Metamath Proof Explorer


Theorem isdrngo2

Description: A division ring is a ring in which 1 =/= 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 8-Jun-2010)

Ref Expression
Hypotheses isdivrng1.1 G=1stR
isdivrng1.2 H=2ndR
isdivrng1.3 Z=GIdG
isdivrng1.4 X=ranG
isdivrng2.5 U=GIdH
Assertion isdrngo2 RDivRingOpsRRingOpsUZxXZyXZyHx=U

Proof

Step Hyp Ref Expression
1 isdivrng1.1 G=1stR
2 isdivrng1.2 H=2ndR
3 isdivrng1.3 Z=GIdG
4 isdivrng1.4 X=ranG
5 isdivrng2.5 U=GIdH
6 1 2 3 4 isdrngo1 RDivRingOpsRRingOpsHXZ×XZGrpOp
7 1 2 4 3 5 dvrunz RDivRingOpsUZ
8 6 7 sylbir RRingOpsHXZ×XZGrpOpUZ
9 grporndm HXZ×XZGrpOpranHXZ×XZ=domdomHXZ×XZ
10 9 adantl RRingOpsHXZ×XZGrpOpranHXZ×XZ=domdomHXZ×XZ
11 difss XZX
12 xpss12 XZXXZXXZ×XZX×X
13 11 11 12 mp2an XZ×XZX×X
14 1 2 4 rngosm RRingOpsH:X×XX
15 14 fdmd RRingOpsdomH=X×X
16 13 15 sseqtrrid RRingOpsXZ×XZdomH
17 16 adantr RRingOpsHXZ×XZGrpOpXZ×XZdomH
18 ssdmres XZ×XZdomHdomHXZ×XZ=XZ×XZ
19 17 18 sylib RRingOpsHXZ×XZGrpOpdomHXZ×XZ=XZ×XZ
20 19 dmeqd RRingOpsHXZ×XZGrpOpdomdomHXZ×XZ=domXZ×XZ
21 dmxpid domXZ×XZ=XZ
22 20 21 eqtrdi RRingOpsHXZ×XZGrpOpdomdomHXZ×XZ=XZ
23 10 22 eqtrd RRingOpsHXZ×XZGrpOpranHXZ×XZ=XZ
24 23 eleq2d RRingOpsHXZ×XZGrpOpxranHXZ×XZxXZ
25 24 biimpar RRingOpsHXZ×XZGrpOpxXZxranHXZ×XZ
26 eqid ranHXZ×XZ=ranHXZ×XZ
27 eqid invHXZ×XZ=invHXZ×XZ
28 26 27 grpoinvcl HXZ×XZGrpOpxranHXZ×XZinvHXZ×XZxranHXZ×XZ
29 28 adantll RRingOpsHXZ×XZGrpOpxranHXZ×XZinvHXZ×XZxranHXZ×XZ
30 eqid GIdHXZ×XZ=GIdHXZ×XZ
31 26 30 27 grpolinv HXZ×XZGrpOpxranHXZ×XZinvHXZ×XZxHXZ×XZx=GIdHXZ×XZ
32 31 adantll RRingOpsHXZ×XZGrpOpxranHXZ×XZinvHXZ×XZxHXZ×XZx=GIdHXZ×XZ
33 2 rngomndo RRingOpsHMndOp
34 mndomgmid HMndOpHMagmaExId
35 33 34 syl RRingOpsHMagmaExId
36 35 adantr RRingOpsHXZ×XZGrpOpHMagmaExId
37 11 4 sseqtri XZranG
38 2 1 rngorn1eq RRingOpsranG=ranH
39 37 38 sseqtrid RRingOpsXZranH
40 39 adantr RRingOpsHXZ×XZGrpOpXZranH
41 1 rneqi ranG=ran1stR
42 4 41 eqtri X=ran1stR
43 42 2 5 rngo1cl RRingOpsUX
44 43 adantr RRingOpsHXZ×XZGrpOpUX
45 eldifsn UXZUXUZ
46 44 8 45 sylanbrc RRingOpsHXZ×XZGrpOpUXZ
47 grpomndo HXZ×XZGrpOpHXZ×XZMndOp
48 mndoismgmOLD HXZ×XZMndOpHXZ×XZMagma
49 47 48 syl HXZ×XZGrpOpHXZ×XZMagma
50 49 adantl RRingOpsHXZ×XZGrpOpHXZ×XZMagma
51 eqid ranH=ranH
52 eqid HXZ×XZ=HXZ×XZ
53 51 5 52 exidresid HMagmaExIdXZranHUXZHXZ×XZMagmaGIdHXZ×XZ=U
54 36 40 46 50 53 syl31anc RRingOpsHXZ×XZGrpOpGIdHXZ×XZ=U
55 54 adantr RRingOpsHXZ×XZGrpOpxranHXZ×XZGIdHXZ×XZ=U
56 32 55 eqtrd RRingOpsHXZ×XZGrpOpxranHXZ×XZinvHXZ×XZxHXZ×XZx=U
57 oveq1 y=invHXZ×XZxyHXZ×XZx=invHXZ×XZxHXZ×XZx
58 57 eqeq1d y=invHXZ×XZxyHXZ×XZx=UinvHXZ×XZxHXZ×XZx=U
59 58 rspcev invHXZ×XZxranHXZ×XZinvHXZ×XZxHXZ×XZx=UyranHXZ×XZyHXZ×XZx=U
60 29 56 59 syl2anc RRingOpsHXZ×XZGrpOpxranHXZ×XZyranHXZ×XZyHXZ×XZx=U
61 25 60 syldan RRingOpsHXZ×XZGrpOpxXZyranHXZ×XZyHXZ×XZx=U
62 23 adantr RRingOpsHXZ×XZGrpOpxXZranHXZ×XZ=XZ
63 62 rexeqdv RRingOpsHXZ×XZGrpOpxXZyranHXZ×XZyHXZ×XZx=UyXZyHXZ×XZx=U
64 ovres yXZxXZyHXZ×XZx=yHx
65 64 ancoms xXZyXZyHXZ×XZx=yHx
66 65 eqeq1d xXZyXZyHXZ×XZx=UyHx=U
67 66 rexbidva xXZyXZyHXZ×XZx=UyXZyHx=U
68 67 adantl RRingOpsHXZ×XZGrpOpxXZyXZyHXZ×XZx=UyXZyHx=U
69 63 68 bitrd RRingOpsHXZ×XZGrpOpxXZyranHXZ×XZyHXZ×XZx=UyXZyHx=U
70 61 69 mpbid RRingOpsHXZ×XZGrpOpxXZyXZyHx=U
71 70 ralrimiva RRingOpsHXZ×XZGrpOpxXZyXZyHx=U
72 8 71 jca RRingOpsHXZ×XZGrpOpUZxXZyXZyHx=U
73 1 fvexi GV
74 73 rnex ranGV
75 4 74 eqeltri XV
76 difexg XVXZV
77 75 76 mp1i RRingOpsUZxXZyXZyHx=UXZV
78 14 ffnd RRingOpsHFnX×X
79 78 adantr RRingOpsUZxXZyXZyHx=UHFnX×X
80 fnssres HFnX×XXZ×XZX×XHXZ×XZFnXZ×XZ
81 79 13 80 sylancl RRingOpsUZxXZyXZyHx=UHXZ×XZFnXZ×XZ
82 ovres uXZvXZuHXZ×XZv=uHv
83 82 adantl RRingOpsUZxXZyXZyHx=UuXZvXZuHXZ×XZv=uHv
84 eldifi uXZuX
85 eldifi vXZvX
86 84 85 anim12i uXZvXZuXvX
87 1 2 4 rngocl RRingOpsuXvXuHvX
88 87 3expb RRingOpsuXvXuHvX
89 86 88 sylan2 RRingOpsuXZvXZuHvX
90 89 adantlr RRingOpsUZxXZyXZyHx=UuXZvXZuHvX
91 oveq2 x=uyHx=yHu
92 91 eqeq1d x=uyHx=UyHu=U
93 92 rexbidv x=uyXZyHx=UyXZyHu=U
94 93 rspcv uXZxXZyXZyHx=UyXZyHu=U
95 94 imdistanri xXZyXZyHx=UuXZyXZyHu=UuXZ
96 eldifsn vXZvXvZ
97 ssrexv XZXyXZyHu=UyXyHu=U
98 11 97 ax-mp yXZyHu=UyXyHu=U
99 1 2 3 4 5 zerdivemp1x RRingOpsuXyXyHu=UvXuHv=Zv=Z
100 98 99 syl3an3 RRingOpsuXyXZyHu=UvXuHv=Zv=Z
101 84 100 syl3an2 RRingOpsuXZyXZyHu=UvXuHv=Zv=Z
102 101 3expb RRingOpsuXZyXZyHu=UvXuHv=Zv=Z
103 102 imp RRingOpsuXZyXZyHu=UvXuHv=Zv=Z
104 103 necon3d RRingOpsuXZyXZyHu=UvXvZuHvZ
105 104 impr RRingOpsuXZyXZyHu=UvXvZuHvZ
106 96 105 sylan2b RRingOpsuXZyXZyHu=UvXZuHvZ
107 106 an32s RRingOpsvXZuXZyXZyHu=UuHvZ
108 107 ancom2s RRingOpsvXZyXZyHu=UuXZuHvZ
109 95 108 sylan2 RRingOpsvXZxXZyXZyHx=UuXZuHvZ
110 109 an42s RRingOpsxXZyXZyHx=UuXZvXZuHvZ
111 110 adantlrl RRingOpsUZxXZyXZyHx=UuXZvXZuHvZ
112 eldifsn uHvXZuHvXuHvZ
113 90 111 112 sylanbrc RRingOpsUZxXZyXZyHx=UuXZvXZuHvXZ
114 83 113 eqeltrd RRingOpsUZxXZyXZyHx=UuXZvXZuHXZ×XZvXZ
115 114 ralrimivva RRingOpsUZxXZyXZyHx=UuXZvXZuHXZ×XZvXZ
116 ffnov HXZ×XZ:XZ×XZXZHXZ×XZFnXZ×XZuXZvXZuHXZ×XZvXZ
117 81 115 116 sylanbrc RRingOpsUZxXZyXZyHx=UHXZ×XZ:XZ×XZXZ
118 113 3adantr3 RRingOpsUZxXZyXZyHx=UuXZvXZwXZuHvXZ
119 simpr3 RRingOpsUZxXZyXZyHx=UuXZvXZwXZwXZ
120 118 119 ovresd RRingOpsUZxXZyXZyHx=UuXZvXZwXZuHvHXZ×XZw=uHvHw
121 82 3adant3 uXZvXZwXZuHXZ×XZv=uHv
122 121 adantl RRingOpsUZxXZyXZyHx=UuXZvXZwXZuHXZ×XZv=uHv
123 122 oveq1d RRingOpsUZxXZyXZyHx=UuXZvXZwXZuHXZ×XZvHXZ×XZw=uHvHXZ×XZw
124 ovres vXZwXZvHXZ×XZw=vHw
125 124 3adant1 uXZvXZwXZvHXZ×XZw=vHw
126 125 adantl RRingOpsUZxXZyXZyHx=UuXZvXZwXZvHXZ×XZw=vHw
127 126 oveq2d RRingOpsUZxXZyXZyHx=UuXZvXZwXZuHvHXZ×XZw=uHvHw
128 simpr1 RRingOpsUZxXZyXZyHx=UuXZvXZwXZuXZ
129 fovcdm HXZ×XZ:XZ×XZXZvXZwXZvHXZ×XZwXZ
130 129 3adant3r1 HXZ×XZ:XZ×XZXZuXZvXZwXZvHXZ×XZwXZ
131 117 130 sylan RRingOpsUZxXZyXZyHx=UuXZvXZwXZvHXZ×XZwXZ
132 128 131 ovresd RRingOpsUZxXZyXZyHx=UuXZvXZwXZuHXZ×XZvHXZ×XZw=uHvHXZ×XZw
133 eldifi wXZwX
134 84 85 133 3anim123i uXZvXZwXZuXvXwX
135 1 2 4 rngoass RRingOpsuXvXwXuHvHw=uHvHw
136 134 135 sylan2 RRingOpsuXZvXZwXZuHvHw=uHvHw
137 136 adantlr RRingOpsUZxXZyXZyHx=UuXZvXZwXZuHvHw=uHvHw
138 127 132 137 3eqtr4d RRingOpsUZxXZyXZyHx=UuXZvXZwXZuHXZ×XZvHXZ×XZw=uHvHw
139 120 123 138 3eqtr4d RRingOpsUZxXZyXZyHx=UuXZvXZwXZuHXZ×XZvHXZ×XZw=uHXZ×XZvHXZ×XZw
140 43 anim1i RRingOpsUZUXUZ
141 140 45 sylibr RRingOpsUZUXZ
142 141 adantrr RRingOpsUZxXZyXZyHx=UUXZ
143 ovres UXZuXZUHXZ×XZu=UHu
144 141 143 sylan RRingOpsUZuXZUHXZ×XZu=UHu
145 2 42 5 rngolidm RRingOpsuXUHu=u
146 84 145 sylan2 RRingOpsuXZUHu=u
147 146 adantlr RRingOpsUZuXZUHu=u
148 144 147 eqtrd RRingOpsUZuXZUHXZ×XZu=u
149 148 adantlrr RRingOpsUZxXZyXZyHx=UuXZUHXZ×XZu=u
150 93 rspcva uXZxXZyXZyHx=UyXZyHu=U
151 oveq1 y=zyHu=zHu
152 151 eqeq1d y=zyHu=UzHu=U
153 152 cbvrexvw yXZyHu=UzXZzHu=U
154 ovres zXZuXZzHXZ×XZu=zHu
155 154 eqeq1d zXZuXZzHXZ×XZu=UzHu=U
156 155 ancoms uXZzXZzHXZ×XZu=UzHu=U
157 156 rexbidva uXZzXZzHXZ×XZu=UzXZzHu=U
158 157 biimpar uXZzXZzHu=UzXZzHXZ×XZu=U
159 153 158 sylan2b uXZyXZyHu=UzXZzHXZ×XZu=U
160 150 159 syldan uXZxXZyXZyHx=UzXZzHXZ×XZu=U
161 160 ancoms xXZyXZyHx=UuXZzXZzHXZ×XZu=U
162 161 adantll RRingOpsxXZyXZyHx=UuXZzXZzHXZ×XZu=U
163 162 adantlrl RRingOpsUZxXZyXZyHx=UuXZzXZzHXZ×XZu=U
164 77 117 139 142 149 163 isgrpda RRingOpsUZxXZyXZyHx=UHXZ×XZGrpOp
165 72 164 impbida RRingOpsHXZ×XZGrpOpUZxXZyXZyHx=U
166 165 pm5.32i RRingOpsHXZ×XZGrpOpRRingOpsUZxXZyXZyHx=U
167 6 166 bitri RDivRingOpsRRingOpsUZxXZyXZyHx=U