Metamath Proof Explorer


Theorem pgpfac1lem3

Description: Lemma for pgpfac1 . (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses pgpfac1.k K=mrClsSubGrpG
pgpfac1.s S=KA
pgpfac1.b B=BaseG
pgpfac1.o O=odG
pgpfac1.e E=gExG
pgpfac1.z 0˙=0G
pgpfac1.l ˙=LSSumG
pgpfac1.p φPpGrpG
pgpfac1.g φGAbel
pgpfac1.n φBFin
pgpfac1.oe φOA=E
pgpfac1.u φUSubGrpG
pgpfac1.au φAU
pgpfac1.w φWSubGrpG
pgpfac1.i φSW=0˙
pgpfac1.ss φS˙WU
pgpfac1.2 φwSubGrpGwUAw¬S˙Ww
pgpfac1.c φCUS˙W
pgpfac1.mg ·˙=G
pgpfac1.m φM
pgpfac1.mw φP·˙C+GM·˙AW
pgpfac1.d D=C+GMP·˙A
Assertion pgpfac1lem3 φtSubGrpGSt=0˙S˙t=U

Proof

Step Hyp Ref Expression
1 pgpfac1.k K=mrClsSubGrpG
2 pgpfac1.s S=KA
3 pgpfac1.b B=BaseG
4 pgpfac1.o O=odG
5 pgpfac1.e E=gExG
6 pgpfac1.z 0˙=0G
7 pgpfac1.l ˙=LSSumG
8 pgpfac1.p φPpGrpG
9 pgpfac1.g φGAbel
10 pgpfac1.n φBFin
11 pgpfac1.oe φOA=E
12 pgpfac1.u φUSubGrpG
13 pgpfac1.au φAU
14 pgpfac1.w φWSubGrpG
15 pgpfac1.i φSW=0˙
16 pgpfac1.ss φS˙WU
17 pgpfac1.2 φwSubGrpGwUAw¬S˙Ww
18 pgpfac1.c φCUS˙W
19 pgpfac1.mg ·˙=G
20 pgpfac1.m φM
21 pgpfac1.mw φP·˙C+GM·˙AW
22 pgpfac1.d D=C+GMP·˙A
23 ablgrp GAbelGGrp
24 9 23 syl φGGrp
25 3 subgacs GGrpSubGrpGACSB
26 acsmre SubGrpGACSBSubGrpGMooreB
27 24 25 26 3syl φSubGrpGMooreB
28 3 subgss USubGrpGUB
29 12 28 syl φUB
30 18 eldifad φCU
31 29 13 sseldd φAB
32 1 mrcsncl SubGrpGMooreBABKASubGrpG
33 27 31 32 syl2anc φKASubGrpG
34 2 33 eqeltrid φSSubGrpG
35 7 lsmub1 SSubGrpGWSubGrpGSS˙W
36 34 14 35 syl2anc φSS˙W
37 36 16 sstrd φSU
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 pgpfac1lem3a φPEPM
39 38 simprd φPM
40 pgpprm PpGrpGP
41 8 40 syl φP
42 prmz PP
43 41 42 syl φP
44 prmnn PP
45 41 44 syl φP
46 45 nnne0d φP0
47 dvdsval2 PP0MPMMP
48 43 46 20 47 syl3anc φPMMP
49 39 48 mpbid φMP
50 31 snssd φAB
51 27 1 50 mrcssidd φAKA
52 51 2 sseqtrrdi φAS
53 snssg AUASAS
54 13 53 syl φASAS
55 52 54 mpbird φAS
56 19 subgmulgcl SSubGrpGMPASMP·˙AS
57 34 49 55 56 syl3anc φMP·˙AS
58 37 57 sseldd φMP·˙AU
59 eqid +G=+G
60 59 subgcl USubGrpGCUMP·˙AUC+GMP·˙AU
61 12 30 58 60 syl3anc φC+GMP·˙AU
62 22 61 eqeltrid φDU
63 29 62 sseldd φDB
64 1 mrcsncl SubGrpGMooreBDBKDSubGrpG
65 27 63 64 syl2anc φKDSubGrpG
66 7 lsmsubg2 GAbelWSubGrpGKDSubGrpGW˙KDSubGrpG
67 9 14 65 66 syl3anc φW˙KDSubGrpG
68 eqid -G=-G
69 68 7 14 65 lsmelvalm φxW˙KDwWyKDx=w-Gy
70 eqid nn·˙D=nn·˙D
71 3 19 70 1 cycsubg2 GGrpDBKD=rannn·˙D
72 24 63 71 syl2anc φKD=rannn·˙D
73 72 rexeqdv φyKDx=w-Gyyrannn·˙Dx=w-Gy
74 ovex n·˙DV
75 74 rgenw nn·˙DV
76 oveq2 y=n·˙Dw-Gy=w-Gn·˙D
77 76 eqeq2d y=n·˙Dx=w-Gyx=w-Gn·˙D
78 70 77 rexrnmptw nn·˙DVyrannn·˙Dx=w-Gynx=w-Gn·˙D
79 75 78 ax-mp yrannn·˙Dx=w-Gynx=w-Gn·˙D
80 73 79 bitrdi φyKDx=w-Gynx=w-Gn·˙D
81 80 rexbidv φwWyKDx=w-GywWnx=w-Gn·˙D
82 69 81 bitrd φxW˙KDwWnx=w-Gn·˙D
83 82 adantr φxSxW˙KDwWnx=w-Gn·˙D
84 simpr φxSwWnx=w-Gn·˙Dx=w-Gn·˙D
85 14 ad3antrrr φxSwWnx=w-Gn·˙DWSubGrpG
86 simplrl φxSwWnx=w-Gn·˙DwW
87 simplrr φxSwWnx=w-Gn·˙Dn
88 87 zcnd φxSwWnx=w-Gn·˙Dn
89 45 nncnd φP
90 89 ad3antrrr φxSwWnx=w-Gn·˙DP
91 46 ad3antrrr φxSwWnx=w-Gn·˙DP0
92 88 90 91 divcan1d φxSwWnx=w-Gn·˙DnPP=n
93 92 oveq1d φxSwWnx=w-Gn·˙DnPP·˙D=n·˙D
94 24 ad3antrrr φxSwWnx=w-Gn·˙DGGrp
95 18 eldifbd φ¬CS˙W
96 7 lsmsubg2 GAbelSSubGrpGWSubGrpGS˙WSubGrpG
97 9 34 14 96 syl3anc φS˙WSubGrpG
98 36 57 sseldd φMP·˙AS˙W
99 68 subgsubcl S˙WSubGrpGDS˙WMP·˙AS˙WD-GMP·˙AS˙W
100 99 3expia S˙WSubGrpGDS˙WMP·˙AS˙WD-GMP·˙AS˙W
101 100 impancom S˙WSubGrpGMP·˙AS˙WDS˙WD-GMP·˙AS˙W
102 97 98 101 syl2anc φDS˙WD-GMP·˙AS˙W
103 22 oveq1i D-GMP·˙A=C+GMP·˙A-GMP·˙A
104 29 30 sseldd φCB
105 3 subgss SSubGrpGSB
106 34 105 syl φSB
107 106 57 sseldd φMP·˙AB
108 3 59 68 grppncan GGrpCBMP·˙ABC+GMP·˙A-GMP·˙A=C
109 24 104 107 108 syl3anc φC+GMP·˙A-GMP·˙A=C
110 103 109 eqtrid φD-GMP·˙A=C
111 110 eleq1d φD-GMP·˙AS˙WCS˙W
112 102 111 sylibd φDS˙WCS˙W
113 95 112 mtod φ¬DS˙W
114 113 ad3antrrr φxSwWnx=w-Gn·˙D¬DS˙W
115 41 ad3antrrr φxSwWnx=w-Gn·˙DP
116 coprm Pn¬PnPgcdn=1
117 115 87 116 syl2anc φxSwWnx=w-Gn·˙D¬PnPgcdn=1
118 43 ad3antrrr φxSwWnx=w-Gn·˙DP
119 bezout PnabPgcdn=Pa+nb
120 118 87 119 syl2anc φxSwWnx=w-Gn·˙DabPgcdn=Pa+nb
121 eqeq1 Pgcdn=1Pgcdn=Pa+nb1=Pa+nb
122 121 2rexbidv Pgcdn=1abPgcdn=Pa+nbab1=Pa+nb
123 120 122 syl5ibcom φxSwWnx=w-Gn·˙DPgcdn=1ab1=Pa+nb
124 94 adantr φxSwWnx=w-Gn·˙DabGGrp
125 118 adantr φxSwWnx=w-Gn·˙DabP
126 simprl φxSwWnx=w-Gn·˙Daba
127 125 126 zmulcld φxSwWnx=w-Gn·˙DabPa
128 87 adantr φxSwWnx=w-Gn·˙Dabn
129 simprr φxSwWnx=w-Gn·˙Dabb
130 128 129 zmulcld φxSwWnx=w-Gn·˙Dabnb
131 63 ad3antrrr φxSwWnx=w-Gn·˙DDB
132 131 adantr φxSwWnx=w-Gn·˙DabDB
133 3 19 59 mulgdir GGrpPanbDBPa+nb·˙D=Pa·˙D+Gnb·˙D
134 124 127 130 132 133 syl13anc φxSwWnx=w-Gn·˙DabPa+nb·˙D=Pa·˙D+Gnb·˙D
135 97 ad3antrrr φxSwWnx=w-Gn·˙DS˙WSubGrpG
136 135 adantr φxSwWnx=w-Gn·˙DabS˙WSubGrpG
137 90 adantr φxSwWnx=w-Gn·˙DabP
138 zcn aa
139 138 ad2antrl φxSwWnx=w-Gn·˙Daba
140 137 139 mulcomd φxSwWnx=w-Gn·˙DabPa=aP
141 140 oveq1d φxSwWnx=w-Gn·˙DabPa·˙D=aP·˙D
142 3 19 mulgass GGrpaPDBaP·˙D=a·˙P·˙D
143 124 126 125 132 142 syl13anc φxSwWnx=w-Gn·˙DabaP·˙D=a·˙P·˙D
144 141 143 eqtrd φxSwWnx=w-Gn·˙DabPa·˙D=a·˙P·˙D
145 7 lsmub2 SSubGrpGWSubGrpGWS˙W
146 34 14 145 syl2anc φWS˙W
147 22 oveq2i P·˙D=P·˙C+GMP·˙A
148 3 19 59 mulgdi GAbelPCBMP·˙ABP·˙C+GMP·˙A=P·˙C+GP·˙MP·˙A
149 9 43 104 107 148 syl13anc φP·˙C+GMP·˙A=P·˙C+GP·˙MP·˙A
150 147 149 eqtrid φP·˙D=P·˙C+GP·˙MP·˙A
151 3 19 mulgass GGrpPMPABPMP·˙A=P·˙MP·˙A
152 24 43 49 31 151 syl13anc φPMP·˙A=P·˙MP·˙A
153 20 zcnd φM
154 153 89 46 divcan2d φPMP=M
155 154 oveq1d φPMP·˙A=M·˙A
156 152 155 eqtr3d φP·˙MP·˙A=M·˙A
157 156 oveq2d φP·˙C+GP·˙MP·˙A=P·˙C+GM·˙A
158 150 157 eqtrd φP·˙D=P·˙C+GM·˙A
159 158 21 eqeltrd φP·˙DW
160 146 159 sseldd φP·˙DS˙W
161 160 ad3antrrr φxSwWnx=w-Gn·˙DP·˙DS˙W
162 161 adantr φxSwWnx=w-Gn·˙DabP·˙DS˙W
163 19 subgmulgcl S˙WSubGrpGaP·˙DS˙Wa·˙P·˙DS˙W
164 136 126 162 163 syl3anc φxSwWnx=w-Gn·˙Daba·˙P·˙DS˙W
165 144 164 eqeltrd φxSwWnx=w-Gn·˙DabPa·˙DS˙W
166 88 adantr φxSwWnx=w-Gn·˙Dabn
167 zcn bb
168 167 ad2antll φxSwWnx=w-Gn·˙Dabb
169 166 168 mulcomd φxSwWnx=w-Gn·˙Dabnb=bn
170 169 oveq1d φxSwWnx=w-Gn·˙Dabnb·˙D=bn·˙D
171 3 19 mulgass GGrpbnDBbn·˙D=b·˙n·˙D
172 124 129 128 132 171 syl13anc φxSwWnx=w-Gn·˙Dabbn·˙D=b·˙n·˙D
173 170 172 eqtrd φxSwWnx=w-Gn·˙Dabnb·˙D=b·˙n·˙D
174 84 oveq2d φxSwWnx=w-Gn·˙Dw-Gx=w-Gw-Gn·˙D
175 9 ad3antrrr φxSwWnx=w-Gn·˙DGAbel
176 3 subgss WSubGrpGWB
177 85 176 syl φxSwWnx=w-Gn·˙DWB
178 177 86 sseldd φxSwWnx=w-Gn·˙DwB
179 3 19 mulgcl GGrpnDBn·˙DB
180 94 87 131 179 syl3anc φxSwWnx=w-Gn·˙Dn·˙DB
181 3 68 175 178 180 ablnncan φxSwWnx=w-Gn·˙Dw-Gw-Gn·˙D=n·˙D
182 174 181 eqtrd φxSwWnx=w-Gn·˙Dw-Gx=n·˙D
183 146 ad3antrrr φxSwWnx=w-Gn·˙DWS˙W
184 183 86 sseldd φxSwWnx=w-Gn·˙DwS˙W
185 36 sselda φxSxS˙W
186 185 ad2antrr φxSwWnx=w-Gn·˙DxS˙W
187 68 subgsubcl S˙WSubGrpGwS˙WxS˙Ww-GxS˙W
188 135 184 186 187 syl3anc φxSwWnx=w-Gn·˙Dw-GxS˙W
189 182 188 eqeltrrd φxSwWnx=w-Gn·˙Dn·˙DS˙W
190 189 adantr φxSwWnx=w-Gn·˙Dabn·˙DS˙W
191 19 subgmulgcl S˙WSubGrpGbn·˙DS˙Wb·˙n·˙DS˙W
192 136 129 190 191 syl3anc φxSwWnx=w-Gn·˙Dabb·˙n·˙DS˙W
193 173 192 eqeltrd φxSwWnx=w-Gn·˙Dabnb·˙DS˙W
194 59 subgcl S˙WSubGrpGPa·˙DS˙Wnb·˙DS˙WPa·˙D+Gnb·˙DS˙W
195 136 165 193 194 syl3anc φxSwWnx=w-Gn·˙DabPa·˙D+Gnb·˙DS˙W
196 134 195 eqeltrd φxSwWnx=w-Gn·˙DabPa+nb·˙DS˙W
197 oveq1 1=Pa+nb1·˙D=Pa+nb·˙D
198 197 eleq1d 1=Pa+nb1·˙DS˙WPa+nb·˙DS˙W
199 196 198 syl5ibrcom φxSwWnx=w-Gn·˙Dab1=Pa+nb1·˙DS˙W
200 199 rexlimdvva φxSwWnx=w-Gn·˙Dab1=Pa+nb1·˙DS˙W
201 123 200 syld φxSwWnx=w-Gn·˙DPgcdn=11·˙DS˙W
202 3 19 mulg1 DB1·˙D=D
203 131 202 syl φxSwWnx=w-Gn·˙D1·˙D=D
204 203 eleq1d φxSwWnx=w-Gn·˙D1·˙DS˙WDS˙W
205 201 204 sylibd φxSwWnx=w-Gn·˙DPgcdn=1DS˙W
206 117 205 sylbid φxSwWnx=w-Gn·˙D¬PnDS˙W
207 114 206 mt3d φxSwWnx=w-Gn·˙DPn
208 dvdsval2 PP0nPnnP
209 118 91 87 208 syl3anc φxSwWnx=w-Gn·˙DPnnP
210 207 209 mpbid φxSwWnx=w-Gn·˙DnP
211 3 19 mulgass GGrpnPPDBnPP·˙D=nP·˙P·˙D
212 94 210 118 131 211 syl13anc φxSwWnx=w-Gn·˙DnPP·˙D=nP·˙P·˙D
213 93 212 eqtr3d φxSwWnx=w-Gn·˙Dn·˙D=nP·˙P·˙D
214 159 ad3antrrr φxSwWnx=w-Gn·˙DP·˙DW
215 19 subgmulgcl WSubGrpGnPP·˙DWnP·˙P·˙DW
216 85 210 214 215 syl3anc φxSwWnx=w-Gn·˙DnP·˙P·˙DW
217 213 216 eqeltrd φxSwWnx=w-Gn·˙Dn·˙DW
218 68 subgsubcl WSubGrpGwWn·˙DWw-Gn·˙DW
219 85 86 217 218 syl3anc φxSwWnx=w-Gn·˙Dw-Gn·˙DW
220 84 219 eqeltrd φxSwWnx=w-Gn·˙DxW
221 220 ex φxSwWnx=w-Gn·˙DxW
222 221 rexlimdvva φxSwWnx=w-Gn·˙DxW
223 83 222 sylbid φxSxW˙KDxW
224 223 imdistanda φxSxW˙KDxSxW
225 elin xSW˙KDxSxW˙KD
226 elin xSWxSxW
227 224 225 226 3imtr4g φxSW˙KDxSW
228 227 ssrdv φSW˙KDSW
229 228 15 sseqtrd φSW˙KD0˙
230 6 subg0cl SSubGrpG0˙S
231 34 230 syl φ0˙S
232 6 subg0cl W˙KDSubGrpG0˙W˙KD
233 67 232 syl φ0˙W˙KD
234 231 233 elind φ0˙SW˙KD
235 234 snssd φ0˙SW˙KD
236 229 235 eqssd φSW˙KD=0˙
237 7 lsmass SSubGrpGWSubGrpGKDSubGrpGS˙W˙KD=S˙W˙KD
238 34 14 65 237 syl3anc φS˙W˙KD=S˙W˙KD
239 62 113 eldifd φDUS˙W
240 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pgpfac1lem1 φDUS˙WS˙W˙KD=U
241 239 240 mpdan φS˙W˙KD=U
242 238 241 eqtr3d φS˙W˙KD=U
243 ineq2 t=W˙KDSt=SW˙KD
244 243 eqeq1d t=W˙KDSt=0˙SW˙KD=0˙
245 oveq2 t=W˙KDS˙t=S˙W˙KD
246 245 eqeq1d t=W˙KDS˙t=US˙W˙KD=U
247 244 246 anbi12d t=W˙KDSt=0˙S˙t=USW˙KD=0˙S˙W˙KD=U
248 247 rspcev W˙KDSubGrpGSW˙KD=0˙S˙W˙KD=UtSubGrpGSt=0˙S˙t=U
249 67 236 242 248 syl12anc φtSubGrpGSt=0˙S˙t=U