Metamath Proof Explorer


Theorem sstotbnd2

Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypothesis sstotbnd.2 N=MY×Y
Assertion sstotbnd2 MMetXYXNTotBndYd+v𝒫XFinYxvxballMd

Proof

Step Hyp Ref Expression
1 sstotbnd.2 N=MY×Y
2 metres2 MMetXYXMY×YMetY
3 1 2 eqeltrid MMetXYXNMetY
4 istotbnd3 NTotBndYNMetYd+v𝒫YFinxvxballNd=Y
5 4 baib NMetYNTotBndYd+v𝒫YFinxvxballNd=Y
6 3 5 syl MMetXYXNTotBndYd+v𝒫YFinxvxballNd=Y
7 simpllr MMetXYXd+v𝒫YFinxvxballNd=YYX
8 7 sspwd MMetXYXd+v𝒫YFinxvxballNd=Y𝒫Y𝒫X
9 8 ssrind MMetXYXd+v𝒫YFinxvxballNd=Y𝒫YFin𝒫XFin
10 simprl MMetXYXd+v𝒫YFinxvxballNd=Yv𝒫YFin
11 9 10 sseldd MMetXYXd+v𝒫YFinxvxballNd=Yv𝒫XFin
12 simprr MMetXYXd+v𝒫YFinxvxballNd=YxvxballNd=Y
13 metxmet MMetXM∞MetX
14 13 ad4antr MMetXYXd+v𝒫YFinxvM∞MetX
15 elfpw v𝒫YFinvYvFin
16 15 simplbi v𝒫YFinvY
17 16 adantl MMetXYXd+v𝒫YFinvY
18 17 sselda MMetXYXd+v𝒫YFinxvxY
19 simp-4r MMetXYXd+v𝒫YFinxvYX
20 sseqin2 YXXY=Y
21 19 20 sylib MMetXYXd+v𝒫YFinxvXY=Y
22 18 21 eleqtrrd MMetXYXd+v𝒫YFinxvxXY
23 simpllr MMetXYXd+v𝒫YFinxvd+
24 23 rpxrd MMetXYXd+v𝒫YFinxvd*
25 1 blres M∞MetXxXYd*xballNd=xballMdY
26 14 22 24 25 syl3anc MMetXYXd+v𝒫YFinxvxballNd=xballMdY
27 inss1 xballMdYxballMd
28 26 27 eqsstrdi MMetXYXd+v𝒫YFinxvxballNdxballMd
29 28 ralrimiva MMetXYXd+v𝒫YFinxvxballNdxballMd
30 ss2iun xvxballNdxballMdxvxballNdxvxballMd
31 29 30 syl MMetXYXd+v𝒫YFinxvxballNdxvxballMd
32 31 adantrr MMetXYXd+v𝒫YFinxvxballNd=YxvxballNdxvxballMd
33 12 32 eqsstrrd MMetXYXd+v𝒫YFinxvxballNd=YYxvxballMd
34 11 33 jca MMetXYXd+v𝒫YFinxvxballNd=Yv𝒫XFinYxvxballMd
35 34 ex MMetXYXd+v𝒫YFinxvxballNd=Yv𝒫XFinYxvxballMd
36 35 reximdv2 MMetXYXd+v𝒫YFinxvxballNd=Yv𝒫XFinYxvxballMd
37 36 ralimdva MMetXYXd+v𝒫YFinxvxballNd=Yd+v𝒫XFinYxvxballMd
38 6 37 sylbid MMetXYXNTotBndYd+v𝒫XFinYxvxballMd
39 simpr MMetXYXc+c+
40 39 rphalfcld MMetXYXc+c2+
41 oveq2 d=c2xballMd=xballMc2
42 41 iuneq2d d=c2xvxballMd=xvxballMc2
43 42 sseq2d d=c2YxvxballMdYxvxballMc2
44 43 rexbidv d=c2v𝒫XFinYxvxballMdv𝒫XFinYxvxballMc2
45 44 rspcv c2+d+v𝒫XFinYxvxballMdv𝒫XFinYxvxballMc2
46 40 45 syl MMetXYXc+d+v𝒫XFinYxvxballMdv𝒫XFinYxvxballMc2
47 elfpw v𝒫XFinvXvFin
48 47 simprbi v𝒫XFinvFin
49 48 ad2antrl MMetXYXc+v𝒫XFinYxvxballMc2vFin
50 ssrab2 xv|xballMc2Yv
51 ssfi vFinxv|xballMc2Yvxv|xballMc2YFin
52 49 50 51 sylancl MMetXYXc+v𝒫XFinYxvxballMc2xv|xballMc2YFin
53 oveq1 x=yxballMc2=yballMc2
54 53 ineq1d x=yxballMc2Y=yballMc2Y
55 incom yballMc2Y=YyballMc2
56 54 55 eqtrdi x=yxballMc2Y=YyballMc2
57 dfin5 YyballMc2=zY|zyballMc2
58 56 57 eqtrdi x=yxballMc2Y=zY|zyballMc2
59 58 neeq1d x=yxballMc2YzY|zyballMc2
60 rabn0 zY|zyballMc2zYzyballMc2
61 59 60 bitrdi x=yxballMc2YzYzyballMc2
62 61 elrab yxv|xballMc2YyvzYzyballMc2
63 62 simprbi yxv|xballMc2YzYzyballMc2
64 63 rgen yxv|xballMc2YzYzyballMc2
65 eleq1 z=fyzyballMc2fyyballMc2
66 65 ac6sfi xv|xballMc2YFinyxv|xballMc2YzYzyballMc2ff:xv|xballMc2YYyxv|xballMc2YfyyballMc2
67 52 64 66 sylancl MMetXYXc+v𝒫XFinYxvxballMc2ff:xv|xballMc2YYyxv|xballMc2YfyyballMc2
68 fdm f:xv|xballMc2YYdomf=xv|xballMc2Y
69 68 ad2antrl vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2domf=xv|xballMc2Y
70 69 50 eqsstrdi vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2domfv
71 simprl vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2f:xv|xballMc2YY
72 69 feq2d vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2f:domfYf:xv|xballMc2YY
73 71 72 mpbird vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2f:domfY
74 simprr vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2yxv|xballMc2YfyyballMc2
75 ffn f:xv|xballMc2YYfFnxv|xballMc2Y
76 elpreima fFnxv|xballMc2Yyf-1yballMc2yxv|xballMc2YfyyballMc2
77 75 76 syl f:xv|xballMc2YYyf-1yballMc2yxv|xballMc2YfyyballMc2
78 77 baibd f:xv|xballMc2YYyxv|xballMc2Yyf-1yballMc2fyyballMc2
79 78 ralbidva f:xv|xballMc2YYyxv|xballMc2Yyf-1yballMc2yxv|xballMc2YfyyballMc2
80 79 ad2antrl vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2yxv|xballMc2Yyf-1yballMc2yxv|xballMc2YfyyballMc2
81 74 80 mpbird vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2yxv|xballMc2Yyf-1yballMc2
82 id y=xy=x
83 oveq1 y=xyballMc2=xballMc2
84 83 imaeq2d y=xf-1yballMc2=f-1xballMc2
85 82 84 eleq12d y=xyf-1yballMc2xf-1xballMc2
86 85 ralrab2 yxv|xballMc2Yyf-1yballMc2xvxballMc2Yxf-1xballMc2
87 81 86 sylib vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2xvxballMc2Yxf-1xballMc2
88 70 73 87 3jca vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2
89 88 ex vFinf:xv|xballMc2YYyxv|xballMc2YfyyballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2
90 49 89 syl MMetXYXc+v𝒫XFinYxvxballMc2f:xv|xballMc2YYyxv|xballMc2YfyyballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2
91 simpr2 MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2f:domfY
92 91 frnd MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2ranfY
93 91 ffnd MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2fFndomf
94 49 adantr MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2vFin
95 simpr1 MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2domfv
96 ssfi vFindomfvdomfFin
97 94 95 96 syl2anc MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2domfFin
98 fnfi fFndomfdomfFinfFin
99 93 97 98 syl2anc MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2fFin
100 rnfi fFinranfFin
101 99 100 syl MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2ranfFin
102 elfpw ranf𝒫YFinranfYranfFin
103 92 101 102 sylanbrc MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2ranf𝒫YFin
104 oveq1 x=zxballNc=zballNc
105 104 cbviunv xranfxballNc=zranfzballNc
106 3 ad4antr MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2zranfNMetY
107 metxmet NMetYN∞MetY
108 106 107 syl MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2zranfN∞MetY
109 92 sselda MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2zranfzY
110 rpxr c+c*
111 110 ad4antlr MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2zranfc*
112 blssm N∞MetYzYc*zballNcY
113 108 109 111 112 syl3anc MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2zranfzballNcY
114 113 ralrimiva MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2zranfzballNcY
115 iunss zranfzballNcYzranfzballNcY
116 114 115 sylibr MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2zranfzballNcY
117 iunin1 yvyballMc2Y=yvyballMc2Y
118 simplrr MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2YxvxballMc2
119 53 cbviunv xvxballMc2=yvyballMc2
120 118 119 sseqtrdi MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2YyvyballMc2
121 sseqin2 YyvyballMc2yvyballMc2Y=Y
122 120 121 sylib MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yvyballMc2Y=Y
123 117 122 eqtrid MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yvyballMc2Y=Y
124 0ss zranfzballNc
125 sseq1 yballMc2Y=yballMc2YzranfzballNczranfzballNc
126 124 125 mpbiri yballMc2Y=yballMc2YzranfzballNc
127 126 a1i MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yvyballMc2Y=yballMc2YzranfzballNc
128 simpr3 MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2xvxballMc2Yxf-1xballMc2
129 54 neeq1d x=yxballMc2YyballMc2Y
130 id x=yx=y
131 53 imaeq2d x=yf-1xballMc2=f-1yballMc2
132 130 131 eleq12d x=yxf-1xballMc2yf-1yballMc2
133 129 132 imbi12d x=yxballMc2Yxf-1xballMc2yballMc2Yyf-1yballMc2
134 133 rspccva xvxballMc2Yxf-1xballMc2yvyballMc2Yyf-1yballMc2
135 128 134 sylan MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yvyballMc2Yyf-1yballMc2
136 13 ad5antr MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2M∞MetX
137 cnvimass f-1yballMc2domf
138 47 simplbi v𝒫XFinvX
139 138 ad2antrl MMetXYXc+v𝒫XFinYxvxballMc2vX
140 139 adantr MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2vX
141 95 140 sstrd MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2domfX
142 137 141 sstrid MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2f-1yballMc2X
143 142 sselda MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2yX
144 simp-4r MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2c+
145 144 rpred MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2c
146 elpreima fFndomfyf-1yballMc2ydomffyyballMc2
147 146 simplbda fFndomfyf-1yballMc2fyyballMc2
148 93 147 sylan MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2fyyballMc2
149 blhalf M∞MetXyXcfyyballMc2yballMc2fyballMc
150 136 143 145 148 149 syl22anc MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2yballMc2fyballMc
151 150 ssrind MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2yballMc2YfyballMcY
152 137 sseli yf-1yballMc2ydomf
153 ffvelcdm f:domfYydomffyY
154 91 152 153 syl2an MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2fyY
155 simp-5r MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2YX
156 155 20 sylib MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2XY=Y
157 154 156 eleqtrrd MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2fyXY
158 110 ad4antlr MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2c*
159 1 blres M∞MetXfyXYc*fyballNc=fyballMcY
160 136 157 158 159 syl3anc MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2fyballNc=fyballMcY
161 151 160 sseqtrrd MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2yballMc2YfyballNc
162 fnfvelrn fFndomfydomffyranf
163 93 152 162 syl2an MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2fyranf
164 oveq1 z=fyzballNc=fyballNc
165 164 ssiun2s fyranffyballNczranfzballNc
166 163 165 syl MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2fyballNczranfzballNc
167 161 166 sstrd MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yf-1yballMc2yballMc2YzranfzballNc
168 167 adantlr MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yvyf-1yballMc2yballMc2YzranfzballNc
169 168 ex MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yvyf-1yballMc2yballMc2YzranfzballNc
170 135 169 syld MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yvyballMc2YyballMc2YzranfzballNc
171 127 170 pm2.61dne MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yvyballMc2YzranfzballNc
172 171 ralrimiva MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yvyballMc2YzranfzballNc
173 iunss yvyballMc2YzranfzballNcyvyballMc2YzranfzballNc
174 172 173 sylibr MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2yvyballMc2YzranfzballNc
175 123 174 eqsstrrd MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2YzranfzballNc
176 116 175 eqssd MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2zranfzballNc=Y
177 105 176 eqtrid MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2xranfxballNc=Y
178 iuneq1 w=ranfxwxballNc=xranfxballNc
179 178 eqeq1d w=ranfxwxballNc=YxranfxballNc=Y
180 179 rspcev ranf𝒫YFinxranfxballNc=Yw𝒫YFinxwxballNc=Y
181 103 177 180 syl2anc MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2w𝒫YFinxwxballNc=Y
182 181 ex MMetXYXc+v𝒫XFinYxvxballMc2domfvf:domfYxvxballMc2Yxf-1xballMc2w𝒫YFinxwxballNc=Y
183 90 182 syld MMetXYXc+v𝒫XFinYxvxballMc2f:xv|xballMc2YYyxv|xballMc2YfyyballMc2w𝒫YFinxwxballNc=Y
184 183 exlimdv MMetXYXc+v𝒫XFinYxvxballMc2ff:xv|xballMc2YYyxv|xballMc2YfyyballMc2w𝒫YFinxwxballNc=Y
185 67 184 mpd MMetXYXc+v𝒫XFinYxvxballMc2w𝒫YFinxwxballNc=Y
186 185 rexlimdvaa MMetXYXc+v𝒫XFinYxvxballMc2w𝒫YFinxwxballNc=Y
187 46 186 syld MMetXYXc+d+v𝒫XFinYxvxballMdw𝒫YFinxwxballNc=Y
188 187 ralrimdva MMetXYXd+v𝒫XFinYxvxballMdc+w𝒫YFinxwxballNc=Y
189 istotbnd3 NTotBndYNMetYc+w𝒫YFinxwxballNc=Y
190 189 baib NMetYNTotBndYc+w𝒫YFinxwxballNc=Y
191 3 190 syl MMetXYXNTotBndYc+w𝒫YFinxwxballNc=Y
192 188 191 sylibrd MMetXYXd+v𝒫XFinYxvxballMdNTotBndY
193 38 192 impbid MMetXYXNTotBndYd+v𝒫XFinYxvxballMd