXj*
89 79 88 sylan φfXjsupranabsf<<jiXj*
90 36 3ad2ant1 fXjsupranabsf<<jf:X
91 81 a1i fXjsupranabsf<<j*
92 90 91 fssd fXjsupranabsf<<jf:X*
93 92 3adant1l φfXjsupranabsf<<jf:X*
94 93 ffvelcdmda φfXjsupranabsf<<jiXfi*
95 nnre jj
96 95 adantr jiXj
97 96 3ad2antl2 φfXjsupranabsf<<jiXj
98 97 renegcld φfXjsupranabsf<<jiXj
99 37 ffvelcdmda φfXiXfi
100 99 3ad2antl1 φfXjsupranabsf<<jiXfi
101 100 renegcld φfXjsupranabsf<<jiXfi
102 simpll φfXiXφ
103 simplr φfXiXfX
104 n0i iX¬X=
105 104 adantl φfXiX¬X=
106 102 103 105 68 syl21anc φfXiXsupranabsf<
107 106 3ad2antl1 φfXjsupranabsf<<jiXsupranabsf<
108 36 ffvelcdmda fXiXfi
109 38 108 sselid fXiXfi
110 109 abscld fXiXfi
111 110 adantll φfXiXfi
112 111 3ad2antl1 φfXjsupranabsf<<jiXfi
113 108 renegcld fXiXfi
114 113 leabsd fXiXfifi
115 109 absnegd fXiXfi=fi
116 114 115 breqtrd fXiXfifi
117 116 adantll φfXiXfifi
118 117 3ad2antl1 φfXjsupranabsf<<jiXfifi
119 31 a1i φfXjsupranabsf<<jiXranabsf
120 105 65 syldan φfXiXranabsf
121 120 3ad2antl1 φfXjsupranabsf<<jiXranabsf
122 fimaxre2 ranabsfranabsfFinyzranabsfzy
123 31 45 122 sylancr φfXyzranabsfzy
124 123 adantr φfXiXyzranabsfzy
125 124 3ad2antl1 φfXjsupranabsf<<jiXyzranabsfzy
126 elmapfun fXFunf
127 126 adantr fXiXFunf
128 simpr fXiXiX
129 55 eqcomd fXX=domf
130 129 adantr fXiXX=domf
131 128 130 eleqtrd fXiXidomf
132 fvco Funfidomfabsfi=fi
133 127 131 132 syl2anc fXiXabsfi=fi
134 133 eqcomd fXiXfi=absfi
135 absfun Funabs
136 135 a1i fXFunabs
137 funco FunabsFunfFunabsf
138 136 126 137 syl2anc fXFunabsf
139 138 adantr fXiXFunabsf
140 109 49 eleqtrdi fXiXfidomabs
141 dmfco Funfidomfidomabsffidomabs
142 127 131 141 syl2anc fXiXidomabsffidomabs
143 140 142 mpbird fXiXidomabsf
144 fvelrn Funabsfidomabsfabsfiranabsf
145 139 143 144 syl2anc fXiXabsfiranabsf
146 134 145 eqeltrd fXiXfiranabsf
147 146 adantll φfXiXfiranabsf
148 147 3ad2antl1 φfXjsupranabsf<<jiXfiranabsf
149 suprub ranabsfranabsfyzranabsfzyfiranabsffisupranabsf<
150 119 121 125 148 149 syl31anc φfXjsupranabsf<<jiXfisupranabsf<
151 101 112 107 118 150 letrd φfXjsupranabsf<<jiXfisupranabsf<
152 simpl3 φfXjsupranabsf<<jiXsupranabsf<<j
153 101 107 97 151 152 lelttrd φfXjsupranabsf<<jiXfi<j
154 101 97 ltnegd φfXjsupranabsf<<jiXfi<jj<fi
155 153 154 mpbid φfXjsupranabsf<<jiXj<fi
156 38 100 sselid φfXjsupranabsf<<jiXfi
157 156 negnegd φfXjsupranabsf<<jiXfi=fi
158 155 157 breqtrd φfXjsupranabsf<<jiXj<fi
159 98 100 158 ltled φfXjsupranabsf<<jiXjfi
160 100 leabsd φfXjsupranabsf<<jiXfifi
161 100 112 107 160 150 letrd φfXjsupranabsf<<jiXfisupranabsf<
162 100 107 97 161 152 lelttrd φfXjsupranabsf<<jiXfi<j
163 86 89 94 159 162 elicod φfXjsupranabsf<<jiXfijj
164 74 76 77 78 163 syl31anc φfXjsupranabsf<<jiXfijj
165 164 adantl3r φfX¬X=jsupranabsf<<jiXfijj
166 simpr φjj
167 mptexg XFinxXjjV
168 2 167 syl φxXjjV
169 168 adantr φjxXjjV
170 1 fvmpt2 jxXjjVIj=xXjj
171 166 169 170 syl2anc φjIj=xXjj
172 171 fveq1d φjIji=xXjji
173 172 3adant3 φjiXIji=xXjji
174 eqidd iXxXjj=xXjj
175 eqid jj=jj
176 175 a1i iXx=ijj=jj
177 id iXiX
178 opex jjV
179 178 a1i iXjjV
180 174 176 177 179 fvmptd iXxXjji=jj
181 180 3ad2ant3 φjiXxXjji=jj
182 173 181 eqtrd φjiXIji=jj
183 182 fveq2d φjiX1stIji=1stjj
184 negex jV
185 vex jV
186 184 185 op1st 1stjj=j
187 186 a1i φjiX1stjj=j
188 183 187 eqtrd φjiX1stIji=j
189 182 fveq2d φjiX2ndIji=2ndjj
190 184 185 op2nd 2ndjj=j
191 190 a1i φjiX2ndjj=j
192 189 191 eqtrd φjiX2ndIji=j
193 188 192 oveq12d φjiX1stIji2ndIji=jj
194 193 eqcomd φjiXjj=1stIji2ndIji
195 194 3adant1r φfXjiXjj=1stIji2ndIji
196 195 ad5ant135 φfX¬X=jsupranabsf<<jiXjj=1stIji2ndIji
197 165 196 eleqtrd φfX¬X=jsupranabsf<<jiXfi1stIji2ndIji
198 80 83 sselid jj
199 opelxpi jjjj2
200 198 95 199 syl2anc jjj2
201 200 ad2antlr φjxXjj2
202 eqid xXjj=xXjj
203 201 202 fmptd φjxXjj:X2
204 171 feq1d φjIj:X2xXjj:X2
205 203 204 mpbird φjIj:X2
206 205 ad4ant14 φfX¬X=jIj:X2
207 206 ad2antrr φfX¬X=jsupranabsf<<jiXIj:X2
208 simpr φfX¬X=jsupranabsf<<jiXiX
209 207 208 fvovco φfX¬X=jsupranabsf<<jiX.Iji=1stIji2ndIji
210 209 eqcomd φfX¬X=jsupranabsf<<jiX1stIji2ndIji=.Iji
211 197 210 eleqtrd φfX¬X=jsupranabsf<<jiXfi.Iji
212 211 ralrimiva φfX¬X=jsupranabsf<<jiXfi.Iji
213 73 212 jca φfX¬X=jsupranabsf<<jfFnXiXfi.Iji
214 vex fV
215 214 elixp fiX.IjifFnXiXfi.Iji
216 213 215 sylibr φfX¬X=jsupranabsf<<jfiX.Iji
217 216 ex φfX¬X=jsupranabsf<<jfiX.Iji
218 217 reximdva φfX¬X=jsupranabsf<<jjfiX.Iji
219 70 218 mpd φfX¬X=jfiX.Iji
220 24 25 26 219 syl21anc φ¬X=fXjfiX.Iji
221 eliun fjiX.IjijfiX.Iji
222 220 221 sylibr φ¬X=fXfjiX.Iji
223 222 ralrimiva φ¬X=fXfjiX.Iji
224 dfss3 XjiX.IjifXfjiX.Iji
225 223 224 sylibr φ¬X=XjiX.Iji
226 23 225 pm2.61dan φXjiX.Iji